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Abstract: It is essential for autonomous vehicles at level 3 or higher to have the ability to predict
the trajectories of surrounding vehicles to safely and effectively plan and drive along trajectories in
complex traffic situations. However, predicting the future behavior of vehicles is a challenging issue
because traffic vehicles each have different drivers with different driving tendencies and intentions
and they interact with each other. This paper presents a Long Short-Term Memory (LSTM) encoder–
decoder model that utilizes an attention mechanism that focuses on certain information to predict
vehicles’ trajectories. The proposed model was trained using the Highway Drone (HighD) dataset,
which is a high-precision, large-scale traffic dataset. We also compared this model to previous
studies. Our model effectively predicted future trajectories by using an attention mechanism to
manage the importance of the driving flow of the target and adjacent vehicles and the target vehicle’s
dynamics in each driving situation. Furthermore, this study presents a method of linearizing the road
geometry such that the trajectory prediction model can be used in a variety of road environments.
We verified that the road geometry linearization mechanism can improve the trajectory prediction
model’s performance on various road environments in a virtual test-driving simulator constructed
based on actual road data.

Keywords: trajectory prediction; LSTM encoder–decoder model; attention mechanism; road geome-
try; autonomous driving

1. Introduction

Intelligent vehicles, including partially automated vehicles that are equipped with
Adaptive Cruise Control (ACC), require the ability to drive strategically according to the
flow of traffic while simultaneously ensuring safety. Strategic driving includes determining
when to change lanes between surrounding vehicles, passing low-speed or erratically be-
having vehicles, and creating space for surrounding vehicles to change lanes. Autonomous
vehicles must have the ability to predict the future behaviors and trajectories of surround-
ing vehicles to implement these features. Predicting surrounding vehicles’ behaviors is a
core element that has a significant effect on everything from planning trajectories for basic
driving [1,2] to high-level features such as predictive control for improving comfort and
safety [3] and high fuel efficiency driving [4]. The ability to predict the future behavior of
surrounding vehicles requires sensing technology that accurately recognizes obstacles [5]
and interacts with surrounding autonomous driving systems [6].

To date, several methods for predicting vehicle trajectories have been proposed. The
classic trajectory prediction method that is generally employed uses a Bayesian filtering
technique such as a Kalman filter in the vehicle motion model [7–9]. These methods use
simple models to ensure quick computation speed and are good at predicting the near
future; however, they show poor performance regarding long-term predictions that reflect
the nonlinear movements of vehicles. To address these limitations, more elaborate models
such as the Gaussian mixture model [10] and Dynamic Bayesian Network (DBN) [11]
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have been proposed. Nevertheless, they have not been sufficient for depicting the various
nonlinear dynamic motions of actual vehicles. Laugier et al. proposed a method for
predicting a future path using the Hidden Markov Model (HMM), which probabilistically
models the change in a specific state [10,11]. Schreier et al. presented a method to improve
long-term prediction performance by designing a Bayesian network to classify vehicle
behavior and predict detailed routes [12].

Recent studies have used various deep learning methods for trajectory prediction.
These studies have mainly used the Recurrent Neural Network (RNN) technique to learn
and predict time series data [12]. The challenge of predicting vehicle trajectories, in which a
vehicle’s future position is predicted based on a series of past data, has aspects in common
with the work on voice recognition and Natural Language Processing (NLP), which have
garnered success in the field of machine learning. The Long Short-Term Memory (LSTM)
model, which resolves the basic RNN model’s vanishing gradient challenge, has exhibited
excellent performance in the field of time series data learning [13–16]. Studies have been
presented that have improved long-term prediction by applying the benefits of the LSTM
model to the problem of sequence-to-sequence prediction [17] of vehicle trajectories [18–21]
or by applying them to dynamic obstacles such as pedestrians [22].

This study proposes methods to improve the vehicle future trajectory prediction
model’s learning efficiency and long-term prediction performance. The driving conditions
of surrounding vehicles were transformed from the perspective of the predicted target
vehicle, and an attention mechanism was applied to the LSTM model to selectively focus
on important information. In order to apply the model developed from the traffic dataset to
the natural environment, we propose a method of transforming a complex road shape into
a simplified straight frame. The framework of the proposed vehicle trajectory prediction
method is illustrated in Figure 1, and it comprises the two parts below.

Figure 1. Framework of the proposed vehicle trajectory prediction method.

Section 3 presents a lane stream attention-based LSTM encoder–decoder model. This
inputs information related to surrounding vehicles and outputs the future coordinates of
the target vehicles. It is based on a local coordinate system that is fixed on the rear wheel
surface center of the target vehicle. This method does not simply input all the position
information related to surrounding vehicles in a specified area around the target vehicle;
instead, it summarizes the information as data that depict the adjacent lane’s traffic stream
information and the target vehicle’s main status. It is possible to improve learning efficiency
and long-term prediction performance by configuring an attention mechanism that can
focus on each situation among the context vectors of each lane and target vehicle state. This
study used the Highway Drone (HighD) dataset [23], which is a large-scale, naturalistic
traffic vehicle trajectory dataset, to train the model.

