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Abstract: A sugar solution measurement system was developed based on the dielectric properties
of the sucrose molecule. An ac conductivity and tan δ study as a function of the frequency was
performed to find the suitable frequency range for the measuring system. The results indicate that it
is possible to obtain a better response of the sensor using the frequencies as the maxima peak in tan δ

appears. Developed setup for sucrose solution was appropriate to measure in a 0.15 to 1 g/mL range
with an experimental error of about 3%. The proposed system improves the measurement time over
some other methods.

Keywords: sucrose; electromagnetic field; sugar concentration

1. Introduction

Natural sugar (sucrose, α-D-glucopyranosyl β-D-fructofuranoside) is a disaccharide which
contains glucose and fructose joined together by an oxygen bridge; its structure is determined
principally by the hydrogen bonds O-H . . . H [1]. Sucrose is synthesized by plants and can be
assimilated by animals providing an energy source. Sucrose metabolism involves signaling of glucose
and fructose [2]. In cellular metabolism, the glucose plays a role in energy production through
glycolysis reaction involved in the cell respiration into the mitochondria. As it is known, the glycolysis
intermediary pathways involve pyruvate formation, the Krebbs cycle and the release of electrons and
protons to produce adenosine triphosphate (ATP) in ATP-synthase [3]. Additionally, some other sugars
can be assimilated in the human body, as the case of sucrose and fructose, but they are accumulated in
the liver waiting for a drastic decrease in glucose before release [4].

Recently, blood glucose had become one of the leading parameters to take into account as a health
indicator. Several reasons led to blood glucose to become so important; raised blood glucose is an
indicator of diabetes mellitus, which in turn, can lead to several health risks. Recent evidence suggests a
relationship between frequent consumption of sugar-sweetened beverages as a more significant risk of
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type 2 diabetes [5], sugar consumption is responsible also for weight gain, glycemic load and pancreatic
cancer risk [5–8]. The U.S. Center for Disease Control and Prevention recommends the reduction of
sugar-sweetened beverages consumption in order to prevent and reduce obesity [9]. Nowadays, the
role of sugar-sweetened beverages became more critical than in the past; therefore, governments are
handling this problem in their legislations [10–12]. As part of the efforts to tackle this problem, it is
necessary to research practical ways to measure small variations in sugar concentration in solutions,
such as in beverages [13,14]. In this sense, several methods to measure sugar concentrations have been
developed, namely chromatographic, optical, thermal and radio frequency (RF) methods [14–17].

Among optical methods, different systems to measure sugar concentration are already available;
however, the most important are the polarimeter and the refractometer. In those methods, the
measurement is as follows: First, a calculation of the light rotation degree is done over the interest
substance by using a 1.000 ± 0.002 g/mL sample concentration; this measure is used as a reference.
The sample concentration (p) can be calculated using Equation (1). Those methods are based on light
polarization. Therefore, its use in an industrial environment or those liquids with high absorption
coefficient is not thoroughly recommended.

αD =
α
pl

, (1)

where α is the observed rotation (◦), p sample concentration (g/mL), l sample volume (dL), and αD is
the specific rotation.

Thermal properties have also been used to measure the glucose concentration with high resolution,
photothermal methods like infrared (IR) spectroscopy, deflectometry, and photopyroelectric method are
used for getting glucose thermal parameters, even though the required time to perform measurements
can reach up to hours, and the sample temperature stability is crucial in these kind of measurements.
Table 1 shows a comparison among some methods used for measuring glucose concentration [18–20].

Table 1. Glucose concentration measurement methods.

Method Range
(g/mL)

Sensitivity
(g/mL)

Working
Frequency Ref.

Electromagnetic 0.78–6.25 0.3 40 kHz [15]
Near-infrared Raman

spectroscopy 1.8–21.62 0.65 - [17]

Photopyroelectric 1.3–3.1 0.3 1–100 Hz [18]
Photothermal radiometry 0.21–4.0 0.37 - [19]

Reflected terahertz
radiation 5 × 10−4–2 × 10−3 - THz [20]

Terahertz time-domain
spectroscopy 7.5 × 102–1.1 × 103 - THz [21]

Attenuated total
reflectance terahertz 5 × 10−3–4.3 × 10−1 - THz [22]

This work 0.15–1 0.05 10 kHz

On the other hand, it is known that the RF can affect polar organic molecules. This effect depends
on the electromagnetic properties of the molecule under study, RF wavelength, sample size, geometry
and orientation respect to the radiation, among others. By choosing a suitable RF frequency range, the
interaction between the polar molecule and the RF field becomes detectable. Therefore, it is possible to
obtain information regarding sample electromagnetic properties and concentration [15,23,24].

