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The dynamics of short-lived mRNA results in bursts of protein production in

gene regulatory networks. We investigate the propagation of bursting noise

between different levels of mathematical modelling and demonstrate that

conventional approaches based on diffusion approximations can fail to

capture bursting noise. An alternative coarse-grained model, the so-called

piecewise deterministic Markov process (PDMP), is seen to outperform the

diffusion approximation in biologically relevant parameter regimes. We pro-

vide a systematic embedding of the PDMP model into the landscape of

existing approaches, and we present analytical methods to calculate its

stationary distribution and switching frequencies.
1. Introduction
Transcription and translation in the process of gene expression occur at the

molecular level and in environments of relatively small copy numbers. The dis-

creteness of the molecular dynamics and the inherent randomness with which

reactions occur are known as ‘intrinsic noise’. It is now widely accepted that

intrinsic noise plays an important role in gene regulatory networks [1–3]. It

promotes epigenetic diversity and enhances the adaptability of a single pheno-

type in changing environments [4,5]. To investigate the effects of intrinsic noise,

mathematical models at different levels have been constructed, ranging from

microscopic models [3,6–10] describing the finer origins of intrinsic noise to

mesoscopic models [11–15]. While the former capture the biological processes

in more detail, the latter are computationally scalable and constructed to model

more complex networks. These models all capture some signatures of intrinsic

noise, but the detailed implementation of stochasticity varies from model to

model. It is then important to consider how noise propagates between different

levels of mathematical modelling. At present, coarse-grained models are often

proposed ad hoc and not derived from the more detailed lower scale models.

Is this always mathematically appropriate? What statistics of noise should

modellers use at different levels of coarse graining? What are the consequences

of the choice of noise statistics, and what are the pitfalls in deriving models

on the meso-level from finer models on smaller scales? These are some of the

questions we aim to address in this work.

The above difficulties in transitioning between different levels of modelling

can nicely be illustrated in the context of biological switches. These are systems

with different metastable states and the possibility to ‘switch’ between those

states. Biological organisms with such behaviour include the Lac switch [6]

in Escherichia coli and the Enterobacteria phage l switch [7]. Computational and

mathematical models of these range from very detailed descriptions [6,7] over

individual-molecule approaches [8–10,16] to mesoscopic models [11,12,14,15].

The difficulties in connecting these different levels of modelling biological

switches are amplified by the recent recognition that the mRNA populations

are essential to describing the statistics of regulatory processes [16,17].
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Figure 1. Schematic diagrams illustrating the model dynamics. (a) Full model (FM) describing both the mRNA and the protein populations. (b) Protein-only model with
geometrically distributed (GB) or constant (CB) bursts. The quantity B is a geometrically distributed random number with mean B in the GB model, and B ¼ B is a
constant in the CB model. (c) Protein-only model without bursts (NB). (d ) The piecewise deterministic Markov process (PDMP). (Online version in colour.)
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Biologically, mRNA molecules are a relatively short-lived

source compared to the proteins into which they ultimately

translate. Protein production from a given mRNA molecule

proceeds while it exists, but ceases after the mRNA decays.

This leads to a production of protein in bursts—that is, the

production is active for a relatively short and random

period of mRNA lifetime, and during that time a random
number of proteins is generated. This phenomenon is

termed translational bursting [1] and it can be observed in

single-molecule experiments [18]. While some mesoscopic

models account for such bursting [14,15], the theoretical

investigation of these processes is often limited to their

stationary distribution and frequently does not include

dynamic features such as switching times.

The aim of our work is to investigate the effects of bursting

noise in gene regulatory networks [9,10,11,13,16,19–21], and to

construct connections between individual-based models and

mesoscopic approaches. Specifically, we start from microscopic

and individual-molecule-based models of a toggle switch and

set out to construct coarse grained, mathematically tractable

models without systematically biasing the outcomes.
2. Models of a toggle switch
2.1. Different scales of individual-based models
We compare four individual-based models and investigate

the effect of bursting noise in a toggle switch network. The

first model we consider describes both the mRNA and

the protein population dynamics [16]. Figure 1a illustrates the

Markovian model of the regulatory network. Genes X and Y

are transcribed into mRNA X and mRNA Y, respectively,

which in turn are translated to produce proteins X and

Y. The transcription of each of the two genes is suppressed

by proteins of the respective other type via a Hill function

[2,3] HðNÞ ¼ K½r0 þ r=½1þ ðN=KÞn��, where N stands for the
number of suppressing proteins. The model parameter K
represents a typical population scale of the proteins, and

the parameters r and r0 set the minimal (r0K ) and maximal

transcription rates (ðr0 þ rÞK). The parameter n . 0 is the

so-called Hill coefficient which models the cooperative bind-

ing of the repressors [3]. More details of the reaction scheme

can be found in the electronic supplementary material.