Section 4 presents a road geometry linearization method for effectively using the
trajectory prediction model on roads with various geometries. Most previous studies have
developed trajectory prediction models based on data obtained from straight roads and
then evaluated the performance on these road sections. Therefore, it is unlikely that the
reported performance will be achieved when using these models in autonomous vehicles
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that must drive on real roads with various geometries. A road geometry linearization
method was developed by noting that actual drivers determine their driving intentions
based on the longitudinal or lateral positions of surrounding vehicles within each lane
rather than on the relative positions of surrounding vehicles. This study verifies that it is
possible to obtain sufficient trajectory prediction performance, even on curved roads, when
the proposed linearization method is used.

2. Related Work

The various proposed vehicle trajectory prediction methods can be classified according
to the interactions between the surrounding vehicles and the target vehicle [20,24]. Recent
related studies using deep learning models to effectively improve long-term prediction
performance are summarized as follows.

Independent prediction: Initial studies on vehicle trajectory prediction calculated
the independent movement of the target vehicle based on vehicle kinematic or dynamic
modeling. Kalman filters are mainly used to track the vehicles’ positions and predict
their future states [7–9,25,26]. Trajectory prediction based on simple physical models and
Kalman filters has the disadvantage of only being effective at predicting future states for a
short time. Gaussian mixture modeling [10] or Monte Carlo path planning [27] is used to
solve the short-term prediction problem. Efforts have been made to improve prediction
performance by classifying the future behavior of vehicles before making physical state
predictions. Finite behavior types are classified using behavior classification models,
such as Bayesian networks [28], support vector machines [29,30], and HMM [31–33], and
trajectories or risks corresponding to each behavior are predicted.

Interaction aware prediction: Interaction aware prediction methods consider inter-
actions between vehicles. A relatively small number of such works have been published.
Optimal predictions regarding future motions have been made using heuristic cost func-
tions [34–36], data-driven random forest classifiers [37], and Markov decision processes [38]
based on relative information between vehicles. In [34], 10 types of maneuvers are classi-
fied using HMM, and an Interacting Multiple Model (IMM) is used to model the vehicles’
motion. An energy minimization cost function is applied to the results of a maneuver
recognition module and a trajectory prediction module for each vehicle, and this is used
as a module for predicting interactions. The use of optimization models has a limitation
in that these models are significantly affected by how well the cost function is designed.
In another method, the results of classifying lateral maneuvers using a random decision
forest model based on data obtained in an actual road environment are combined with a
Gaussian mixture regression model’s probabilistic prediction trajectories [37]. Approaches
based on real road data have the burden of needing to construct a large-scale dataset, and
they may be overfitted for certain situations if data from a variety of driving environments
cannot be obtained.

Recurrent networks-based prediction: Mozaffari et al. published a detailed investi-
gation into deep learning-based vehicle behavior prediction [39]. Convolutional Neural
Networks (CNNs) are used to predict surrounding vehicles’ driving intentions and trajecto-
ries based on sensor data [40–44]. As CNN-based prediction methods lack a mechanism for
reflecting time-series information, researchers have presented works that use RNNs and
CNNs in combination to integrate the advantages of each model [19,45–47]. Researchers
have also proposed a method that uses occupancy grid maps and an LSTM encoder–
decoder model to probabilistically predict trajectories [18]. In [19,20], interactions with
surrounding vehicles are modeled by a social pooling mechanism. The context vectors of
trajectory and maneuver encoders are combined to predict the maneuver-specific future
distributions of vehicles’ positions [48]. The LSTM RNN model can be used for intel-
ligent traffic management and route guidance by predicting traffic flow from a macro
perspective [49] as well as microscopic vehicle movement trajectory prediction. A traffic
control system that considers current and future traffic congestion conditions has improved
a city’s traffic flow [50]. Classification is performed on behaviors such as lane changes
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and deceleration, which can be recognized by turn signals and brake lights in real road
situations. In Neural Machine Translation (NMT), which is an important field that uses
the sequence-to-sequence model, researchers have published results in which translation
performance and learning efficiency are greatly improved by using an attention mechanism
that selectively focuses on parts of the source text [51,52]. In the field of vehicle trajectory
prediction, researchers have also begun to use attention mechanisms to improve prediction
performance by focusing on information such as certain vehicles or time points [21,53–55];
however, additional research is still required on various methodologies that can effectively
emulate the methods of judgment used by actual drivers. In most related studies, the future
vehicle trajectory prediction models are trained and verified based on the Next Generation
Simulation (NGSIM) [56,57] or HighD [23] datasets. Nevertheless, these studies have not
sufficiently verified their performance on a variety of road geometries. Yoon et al. predicted
realistic driving intentions by extracting road geometry data from detailed roadmap data
and then using the extracted data as constraints in a prediction model [58].