In this paper, an RF measurement system is proposed for measuring sucrose concentration. The
RF measurement system is based on the dielectric properties of sucrose. Because the sucrose molecule
is a polar molecule and it is susceptible to react to the electromagnetic fields, it was possible to
measure its concentration. The advantage of using RF as a sensing method is contactless; therefore,
sample contamination is avoided. There are available studies using a variation of RF technique for
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determining glucose concentration [20–22]. With frequencies in the THz domain, these techniques
have the capability of measuring samples in the 5 × 10−4 up to 2 × 10−3 g/mL; as the drawback, the use
of Fourier-transform infrared (FT-IR), THz time-domain spectroscopy (THz-TDS), and the knowledge
of independent measurement of other components are necessary.

2. Materials and Methods

2.1. Sample Preparation

Sucrose (Merck 99%, Darmstadt, Germany) and distilled deionized water were used.
An appropriate quantity of sucrose was added to the distilled water to give concentrations ranged from
0.010 ± 0.002 g/mL to 1.000 ± 0.002 g/mL with 0.010 ± 0.002 g/mL steps. A magnetic stirrer was used
for 10 min to ensure a total dissolution. All samples were prepared and measured at a temperature of
25 ◦C. Before and after each measurement, the sample holder was washed using distilled water and
dried with air to avoid measurement errors associated with additional sample dilution.

After solution preparation, a total of 100 different samples of sugar solution were measured by
impedance spectroscopy and 50 samples for radio frequency (RF) sensor measurements.

2.2. Sample Concentration Cross-Validation

Nicolet iS5 UV-VIS spectrometer (Thermo Scientific™Waltham, MA, USA) was used to ensure the
correct concentration of sugar solution used in this study, and a calibration curve was determined using
standard samples. The absorbance lectures were recorded at 197 nm. Figure 1 shows the obtained
results; the obtained equation was y = 1.934 + 0.175X, where y is absorbance and X is the concentration
in g/mL.
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Figure 1. Calibration curve for sucrose solutions; squares represent the experimental data, and the
solid line is used as a reference for the eye.

2.3. Alternating Current (ac) Conductivity and Loss Tangent (Tand δ) Measurements.

The complex conductivity is a nondestructive method to elucidate the charge carriers and the
transport mechanism. The complex conductivity can be represented as

σ∗ = σ′ + jσ′′ (2)

where σ′ is the real component and σ” is the imaginary component of the conductivity.
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The real component of the conductivity as a function of frequency can generally be described as
frequency-independent conductivity (σdc), and a strongly frequency-dependent components (Aωs).
In this sense, Jonscher describes the real component of the conductivity by the following equation

σ′ = σdc + Aωs, (3)

where σdc is a dc conductivity, A is a pre-exponential term, ω = 2πf is the angular frequency, and s is
the “power law” exponent, 0 < s < 1 [25]. Therefore, it is possible to identify the species that interacts
with the electromagnetic field.

The experimental value of the real component of the complex conductivity can be extracted from
impedance following Equation (4)

σ′ =
d
A
(

−Z′′

(Z′)2 + (Z′′ )2 ) (4)

where Z′ and Z” are the real and imaginary component of the complex impedance, respectively.
On the other hand, other relevant parameters to study in this system are the loss tangent (tan δ)

and the relaxation time (τ). The loss tangent is correlated to the energy absorption by the condensed
matter [25] and is described by Equation (5)

tan δ =
ε′′

ε′
=

Z′′

Z′
(5)

The relaxation time (τ), describes the time between the state in which molecules undergo a
rotational diffusion as it is oriented in the direction of the electromagnetic field, and its state to return
to the equilibrium position [26]. On the other hand, relaxation time gives us information regarding the
frequency at which the response of the interest molecule is higher over the study frequency range.

This parameter can be extracted from the frequency in which the maxima peak in tan δ occurs
through the following Equation (6):

τ =
1

2π f
(6)

where f is frequency in Hz and τ is in seconds
In this study, the range of concentration of tested sugar solution was 0.000–1.000 ± 0.002 g/mL

in steps of 0.100 ± 0.002 g/mL. A total of 100 samples were tested using 5.000 ± 0.002 mL of sucrose
solution and submitted to electrical analysis in a SOLARTRON 1260 coupled with a dielectric interphase
SOLARTRON 1296A with the 12964 A cell sample holder (Solartron Analytical, Farnborough, UK.). The
distance between the reference to the working electrode was about 50 ± 0.001 mm. The measurements
were made by duplicate at 100 mV root mean square (RMS) amplitude and between frequencies from
10 MHz to 0.1 Hz. The experiments were performed from high to low frequency to avoid overloading
of the equipment and to preserve the sample from possible Joule effect at low frequency. With the
experimental data of impedance, conductivity and loss tangent were obtained.