Proteins of either type, and the mRNA molecules degrade

with constant rates g0 and g, respectively. Biologically,

mRNA molecules degrade much faster than the proteins

do (g� g0) [2,14,18]. The translation rate of the mRNA is

parametrized by gB, where the parameter B is the relative fre-

quency of protein production to mRNA degradation. In this

parametrization, the number of proteins one single mRNA

molecule produces during its lifetime is a geometrically dis-

tributed random variable with mean B (see the electronic

supplementary material). Biologically, the parameter B
varies depending on the type of product protein [22]. We

assume B � 10 in this work [2,8] to investigate the effect

of translational bursting. Together with the relatively short

lifetime of mRNA molecules, this constitutes the origin

of ‘translational bursting’ in the model [14,23]: a relatively

large number of protein molecules is synthesized in a

relatively short period of time.

For simplicity, the process in figure 1a is assumed to be

symmetric with respect to X and Y, but the analysis is

easily generalized to asymmetric circuits. In table 1, we list

a set of estimated values of the parameters for the model

organism E. coli, along with relevant references. While the

parameters of our model are expressed in time units of cell

cycles, it is important to keep in mind that the model does

not explicitly capture cell reproduction and cell division.

In the context of this work, the model just described consti-

tutes the most detailed model we will investigate and compare

against. It serves as a starting point for the derivation of more

coarse-grained models, and for these purposes we will refer to



Table 1. Parameter set.

parameter description value unit references

B average number of proteins each mRNA produces 30 molecule [2]

g mRNA degradation rate 30 1/(cell cycle) [2]

g0 protein degradation rate 1.0 1/(cell cycle) [2,9,24]

r maximum suppressed transcription rate 6/100 1/(cell cycle) [13,25]a

r0 basal transcription rate 1/150 1/(cell cycle) [13,25]b

K a typical population scale of the proteins 200 molecule [13,25]c

n Hill coefficient 3.0 dimensionless [9,13,19,25]
aIn [13], r ¼ 1.8 and the time unit is defined as the inverse of the protein degradation rate. In the FM, we use this value, normalized by the mean burst size
B ¼ 39 molecules (r ¼ 1:8=30 ¼ 0:06).
bIn [13], r0 ¼ 0.2. After normalizing with respect to the burst size 30, we obtain 1/150. In [25], r0 ¼ 0.05r, which is of the same order as [13].
cIn [13], K is set to be 200 molecules. In [25], only the deterministic dynamics are provided and r þ r0 ¼ 4:0: To match the protein population scale �400 in
[13,24], we impose rK¼ 400, resulting in a typical population scale of the proteins K � 100 molecules, which is of the same order as that of Lu et al. [13].
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it as the ‘full model’ (FM) in the following. The FM is of course

a simplified model itself, which does not describe the full

complexity of the underlying biology. For example, it does

not capture further genetic states accessed at a faster time

scale, or dimerization processes which happen further down-

stream in the regulatory circuit [3,26]. We refer to it as the

‘FM’ solely to indicate that it is the most detailed model

within the remit of this work.

The FM describes both the mRNA and the protein popu-

lations, hence it constitutes a relatively high-dimensional

system which complicates the mathematical analysis. Nota-

bly, the only role of mRNA in the FM is to generate

proteins, and so mRNA can be left out, so long as the correct

statistics of protein production is retained. The timescale

separation between the mRNA and protein lifetimes leads

to the following reduced model describing only the protein

dynamics. In the limit of infinitely fast mRNA degradation

(g� g0), proteins are generated instantaneously in bursts of

geometrically distributed sizes with a mean B, and in

between bursting events protein populations decay with

rate g0. We will refer to the reduced model as the GB
model (geometrically distributed bursts) (figure 1b; [17,22]).