3. Proposed Vehicle Trajectory Prediction Method

The vehicle trajectory prediction model was designed based on dynamics data such
as the relative positions and speeds of the surrounding vehicles converted to the reference
frame of the target vehicle. First, a basic LSTM encoder–decoder model was designed,
and an attention mechanism was applied to increase the ability to understand the driving
context of the encoder.

3.1. Problem Formulation

Our task was to predict the future trajectories of surrounding vehicles in various
driving environments; this has an important effect on the performance of partially or fully
automated vehicles. This study utilized the idea of a deep learning model, which has
caused performance improvements compared to past efforts in fields such as NLP and
NMT; these have the common point of predicting continuous future data based on a series
of past data. For the performance of a prediction algorithm, providing high-quality, large-
scale data is as important as the structure of a deep learning model. Fortunately, we could
utilize public datasets containing the driving information of actual traffic vehicles [23,55,56].
The deep learning model’s learning efficiency and prediction accuracy are improved by
organizing the data in the dataset, which contains vast amounts of information, to prioritize
the information that mainly affects the decisions of actual drivers. Another challenge is to
acquire versatility such that the prediction ability, which is limited to the learning dataset’s
driving environment, can be used in a variety of situations. We addressed this challenge by
noting that human drivers would consider vehicles driving along a predetermined road
geometry similarly to vehicles driving straight.

3.2. Surrounding Vehicle Data Processing

We converted the data for surrounding vehicles based on a local coordinate system that
was fixed on the center of the back face of the target vehicle, as illustrated in Figure 2 (Figure 2
shows some of the driving data used for learning). When human drivers or autonomous
vehicles perceive a driving situation and interact with surrounding vehicles, they think from
the perspective of a local coordinate system with their own field of view as the reference point.
If global coordinates expressed the positions of vehicles, the data described by the numbers
would be completely different to the target vehicle’s viewpoint, even in the same situation.
This could cause inefficiencies in learning and harm prediction performance.

In Figure 2, the green vehicle’s heading direction is the x-axis and the direction
perpendicular to that is the y-axis. The blue vehicles are the closest cars in each lane
adjacent to the target vehicle, and they are the objects that must be examined with the
greatest caution when considering a lane change. The traffic flow of each lane is expressed
by the distance between the front and rear vehicles and their amount of change, as well as
the location and speed of the ego (green) vehicle and the blue vehicles.
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Figure 2. Coordinate system used for trajectory prediction. Green: target vehicle, blue: nearest
vehicle in adjacent lane, patterned ellipse: front and rear inter-vehicle distance.

Tijerina et al. observed that lane changing durations last an average of 5.0 s on city streets
and 5.8 s on highways [59]. Toledo et al. analyzed the duration of lane changes according to
variables such as vehicle type, driving velocity, and relative distance. [60]. Previous studies,
including [61,62], have reported lane change durations of approximately 5 s on average;
therefore, we predicted the position of the target vehicles up to 5 s into the future based on
information on the target vehicles and surrounding vehicles from the past 3 s.

3.3. Base LSTM Encoder–Decoder Trajectory Prediction Model

LSTM encoder–decoder models have been proposed in the field of machine trans-
lation [14,63]. To verify our proposed model’s performance and the effectiveness of the
learning data configuration, the peaky LSTM encoder–decoder model illustrated in Figure 3
was created by referencing architecture [14] that was proposed in the field of machine
translation. Decent prediction performance can be expected, even from a basic model, if the
model uses large amounts of data that properly depict the situations to be learned [64,65].

• Input and output data: Our model’s input comprised the data related to the traffic
flow of the target vehicle’s lane as well as the lanes to the left and right of the target
vehicle for a fixed amount of time.

X =
[
xt−th , xt−th+1, . . . , xt−1, xt

]
(1)

Figure 3. Peaky LSTM encoder–decoder architecture.
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Here,
xt =

[
xt

c, xt
l , xt

r
]
, (2)

xt
c =

[
xt

m, yt
m, vt

x,m, vt
y,m, xt

f , yt
f , dt

m f , ∆vt
m f , xt

r, yt
r, dt

mr, ∆vt
mr

]
(3)

Data from the current time t until the time before th were adopted as the input and
data were sampled from up to 3 s before, at 5 Hz. The value xt at time t is the center, left,
and right lane data (c: center, l: left, r: right), and each lane’s data included the center
vehicle’s x- and y-axis position, velocity, distance to the vehicles in front and behind, and
relative velocity (m: middle, f: front, r: rear). The center vehicles of each lane were the
green or blue vehicles illustrated in Figure 2.

The model’s output was the future coordinate of the target vehicle after time t f .