2.4. Sensor

The sensor was handmade using a 5-mm-diameter glass pipe, and two coupled coils separated
10 mm from each other. Those coils are the base of an oscillator; following this principle, and due to
the polar properties of the sucrose molecule, the dielectric properties of a medium between the two
coils change, and as a consequence, resonant frequency changes as sucrose concentration function.

A constant distance (d in Figure 2) between sensing coils was obtained by fixing them to the
sample container as Figure 2 shows. The frequency range was chosen to obtain a maximum response
from the designed sensor. Therefore, a study of the sample electrical conductivity was made.
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Figure 2. The sensing coils arrangement with the sample container.

For designing the sensors, there is a relationship between the sensor impedance and the sensing
system electronics, the sensor impedance can change in a wide range provided the electronics is tuned
for working in the 1 kHz–10 kHz frequency range. The coils configuration shown in Figure 2, is named
as the loosely couple coils; under this configuration, only a fraction of the transmitted electromagnetic
flux is captured in the receiver, and the transmitted electromagnetic flux depends strongly on the
transmitting medium between coils. Therefore, in this configuration, the sample has more influence
on the coils system response. The distance between coils was chosen for maximizing the relationship
between the influence of transmitting medium (sample), and the transmitted signal still affects the
second coil.

2.5. Sensing System

The couple coils (sensor) were connected to an RF generator. A phase-locked loop was used to
detect the variations at the reference frequency; those variations are changed into an electric signal.
Finally, the obtained data were recorded for further analysis. The schematic design is shown in
Figure 3. A volume of 10.000 ± 0.002 mL of the sample was poured into the sensor container at room
temperature; an appropriate temperature control was used to avoid temperature variations on the
recorded measurements. Several measurements were made at each concentration to obtain statistical
values about measurement errors.
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2.6. Statistical Data Processing

With the aim to evaluate the statistical quality of the results, five measurements at each
concentration were performed; the standard deviation gives the error magnitude of the sensor
signal. Additionally, the Pearson coefficient was evaluated to obtain the correlation between the sugar
solution concentration and response sensor data. Finally, receiver operating characteristic (ROC) curve
analysis was applied to calculate the statistical performance, such as sensitivity and specificity of
the sensor.

The ROC curve is determined by calculating the sensitivity and specificity [27] using the confusion
matrix shown in Table 2 firstly.
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Table 2. The confusion matrix for receiver operating characteristic (ROC) curve

Observed

Predicted
Y1 Y0

Y′1 a b
Y′0 c d

In Table 2, Y1 and Y0 belong to class Y and does not belong to class Y, respectively. The parameters
a and d represent true positives and true negatives, respectively; b represents false positives (type I
error), and c represents false negatives (type II error) [27].

In this sense, the sensitivity can be calculated as

Sensitivity =
a

a + c
(7)

The sensitivity of the model is the proportion of positive sugar concentrations sensed by the RF
sensor correctly predicted (the probability that a sensor response belongs to a particular category is
correctly identified).

This parameter is commonly named “1-sensitivity”, and represents the probabilities of committing
a type II error, or false negative (error of omission).

On the other hand, the specificity can be calculated as Equation (8)

Speci f icity =
d

b + d
(8)

The specificity, therefore, is the proportion of negative sugar concentrations sensed by the RF
sensor correctly predicted (the probability that a sensor response belongs to a particular category is
correctly identified). This parameter is commonly named “1-specificity” and means a type I error or
false positive (error of commission).

In this work, the ROC curve with a 95% of confidence was used to evaluate the performance of
the sensor response.