In the GB model, the transcription rates are regulated via

the Hill function exactly as before in the FM.

A further reduction of the GB model involves replacing

the GB sizes by a constant size B. We will call this the CB
model (constant bursts) [8]. While the reduction of the FM

to the model with geometrically distributed bursts is well

controlled and exact in the limit g� g0, the effects of intro-

ducing CB sizes are unclear at this stage and require a

detailed analysis (see below).

An even more reduced model is a model with no bursts

[8–10], we will refer to this as the NB model. The reaction

scheme is illustrated in figure 1c. In this model, only one

single protein is synthesized when a transcription event

occurs. We assume a B-fold increased transcription rate so

that the average number of proteins synthesized per unit

time is consistent with the FM, GB and CB models.
2.2. Stationary distributions
Numerical simulations of each of the models are carried out

using standard methods [27,28]. In the following, we present

statistical properties of the models, leaving typical sample
paths to the electronic supplementary material. Figure 2 dis-

plays the numerically computed stationary distributions for the

FM, GB, CB and NB models. In this section, we discuss the out-

comes of the different models qualitatively. A more quantitative

comparison of the stationary distributions can be found in the

electronic supplementary material.

The data in the figure illustrate that the profiles of protein

expressions in different model settings are quite distinct. This

is due to the different representations of the underlying intrinsic

noise. While the stationary distributions of the FM and the GB

model are in good agreement with each other, substantial discre-

pancies from the FM are found in the CB and NB models. In the

CB model, the stationary distribution of protein numbers is very

localized compared with the FM and the GB model. In the NB

model, the probability distribution is even more sharply concen-

trated. This is because the NB model misses out two pertinent

sources of noise. Bursting production in the CB model amplifies

the stochasticity of transcription events and leads to a broaden-

ing of the protein distribution. Adding randomly distributed

burst sizes (GB model) introduces further stochasticity and

diversifies protein numbers even further. Based on these results,

we conclude that the bursting noise introduced by the mRNA

populations significantly broadens the stationary distribution.

In addition, the GB model approximates the FM model signifi-

cantly better than the CB and NB models do. We can

effectively discard the CB and NB models as faithful represen-

tations of the FM, and our subsequent discussion hence

focuses mostly on the GB model.
2.3. Mean first switching time
The toggle switch has two dynamic attractors, one in which

protein X is highly expressed and where protein Y has a

low concentration, and the other with inverted roles by sym-

metry. Starting from one attractor, the switch can be driven to

the other attractor by fluctuations. The timescale of such a

transition quantifies the dynamical stability: the longer the

timescale, the more stable the system is at the initial position.

As we will study next, the way in which the bursting pro-

duction of protein is implemented significantly affects the

timescale of these switching processes.

Starting from initial condition NXð0Þ ¼ nx,0 and NYð0Þ ¼
ny,0, we define the first switching time as the time it takes

for a sample path to reach the symmetric boundary



NY NY

NX

NY NY

NX

NX NX

×10–5

FM GB

CB NB

1

0

2

0

0

2 × 10–5

0

2 × 10–5

0

3 × 10–4

0

0

1

2

3

1

1

0

×10–5

×10–5 ×10–4

(a) (b)

(c) (d)

2 × 10–5

Figure 2. Stationary distribution of protein numbers, shown in the range 0 � NX, NY � 700 on a linear scale on both axes. (a) FM: full model describing the
mRNA and protein populations; (b) GB: protein-only model with geometrically distributed bursts; (c) CB: protein-only model with constant bursts; and (d ) NB:
protein-only model without bursts. (Online version in colour.)

10

in
iti

al
 N

Y

initial NX

FM GB

in
iti

al
 N

Y

initial NX

0

5

10

0

5

(a) (b)

Figure 3. MFST as a function of the initial protein numbers (0 � NX, NY � 700, shown on a linear scale). (a) FM: full model; (b) GB model. (Online version in colour.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

13:20150772

4

NX ¼ NY: Mathematically, the first switching time is a

random variable. The mean first switching time (MFST) is

then the average value of the random first switching time.