Y =
[
yt+1, yt+2, . . . , yt+t f

]
(4)

Here,
yt =

[
xt

tgt, yt
tgt

]
(5)

• Encoder: The encoding layer receives data from each time as the input and sends it
through the embedding and LSTM layers to convert it to hidden state vectors. The
cell and hidden state vectors that are calculated in the LSTM for each time step are
sent to the next step. The topmost LSTM layer’s hidden state at the final time point
acts as the context vector in which the driving information of the vehicles for a fixed
amount of time is encoded. The LSTM has memory cells that summarize the past input
sequences and store them, and these cells consist of the following gating mechanisms
that properly combine the new input and memory information (Figure 4).

f orget, f = σ
(

xtWx f + ht−1Wh f + b f

)
(6)

input, i = σ
(

xtWxi + ht−1Whi + bi

)
(7)

update, g = tanh
(

xtWxg + ht−1Whg + bg

)
(8)

output, o = σ
(

xtWxo + ht−1Who + bo

)
(9)

cell state, ct = f� ct−1 + g� i (10)

hidden state, ht = o� tanh(ct) (11)

where σ(x) is an activation function, Wx and Wh represent weight matrix for input and
hidden state, b f is a bias vector of forget gate, and ct and ht denote cell and hidden state
vectors at time step t.

• Decoder: The context vectors that summarize the past driving information are sent
from the encoding layer to the decoder layer’s input. The hidden states that are
calculated in the LSTM layer for each time step are converted to x and y coordinates by
the fully connected neural network layer. The position vectors that are ultimately pro-
duced as an output become the input of the next step, and a similar process is repeated
until the goal prediction time is reached to determine a continuous future prediction
position at each time point. The peaky LSTM encoder–decoder model connects the
position vectors that become the input of each time step and the context vectors that
are produced as an output by the encoding layer. The prediction performance can be
improved by not sending the context vector solely on the decoder’s first step and then
using the past driving information at each step.

• Loss function: In deep learning models, training progresses in the direction of reducing
the loss function. Our ultimate training goal was to determine prediction points at
the closest distance to the actual future position. Therefore, we adopted the Root
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Mean Square Error (RMSE), which corresponds to distance error, as the loss function.
Additionally, more importance was placed on lateral accuracy than longitudinal
accuracy [21].

RMSE =

√√√√ 1
n

n

∑
i=1

t f

∑
t=1
{(x̂− x)2 + 2·(ŷ− y)2} (12)

Figure 4. The structure of an LSTM cell.

Here, x, y are the true values at each time step, and x̂, ŷ are the predicted positions.

3.4. Lane Stream Attention-Based LSTM Encoder–Decoder Trajectory Prediction Model

In the NMT field, the input information that is summarized as context vectors of
fixed length is considered to cause an obstruction in improving the performance of the
encoder–decoder architecture. Performance is improved by introducing a mechanism that
can focus on the most relevant information in the context vector at each prediction time
point [51,52]. In the challenge of vehicle trajectory prediction, unlike that of translation, it
is effective to focus on information such as traffic lanes’ driving flow rather than certain
time points in the input information [21].

Our proposed lane stream attention-based LSTM encoder–decoder model was created
by adding an attention mechanism to the basic model that separates and encodes the
driving flow of each lane, as well as the target vehicle information, and determines its
degree of importance at each time step, as described in Section 3.3 (Figure 5).

• Input and output data: The proposed attention-based model uses three encoders
to depict the driving flow of the lanes that are adjacent to the target vehicle and
one encoder that focuses on the target vehicle. The input data comprise central
information that is considered with great caution when a human driver adjusts the
vehicle’s velocity or changes lanes [66,67]. The lane driving flow encoder’s input is

xt
lane =

[
xt

m, yt
m, vt

x,m, vt
y,m, xt

f , yt
f , dt

m f , ∆vt
m f , xt

r, yt
r, dt

mr, ∆vt
mr

]
(13)

and the target vehicle encoder’s input is

xt
tgt =

[
xt

tgt, yt
tgt, vt

x,tgt, vt
y,tgt, xt

f ront, xt
rear, xt

le f t, xt
right, sturn, sbrake

]
. (14)
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Figure 5. Lane stream attention-based LSTM encoder–decoder architecture.

The lane information input at time t is similar to those of the peaky LSTM model’s
lane input data. The target vehicle information input includes the x- and y-axis positions,
velocity, and longitudinal positions of the surrounding vehicles in the front, back, left, and
right directions. In addition, the states of the turn signals and brake lights are added as they
provide the most important hints when an actual human driver predicts a surrounding
vehicle’s movement. As brake lights generally come on unconditionally when the brake
pedal is pressed, they are set to the “on” state when decelerating by more than a certain
velocity change. An average of 52–75% of actual drivers use turn signals in situations such
as turning at intersections or changing lanes [68,69]. We set the turn signals to the “on”
state during 60% of lane-change sequences in the training data. The model’s output is the
target vehicle’s future position coordinates after time t f .