3. Results

3.1. Alternating Current (AC) Conductivity

The conductivity was used with the aim to know the transport mechanism in sugar solutions.
Figure 4 shows the ac conductivity of the sample as a function of the frequency for different sucrose
concentrations. There was a decrease in conductivity with an increase of sucrose concentration, and a
low conductivity dispersion below 100 Hz. After that, there was a “plateau” from 100 Hz to 1 MHz,
and the exponential increase of conductivity according to the universal Johnsher law [25,28,29]. The
low-frequency dispersion showed in Figure 4 was assigned to the vehicular mechanism of protonic
transport between water and hydroxyl groups of sucrose [30] (water–sucrose interaction). Meanwhile,
the plateau was assigned to a Grotthus mechanism for the water–water interaction in which there
is water hopping or tunneling of the proton from one molecule to the next as described by Miyake
et al. [31].
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The sucrose molecule in solution interacts readily with other sucrose molecules and water
molecules through hydrogen bond because of its structure (14 H atoms, eight OH groups, and three
hydrophilic oxygen atoms) [32], as it can be seen in the optimized molecular geometry [33] done in
MOPAC software (Figure 5). Additionally, it was reported that three types of molecular interactions
occur in sugar solutions: Water–water, sucrose–water and sucrose–sucrose, resulting in the formation
of intermolecular hydrogen bonds [32–35]. Then, the ac conductivity behavior of sucrose obeys to the
different mechanism of charge carrier transport explained above.
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Figure 5. An electronic density representation of the molecular structure of sucrose. In this model,
sticks represent bondings between carbon, hydrogen and oxygen atoms. The electron clouds is depicted
around each atom. Red: Oxygen, white: Hydrogen and blue: Carbon.

Tan δ was calculated from dielectric permittivity and dielectric losses to elucidate the absorption
energy from electromagnetic waves of sucrose solutions (see Figure 6). For pure water, there was a peak
between 10 Hz to 10 kHz centered around 100 Hz. When the sucrose concentration was increasing,
Tan δ peak was displaced around to 400 Hz as it is shown at 1.000 g/mL.
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The relaxation time was extracted from the maxima peak showed in tan δ (Figure 7). The increase
in tan δ obeys to the change of transport mechanism in sucrose molecules as it can be seen in the real
component of conductivity (Figure 4) and impedance diagrams (not shown here). From the Pearson
correlation coefficient r = 0.896, there was a direct relation to sugar concentration–relaxation time (τ),
as it was shown in the fitting of Figure 6. The equation that represents the best adjustment of the data
was τ = (8.412 × 10−7) × SC + 5.157 × 10−7, where SC represents the sucrose concentration. Solution
with high sucrose concentration had highest relaxation times, so the dipoles suffer a delay to return
to the equilibrium position and absorb electromagnetic energy in a high proportion as the sucrose
concentration increase. Therefore, frequencies among 1 kHz–10 kHz range are suitable to use in the
proposed sensor.
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3.2. Sensor Response

The results of the linear regression performed for sensor response against sucrose concentration is
presented in Figure 8. The performed test of linearity indicated a linear response (p-value < 0.001) with
an intercept of 1.425 and slope of 0.680. Samples with sucrose concentrations under 0.150 ± 0.002 g/mL
gave error values that can be compared with the measurement value. Therefore, it was not possible to
obtain reliable information in this range. The sensor presented a linear response in the range from 0.150
± 0.002 to 1.000 ± 0.002 g/mL with a standard deviation around 1% and sensitivity in the measurement
range of 0.05 g/mL, as it can be seen on error bars in Figure 7. The correlation factor is 1.
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The ROC analysis of the sensor response can be seen in Figure 9. The results showed the right
measurement of separability in both 1-sensitivity and 1-specificity indicating that the sensor response
has statistical significance.
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The proposed sensor achieves a sensibility of 0.05 g/mL which improves the sensibility of the
existing sensors (see Table 1); the working frequency helps in avoiding a possible destructive interaction
with the sample under study, and the electronics is simpler.

4. Conclusions

The first approach to measure sugar solution concentration using RF system was reached. By using
low-frequency electromagnetic fields, a measurement system able to measure sugar concentration in
a water-based solution was developed. The proposed system is a contactless measurement method
and avoids the interaction between the sample under study and the measurement system. The coils
used in the system are homemade and not precise construction since the coils are similar, and the
electronics provide the working frequency in the range where the sample has a peak in the dielectric
response. Due to the electromagnetic nature of the sensor, it is possible measuring not only sugar
concentrations, but also other polar molecules. A measurement is achieved within seconds which can
be considered real-time when is compared with photothermal or spectroscopy techniques and accuracy
is comparable with mentioned methods. The sensor range is from 0.150 ± 0.002 to 1.000 ± 0.002 g/mL.
The influence of other standard components of sugar-sweetened beverages must be studied for getting
more information about the application of the system in control of this type of beverages. The sensor
sensibility is improved with the available methods using RF techniques as shown in Table 1. With this
improvement the possibility for further applications on polar samples is opened.
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