The MFST depends on the initial condition ðnx,0, ny,0Þ:
Sweeping across the space of possible initial configuration,

the MFST of the FM and of the GB model are measured in

simulations and presented in figure 3. We show the MFST of

the CB in the electronic supplementary material. As with the

stationary distributions, the data in figure 3 indicate that the

GB model approximates the switching times of the FM to a

good accuracy. A more detailed quantitative comparison is

again provided in the electronic supplementary material. We

remark that the MFST of the CB model is almost twice as

long as that of the GB and FM models, and the switching

time in the NB model is longer than 1000 cell cycles (see the

electronic supplementary material).
2.4. Diffusion approximation
The evolution of the protein population in the GB model

is described by a master equation (see the electronic
supplementary material). Solving master equations mathemat-

ically is however difficult and mostly limited to linear dynamics

[22,29]. The only realistic way forward for a theoretical analysis

is often the so-called diffusion approximation.

In the diffusion approximation, the discrete-molecule pro-

cess is approximated by a Gaussian process for continuous

concentrations—numbers of the different types of molecules

normalized by a typical population scale. The Gaussian

process satisfies a diffusion equation (the Fokker–Planck

equation) [30,31]. Based on these methods, it is often possible

to calculate or approximate the stationary behaviour and

switching times of model gene networks. For existing studies

in the context of toggle switches, see [11–13].

Deriving the diffusion approximation of the GB model

requires modest modifications to the standard Kramers–

Moyal expansion [30,31]. These modifications are necessary

to account for the randomness induced by the GB size.

Details of the derivation can be found in the electronic sup-

plementary material, we here only report the final outcome.

The expansion results in two coupled Itō stochastic dif-

ferential equations for the concentrations xt ¼ NXðtÞ=K and
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yt ¼ NYðtÞ=K: These are valid in the limit of large but finite

populations [32] and they are of the form

dxt ¼ vðxt, ytÞdtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðxt, ytÞ

q
dW ðxÞ

t ð2:1aÞ

and

dyt ¼ vðyt, xtÞdtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðyt, xtÞ

q
dW ðyÞ

t , ð2:1bÞ

with drift v and diffusion D given by

vðw, zÞ :¼ B r0 þ
r

1þ zn

� �
� g0w ð2:2aÞ

and

Dðw, zÞ :¼ B
K
ð2Bþ 1Þ r0 þ

r
1þ zn

� �
þ g0

B
w

� �
: ð2:2bÞ

The quantities dW ðxÞ
t and dWðyÞ

t represent independent

Wiener processes.

The diffusion approximation can only be expected to be

accurate when molecule numbers are large so that the con-

centations xt and yt are effectively continuous. In principle,

a similar analysis can also be applied to the master equations

of the FM. In the FM, mRNA numbers are rather small

though (typically less than 5, see the electronic supplemen-

tary material), so the Gaussian approximation does not

capture the statistics of the intrinsic noise faithfully. Similarly,

a further analysis of the CB and NB models can be carried out

based on the diffusion approximation. Given that CB and NB

models fail to reproduce the behaviour of the FM, these

results are relegated to the electronic supplementary material.

Results from simulating the Gaussian process of equations

(2.1a,b) are shown in figure 4. While the data for the stationary

distribution (figure 4a) looks similar to that of the FM

(figure 2a), notable discrepancies are manifest in the MFSTs

(cf. figure 4b and figure 3a). In figure 4c,d, we show the differ-

ences between simulation outcomes of the FM and those of the
diffusion approximation of the GB model. Although the GB

model itself approximates the FM well (figures 2 and 3), we

conclude that the diffusion approximation fails to capture

the relevant model outcomes.
3. Construction of a new mesoscopic model
3.1. Piecewise deterministic Markov process
We have seen that the diffusion approximation of the GB

model fails to reproduce the statistics of the FM. This under-

lines the need to construct coarse-grained models directly from
the FM and without the intermediate step of a protein-only

dynamics. We now proceed to introduce such a model. As

before, we describe protein concentrations by continuous

variables, x and y. The mRNA dynamics are captured by

introducing three states: the 0-state describes phases in

which no mRNA is present. In the X-state, there is one

mRNA of type X and protein X is generated with rate gb.

The quantity b ¼ B/K is the mean burst size in the unit of

protein concentration. No proteins of type Y are produced

in the X-state. Similarly, in the Y-state, protein Y is generated

with rate gb. Both types of protein are subject to natural

degradation with rate g0 in any of the three states.