• Attention: The final hidden state that is produced as an output by each encoder
summarizes the sequence of driving information, and the influence of the most recent
information is strongly reflected; therefore, it is appropriate to use this as a context
vector that predicts the future position. The weight of each context vector is calculated
as follows:

hidden states, h0 = concat(h1, h2, h3, h4) (15)

at
n = FCNN

(
concat

(
ht, hn

))
, n = 1, 2, 3, 4 (16)

attention weights, At = softmax
(
concat

(
at

1, at
2, at

3, at
4
))

(17)

The context vector ht at prediction time t is a hidden state vector that includes the
past information and the predicted position in the LSTM layer, and the initially inputted
h0 is connected to the final hidden states that are produced as outputs by each encoder. A
neural network was utilized to quantify the importance of the encoding layer’s output h1–4,
and a softmax function was used to normalize the values to between 0 and 1. The hidden
state vectors were multiplied by the weights and added to the embedded input to become
the next step’s LSTM input value. The method for calculating the attention weights was
developed by referencing models proposed by previous studies on machine translation
and trajectory prediction [21,52].

• Encoder–decoder: The encoding and decoding layers are similar to those described
in the basic LSTM structure. However, in an attention-based model, a total of four
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encoding layers are utilized and a context vector that reflects the attention weights
is added to the decoding layer. To prevent the challenge of the model becoming
overfitted to the training data in the training process, the data are scaled and dropout
is applied to the LSTM layer.

4. Evaluation of Vehicle Trajectory Prediction Model with Traffic Dataset

This section presents the training results of the proposed trajectory prediction model
using a natural traffic dataset. The data required for learning were extracted from publicly
available datasets, and additionally necessary values were subjected to a pre-processing
process. For proper performance evaluation, prediction results of different models using
the same dataset were compared.

4.1. HighD Traffic Dataset

We used the HighD dataset, which includes publicly available traffic data, to train
and evaluate the proposed model [23]. The HighD dataset is a large-scale, naturalistic
vehicle trajectory dataset that includes driving data from more than 110,000 cars and trucks
captured by drones on highways in Germany (Figure 6). A total of 16.4 h of data were
captured from six different road sections, and the length of each section was approximately
420 m. The videos were recorded at 25 fps in 4K resolution, and a computer vision algorithm
was used to automatically extract the vehicles’ data. The extracted information on each
vehicle included the size, type, driving direction, position, velocity, acceleration, number
of lane changes, and IDs of surrounding vehicles. The advantage of the HighD dataset
is that positions are measured with an error of less than 10 cm from a vast amount of
high-quality raw data. Additionally, various types of information, such as the surrounding
vehicles’ information and lane changes, have been preprocessed. As it already includes
various information that describes driving situations, it is very efficient for configuring
data for learning.

Figure 6. HighD dataset: highway traffic dataset with drone [23].

We extracted the input data for each vehicle that was required for training and added
information such as turn signals. The target vehicle and surrounding vehicles’ position
and velocity data were all converted to the standard local coordinate system illustrated
in Figure 2. If there was an empty position among eight vehicles around the target, the
relative position and speed could not be calculated, so it was replaced with virtual data
from 300 m that did not affect driving. To reduce unnecessary burden on the prediction
model, 25 fps data were down-sampled to 5 fps, and the data that were divided into
evenly spaced intervals were used to obtain lane-changing sequences. We divided the
preprocessed dataset into training (70%), validation (10%), and testing (20%) sets, and then
performed the training.
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4.2. Training Results of Trajectory Prediction Model

The proposed model predicts future positions at up to 5 s into the future at 5 Hz.
We compared the actual future positions and prediction results at 1 s intervals using the
RMSE metric to verify the model’s prediction performance. Table 1 compares the results of
several baseline models that were published using a similar dataset. The baseline models
were divided into groups comprising models that use only the position data of the vehicles
and models that also use additional information such as velocity and maneuvers. The
models that learn using solely position data include Convolutional Social (CS)-LSTM (a
social encoder–decoder using convolutional pooling [19]), Non Local Social (NLS)-LSTM
(which combines local and non-local operations for social pooling [20]), and Multi Head
Attention (MHA)-LSTM (which uses multi-head dot product attention [54]). The models
that also use additional information such as vehicle velocity, acceleration, and class include
MHA-LSTM (MHA-LSTM with additional features [54]), Encoder Decoder (ED)-LSTM
(a basic LSTM encoder–decoder model), P-LSTM (peaky LSTM encoder–decoder model),
ED-LSTM with CS (which uses the convolutional pooling concept [19]), and Lane Stream
(LS)-LSTM (the proposed model in this study, which uses lane stream attention).

Table 1. RMSEs in meters over a 5 s prediction horizon for the proposed and baseline models.

Prediction
Horizon (s)

Position-Based Methods Position + Other Features-Based Methods
CS-LSTM NLS-LSTM MHA-LSTM MHA-LSTM(+f) ED-LSTM P-LSTM ED-LSTM +CS LS-LSTM

1 0.22 0.20 0.19 0.06 0.30 0.30 0.32 0.30
2 0.61 0.57 0.55 0.09 0.50 0.43 0.61 0.38
3 1.24 1.14 1.10 0.24 0.76 0.60 0.98 0.45
4 2.10 1.90 1.84 0.54 1.08 0.88 1.45 0.60
5 3.27 2.91 2.78 1.18 1.48 1.26 1.99 0.88

As presented in Tables 1 and 2, the models that learn solely from position information
show relatively low performance, and it is effective to use additional information such as
velocity to accurately predict future positions. This is because moment-to-moment relative
positions between vehicles, as well as each vehicle’s dynamics, have an important effect.
If the surrounding vehicles’ data are converted to a local frame that is fixed on the target
vehicle, as was performed in our proposed method, excellent prediction results can be
expected from a P-LSTM model that inputs the context vectors that have been converted
by a basic encoder–decoder model at each time step. The proposed LS-LSTM model’s long-
term prediction performance was excellent compared to the other baseline models. This
approach uses a mechanism of primarily processing and inputting the driving situation in
terms of the surrounding lanes’ driving flow and the target vehicle’s information and then
learning the importance of each item of information; it can be observed that this mechanism
was effective.

Table 2. Longitudinal and lateral RMSEs in meters.

Prediction
Horizon (s)

Longitudinal Position Lateral Position
ED-LSTM P-LSTM ED-LSTM +CS LS-LSTM ED-LSTM P-LSTM ED-LSTM +CS LS-LSTM

1 0.25 0.28 0.31 0.28 0.18 0.08 0.09 0.09
2 0.39 0.40 0.58 0.36 0.31 0.15 0.17 0.13
3 0.62 0.56 0.95 0.41 0.44 0.22 0.26 0.18
4 0.92 0.83 1.41 0.54 0.56 0.30 0.36 0.25
5 1.32 1.19 1.94 0.81 0.67 0.39 0.46 0.33

We compared the models’ learning curves to verify the learning effectiveness of the
proposed attention mechanism (Figure 7). When the attention mechanism is applied, the
learning speed increases and, ultimately, a low test loss is reached in a stable manner
that is clearly distinct from the other models. The peaky mechanism inputs the encoder’s
context vectors in the decoder at each moment and, when it is not used, the loss becomes
sufficiently low for the training dataset. However, the accuracy was poor for the test data.
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Figure 7. Learning curves: test and training loss.

Figure 8 illustrates the lane change and lane-keeping sequences when using the trained
model on the test dataset. In the lane change sequence in Figure 8a, the LS-LSTM model
predicted the lane change more quickly than the P-LSMT model and reached the actual
future trajectory. The attention mechanism calculates the weights for objects that must
receive focus in real-time according to the surrounding vehicles’ information and the target
vehicle’s data. In the lane-keeping sequence in Figure 8b, it can be observed that the center
lane and the target vehicle’s weight values were relatively high.

Figure 8. Examples of trajectory prediction: (a) lane changing and (b) lane keeping.

5. Road Geometry Linearization Method for Trajectory Prediction in Real
Driving Environments

In order to expand the scope of the dataset limited to straight roads, a simulation
environment was built based on actual road map data. A traffic event generation model that
changes each vehicle’s longitudinal and lateral behavior over time was applied to collect
traffic data in various situations in a virtual urban environment. This section proposes a
method to simplify complex driving situations by linearizing a curved road’s reference
path, as shown in Figure 9.



Sensors 2021, 21, 8152 12 of 19

Figure 9. Road geometry linearization method: (a) reference of frame and (b) path linearization.

5.1. Road Geometry Linearization Method

The future trajectory prediction model, which was developed using a highway traf-
fic driving dataset, exhibited excellent performance. However, most actual driving is
undertaken on roads with a variety of geometries rather than completely straight roads.
Therefore, to apply the trajectory prediction model to actual driving situations, one of
two methods is necessary. The first is to collect driving data from roads with sufficiently
different geometries and have the deep learning model consider geometry when learn-
ing. The second is to simplify the driving environment so that it is similar to a straight
road scenario [70]. We used a method that linearized the road geometry, as illustrated in
Figure 9, so that the proposed trajectory prediction model could function in a variety of
environments.

When human drivers drive on a road such as the one illustrated in Figure 9a, the driver
of the vehicle on the left side does not think that the vehicle on the right side is changing
lanes to the left but rather thinks that it is moving straight along a regularly shaped road.
This means that when a surrounding vehicle’s intentions are judged, how the vehicle is
moving longitudinally and laterally in reference to each lane’s center is more important
than the vehicle’s absolute position or heading direction. Therefore, we linearized the
driving situations as illustrated in Figure 9b by using the surrounding vehicles’ progress
distance and lateral offset regarding a reference trajectory corresponding to the center line
of each lane. The surrounding vehicles were rotationally transformed to the local standard
coordinate system fixed on the center of the back face of the target vehicle, as illustrated in
Figure 2. [

x
y

]
=

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

][
x
y

]
(18)

Here, ψ is the target vehicle’s yaw angle. The linearized position’s x value is the
longitudinal progress distance based on the point at which the rotationally transformed
surrounding vehicle’s driving lane reference trajectory crosses the y-axis. The linearized
position’s y value is calculated by adding the spacing between lanes and the distance of
lateral divergence from the reference trajectory.