This is described by the following deterministic differential

equations:

0-state: _x ¼ �g0x and _y ¼ �g0y, ð3:1aÞ
X-state: _x ¼ gb� g0x and _y ¼ �g0y ð3:1bÞ

and Y-state: _x ¼ �g0x and _y ¼ gb� g0y: ð3:1cÞ

The rates with which the system transits between the

states are based on the dynamics of the FM:

0-state��!
HðKyÞ

X-state, X-state�!g 0-state,

0-state��!HðKxÞ
Y-state, Y-state�!g 0-state:

ð3:2Þ
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No transitions occur directly between the X- and Y-states. The

kinetic scheme is illustrated in figure 1d.

The stochasticity and discreteness of the mRNA popu-

lations is reflected in the random transitioning between

the 0-, X- and Y-states. Between these Markovian events,

the protein concentrations evolve deterministically. We will

refer to this model as the piecewise deterministic Markov

process (PDMP).

Notably, at most one mRNA molecule of either type can be

present in the PDMP at any time. Although the model can be

generalized to allow more than one mRNA molecule, the analy-

sis below shows that the lowest order approximation is sufficient

to capture the relevant fluctuations of the mRNA dynamics.
3.2. Performance of mesoscopic models
As in the GB model, we work in the limit of infinitely fast-

degrading mRNA (g! 1). Simulations of the PDMP

model in this limit can be carried out using a minor modifi-

cation of a previously proposed algorithm [15]. We measure

the stationary distribution of the PDMP model and the

MFSTs for different initial protein numbers. Results are

shown in figure 5a,b, and we compare the outcome against

that of the FM in figure 5c,d.

The simulation data indicate that the PDMP approximation

outperforms the diffusion approximation of the GB model,

and it provides a more faithful approximation to the FM.

This is because the diffusion approximation introduces

Gaussian noise. It retains some information about the variance

of protein production and degradation, but it does not capture

the geometrically distributed burst sizes in the GB model well

enough. The PDMP approximation, on the other hand, models

exponentially distributed bursts in protein concentration. The

exponential distribution in the PDMP model is the analogue

of the geometric distribution in the discrete-molecule GB

model. While the PDMP model is an approximation as

well, it retains the typical characteristics of the stationary
distribution and switching times of the original model. At

the same time, the PDMP model is suitable for further

mathematical analysis (see below).

We now investigate the robustness of these findings. In

figure 6, we vary two essential parameters, the mean burst

size B and the population scale K, while keeping the other

parameters fixed. We measure the Jensen–Shannon distance

[33,34] between the resulting stationary distributions of the

PDMP and that of the FM. Data are shown in figure 6a,c.

We also compare the MFSTs starting from one of the stable

modes (figure 6b,d ). The figures also show results from the

diffusion approximation of the GB model.

Results indicate that the PDMP model outperforms the dif-

fusion approximation of the GB model for mean burst sizes of

B .� 5:We conclude that the bursting noise has to be considered

in this biologically relevant regime [22]. The PDMP model

incorporates only the bursting noise and neglects the demo-

graphic noise from random degradation of the proteins. The

strength of this demographic noise is proportional to 1=
ffiffiffiffi
K
p

:

The results in figure 6c,d indicate that the difference in describ-

ing intrinsic noise propagates to physical observables even

when the noise is weak (K � 1000 for fixed B ¼ 30).
4. Analytical investigations of the piecewise
deterministic Markov process model

4.1. Forward equation
The simplicity of the PDMP approach allows us to proceed

with a mathematical analysis. We here only outline the

main steps, further details are reported in the electronic sup-

plementary material. We denote the probability density that

the system is in the 0-state and with protein densities x, y at

time t by p0ðx, y, tÞ: Similarly, we write pXðx, y, tÞ and

pYðx, y, tÞ when the system is in the X- or Y-states. The

evolution of these distributions then follows the following
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forward equation