5.2. Complex Traffic Driving Data Generation in Simulation Environment

The IPG CarMaker 10.1 virtual test-driving environment was used to acquire complex
driving data, including curves and left/right turning sections, to verify the trajectory pre-
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diction model. This commercial software provides features that can realistically implement
static environments, such as road models, buildings, and traffic signals, as well as dynamic
driving scenarios such as traffic vehicles and pedestrians. IPG CarMaker is used for vehicle
design and verification by car manufacturers or for autonomous driving algorithm develop-
ment by research institutes. We configured the traffic vehicles in a simulation environment
based on actual road data provided by IPG Automotive Korea and acquired the driving
data. The Sangam autonomous vehicle test-driving district in Seoul, South Korea, was
modeled in a virtual environment, as illustrated in Figure 10a. Figure 10b illustrates a scene
from the simulation used to acquire the data.

Figure 10. Virtual test-driving environment based on real road data: (a) simulation environment and (b) virtual driving scene.

To create various driving scenarios with the traffic vehicles, we designed a traffic
maneuver generation model (Figure 11). Each of the traffic vehicles were assigned normal,
longitudinal, and lateral events at fixed ranges of time intervals. During normal events,
the vehicles drive along the selected trajectory at a fixed velocity. When longitudinal or
lateral events occur, the vehicles change velocity or move laterally. The traffic maneuver
generation model controls the probability of each event occurring as well as the amount of
acceleration/deceleration and the lateral movement distance and velocity.

Figure 11. Traffic event generation results.

The variables determined by lateral events are the lateral offset and duration. When
the lateral offset is smaller than the lane width, the vehicles do not change lanes completely
but move to the left or right and then return to the existing lane to model actual vehicles
moving in reference to the lane center.
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6. Experimental Evaluation

This section presents the evaluation of the proposed road geometry linearization
method and trajectory prediction model based on the traffic scenarios of the virtual driving
simulation. The same trajectory prediction model was applied to compare whether the
route straightening model could convert curved driving data similarly to the HighD dataset
driving environment.

6.1. Evaluation of Trajectory Prediction Model with Path Linearization Method

By using the traffic maneuver generation model, the ratio at which the vehicles change
lanes can be controlled. Datasets that corresponded to the following three scenarios in the
Sangam Digital Media City (DMC) virtual driving environment were created:

• Scenario 1: Driving on a straight road section that is approximately 1.2 km long with
lane changes (a driving environment like that in the HighD dataset).

• Scenario 2: Repeatedly driving on a complex, closed-loop road section that is approxi-
mately 1.5 km long and has straight road and curved road sections and intersections
(left and right turns) without lane changes.

• Scenario 3: Driving on a similar road to the one described in Scenario 2 with lane changes.

Table 3 presents the results of applying the model that was trained using the HighD
dataset after preprocessing the acquired data using the method in Section 3.

Table 3. Longitudinal and lateral RMSEs in meters with simulation scenarios.

Prediction
Horizon (s)

Scenario 1 Scenario 2 Scenario 3
P-LSTM

(Long, Lat)
LS-LSTM

(Long, Lat)
LS-LSTM w/o
Linearization

LS-LSTM w/
Linearization

LS-LSTM w/o
Linearization

LS-LSTM w/
Linearization

1 0.35, 0.09 0.37, 0.07 0.84, 0.39 0.80, 0.06 0.67, 0.48 0.73, 0.07
2 0.60, 0.15 0.68, 0.12 1.21, 1.47 1.02, 0.10 1.10, 1.75 1.14, 0.13
3 0.80, 0.20 0.75, 0.16 1.65, 3.12 1.37, 0.11 1.45, 3.69 1.54, 0.16
4 1.12, 0.24 0.83, 0.18 2.28, 5.28 1.54, 0.13 2.17, 6.26 1.83, 0.19
5 1.50, 0.28 0.91, 0.20 3.56, 7.87 1.96, 0.13 3.35, 9.37 2.31, 0.22

The results of Scenario 1, a scenario similar to a highway driving environment, are
similar to the training results in Table 2. The longitudinal prediction performance was
reduced because the acceleration and deceleration regions caused by the longitudinal events
assigned to the simulation vehicles were more rapid than the actual highway driving data.
However, the lateral prediction performance was better because of the continuous and
accurate position and velocity data in the simulation. The results of Scenario 1 indicate that
it is important to use a variety of velocity and acceleration data in the training. Additionally,
it is necessary to support an algorithm that precisely recognizes and tracks vehicles.

In Scenarios 2 and 3, in which vehicles drive on complex roads that include curves
and intersections, when the linearization method is not used, a significant error occurs
to the extent that the future trajectory cannot be meaningfully predicted. By using the
trajectory linearization method, the lateral prediction results were improved so that they
were similar to those of the straight road sections, as illustrated in Figure 12. On the
complex roads’ curves and intersections, a fairly large error occurred in the longitudinal
direction despite trajectory linearization because the vehicles’ velocities changed with
relatively large acceleration.
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Figure 12. Trajectory prediction with simulation data: (a) lane changing and (b) lane keeping.

6.2. Discussion

By using the traffic maneuver generation model, the ratio at which the vehicles change
lanes could be controlled. Datasets that corresponded to the following three scenarios
in the Sangam DMC virtual driving environment were created. This work performed
long-term trajectory prediction of surrounding vehicles in a general road environment
to improve the capabilities of autonomous vehicles. The framework of the proposed
trajectory prediction method was configured as shown in Figure 1. The results of training
and testing the trajectory prediction model using the HighD dataset are presented in
Tables 1 and 2. The long-term trajectory prediction performance was stably improved
by applying the attention mechanism to the relative information of the target vehicle
and surrounding vehicles in adjacent lanes. A road geometry linearization method was
introduced to develop existing studies that were limited to the dataset environment of
straight highways. Table 3 presents the trajectory prediction results based on the path
linearization mechanism in the complex driving simulation traffic data. The prediction
error was reduced by 76.7 percent by applying the proposed path linearization method
in the complex driving scenario (Scenario 3). The deep learning model trained with the
publicly available dataset could be applied to various road environments by simplifying
the complex driving environments with the proposed trajectory prediction algorithm.

As road geometry linearization was applied based on the original reference path, it is
essential to correctly determine the reference driving path of surrounding vehicles. The
reference path of vehicles driving along curved roads was simplified to each lane’s middle
line in this work. In order to accurately convert a complex natural driving environment
into a straightened frame, a follow-up study is needed to find a reference route that vehicles
generally travel on according to the curvature of the road and the driving speed or traffic
direction. For example, most drivers may drive out-in-out for driving efficiency on certain
roads, intentionally biasing one side to adjust the spacing with adjacent lanes, or the route
itself may be complex, such as a merging section.

7. Conclusions

This study presented an LS attention-based LSTM encoder–decoder model and a road
shape linearization method for predicting the future trajectory of surrounding vehicles.
When changing lanes or adjusting speed, drivers consider relative information with sur-
rounding vehicles; each of them is given importance. The proposed attention mechanism
could implement the driver pattern by selectively focusing on adjacent lanes and the target
vehicle to predict the future trajectories of vehicles. We verified the proposed model in
terms of learning speed and prediction accuracy when using test data corresponding to 20%
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of the entire dataset. The attention mechanism determined the focused object in real-time
according to the driving situation and improved the long-term prediction performance.
In addition, the road geometry linearization method was applied so that the learning
model that was developed based on straight road data could be used in various driving
environments. The linearization mechanism was implemented in the same way real drivers
perceive they are going straight when driving along a curved road shape. Traffic driving
scenarios were implemented in virtual test-drive environments based on real road data,
and the trajectory prediction algorithm was verified. The performance of the proposed tra-
jectory prediction model was verified by comparing it with models using the same dataset.
The improved predictive performance of the path linearization method on curved roads
was evaluated in a simulated complex traffic scenario. The importance of our proposed
trajectory prediction method is summarized as follows:

• The proposed lane stream attention-based trajectory prediction model improved
long-term prediction accuracy by 25.4% compared to other methods. The ability to
transform the context of each driving situation of the attention mechanism applied to
the encoder–decoder model can predict the long-term trajectory more accurately.

• The proposed road shape linearization method simplifies the complex real road
situation and expands the application range of the trajectory prediction model. In the
complex traffic scenario acquired in the virtual driving environment, the distance error
of the trajectory prediction model with the path linearization method was reduced by
76.7% compared to the result without the method. It is a more efficient and realistic
method that can be applied to autonomous vehicles that drive on real roads rather
than building large-scale traffic datasets on roads of numerous shapes.

The proposed method evaluated the accuracy in a virtual driving environment, including
a curved road and a HighD dataset. Although the road shape linearization method can
simplify the curved road, the prediction distance error for vehicles traveling with velocities
and accelerations outside the range of the model training data was increased. In particular,
the prediction accuracy for a situation in which the speed was suddenly reduced or stopped
while entering an intersection that was not in the training data was lowered. In the future,
to apply the predictive model to urban driving or slow-moving situations, we plan to use a
combination of datasets such as NGSIM in the lower speed range for training purposes.
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