@

@t

p0

pX

pY

2
4

3
5 ¼ (Lyd þ Lys )

p0

pX

pY

2
4

3
5, ð4:1Þ

where Lyd and Lys drive the deterministic flow and the random

switching between states, respectively. These operators are of

the form

Lyd :¼
ðLydÞ11

0 0

0 ðLydÞ22
0

0 0 ðLydÞ33

2
6664

3
7775 ð4:2aÞ

and

Lys :¼
�HðKxÞ �HðKyÞ g g

HðKyÞ �g 0
HðKxÞ 0 �g

2
4

3
5, ð4:2bÞ

with

ðLydÞ11 :¼ g0@xðxÞ þ g0@yðyÞ, ð4:3aÞ

ðLydÞ22 :¼ @xð�gbþ g0xÞ þ g0@yðyÞ ð4:3bÞ

and ðLydÞ33 :¼ g0@xðxÞ þ @yð�gbþ g0yÞ: ð4:3cÞ

The differential operators @x and @y act on all that

follows to their right, including the probability densities

p0, pX and pY outside the matrix notation in equations (4.1)

and (4.2).

The PDMP approximation applies in the limit g! 1, i.e.

for fast return into the 0-state. The resident time in the X- and

Y-states is exponentially distributed and scales as g21. It for-

mally tends to zero as g! 1: On the other hand, the

translation rate gB tends to infinity in this limit. Combining
the limiting behaviours of resident time and translation rate

results in an exponentially distributed increment of protein

concentration in each cycle of switching from the 0-state

to the X- or Y-state, and then returning to the 0-state. As a

consequence, the PDMP converges to previously proposed

continuous-state bursting models [14,15,18] in the limit

g! 1, and p0ðx, y, tÞ satisfies

@t p0 ¼ @xðg0x p0Þ þ @yðg0y p0Þ � ½HðKxÞ þHðKyÞ� p0

þHðKyÞ
ðx

0

1

b
e�ðx�x0Þ=b p0ðx0, y, tÞdx0

þHðKxÞ
ðy

0

1

b
e�ðy�y0Þ=b p0ðx, y0, tÞdy0, ð4:4Þ

as detailed in the electronic supplementary material.
4.2. Mean first switching time
One of the strengths of the PDMP formulation (equations

(4.1) and (4.2)) is the relative ease with which MFSTs can

be obtained. We first proceed by computing mean escape

time from an arbitrary open domain V. The MFST can be

calculated by setting V ¼ fðx, yÞ: x , yg, recognizing that

the process can only exit this domain by crossing the

boundary x ¼ y.

Suppose, the system is initially at ðx, yÞ [ V and in state

Z [ f0, X, Yg: We write TZðx, yÞ for the mean first time at

which the process exits the domain V. The quantities Tz

then satisfy the following backward equation [30,31]

�
1
1
1

2
4
3
5 ¼ ðLd þ LsÞ

T0ðx, yÞ
TXðx, yÞ
TYðx, yÞ

2
4

3
5, ð4:5Þ

where Ld and Ls are adjoint to the operators in equations (4.2).
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They are given by

Ld :¼
(Ld)11 0 0

0 (Ld)22 0
0 0 (Ld)33

2
4

3
5 ð4:6aÞ

and

Ls :¼
�HðKxÞ �HðKyÞ HðKyÞ HðKxÞ

g �g 0
g 0 �g

2
4

3
5, ð4:6bÞ

with

ðLdÞ11 ¼ �g0x@x � g0y@y, ð4:7aÞ
ðLdÞ22 ¼ ðgb� g0xÞ@x � g0ðyÞ@y ð4:7bÞ

and ðLdÞ33 ¼ �g0x@x þ ðgb� g0yÞ@y: ð4:7cÞ

The backward operator (4.6) can be derived either by

one-step conditioning [30] or formally using Dynkin’s for-

mula [35]. In the infinitely fast-degrading mRNA limit

(g! 1), and using appropriate boundary conditions (see

the electronic supplementary material), we arrive at

�1 ¼ ½�g0x@x � g0y@y �HðKxÞ �HðKyÞ�T0ðx, yÞ

þHðKyÞ
ðy

x

e�ðx
0�xÞ=b

b
T0ðx0, yÞdx0

þHðKxÞ
ð1

y

e�ðy
0�yÞ=b

b
T0ðx, y0Þdx0: ð4:8Þ

This is the adjoint equation [30] of the expression in equation

(4.4) on the open domain V. Equation (4.8) is solved by a

finite-difference method (see the electronic supplementary

material), noting that it is self-consistent and no boundary

condition needs to be specified. The solution is shown in
figure 7 and reproduces the simulation outcome of the

FM well.

We remark that equation (4.8) is only valid for the half-

plane V. A detailed discussion can be found in the electronic

supplementary material.
4.3. Stationary distribution in the weak-noise limit
The analytical calculation of the stationary distributions of

the PDMP model can be pursued further using the so-

called Wentzel–Kramers–Brillouin (WKB) method. This

technique is based on the ansatz

pstatðx, yÞ ¼ exp � 1

b

X1
‘¼0

b‘S‘(x, y)

" #
, ð4:9Þ

where b ¼ B=K� 1: One proceeds by considering

ðLyd þ Lys Þ pstatðx, yÞ ¼ 0 order-by-order in b. To leading

order, we find the Hamilton–Jacobi equation

0 ¼ ½g0x� BhðyÞ�@xS0 þ ½g0y� BhðxÞ�@yS0

þ ½g0xþ g0y� BhðxÞ � BhðyÞ�ð@xS0Þð@yS0Þ
þ g0xð@xS0Þ2 þ g0yð@yS0Þ2

þ g0xð@xS0Þ2ð@yS0Þ þ g0yð@xS0Þð@yS0Þ2, ð4:10Þ

where hðzÞ :¼ HðKzÞ=K: This equation is then numerically

solved using the algorithm of Heymann and Vanden–

Eijnden [36]. Results are shown in figure 8. Even though

this only provides a first-order approximation and despite

the fact that we have used b ¼ 0.15 (which is not very

small), we obtain a reasonable agreement with the stationary

distribution in figure 5a.
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For completeness, we have also carried out a WKB analysis

of the diffusion approximation of the GB, CB and NB models.

These are presented in the electronic supplementary material.

The leading-order function S0(x, y) is the quasi-potential

with respect to the stable fixed point, and it quantifies the

rare-event statistics of the process in the weak-noise limit

b� 1 [37,38]. Several studies have suggested that S0(x, y) is

a suitable candidate for a ‘landscape’ of the non-equilibrium

random processes in models of gene regulatory networks

[9–11,16,17]. The Hamilton–Jacobi equation (4.10) contains

cubic terms such as ð@xS0Þ2ð@yS0Þ, while diffusion equa-

tions are quadratic in the derivatives of S0. This illustrates

the fundamental difference between the statistics of intrinsic

noise in the diffusion approximation and the bursting noise

in the PDMP. Further more rigorous mathematical investi-

gations into these differences would be very welcome in

our view.

We compare the functions S0 of the PDMP and the diffu-

sion approximation of the GB model in figure 8. One

observes a much ‘shallower’ quasi-potential in the PMDP

model, especially at larger protein numbers (NX, NY � 700).

This is due to the fat tails in the exponential bursting
kernel of the PDMP model, which are not present in the

diffusion approximation of the GB model. Such a fat-tail

bursting kernel enhances the probability for the system to

evolve to high protein concentrations. We identify this as the

origin of the qualitatively distinct rare-event statistics in

the two models.
5. Bursting noise in a multi-switch network
Recently, multi-switch systems have gained interest [13,21,39].

A schematic diagram of the three-way switch network pro-

posed by Lu et al. [13] is shown in figure 9a. It is obtained

from the classical toggle switch network by including a

self-enhancing autoregulation. Our computational and math-

ematical set-up requires only minor modifications to include

generalization to this case. Specifically, we replace the earlier

Hill functions by

GðNX, NYÞ ¼ q0 1þ r1

ðNX=K1Þn1 þ 1

� �
� 1þ r2

ðNY=K2Þn2 þ 1

� �
,

ð5:1Þ
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with parameters [13] q0 ¼ 4, r1 ¼ 24/5, r2 ¼ 7/3, n1 ¼ 3, n2 ¼ 1,

K1 ¼ 160 and K2 ¼ 320. The rest of the parameters follow table 1.

The negative value of r1 reflects the positive autoregulation. To

evaluate the effects of bursting noise on this multi-switch

model, we consider again the FM, the diffusion approximation

of the GB model, as well as the CB and NB models of the

extended network.

Figure 9 displays the stationary distribution to illustrate

the effects of the bursting noise in the multi-switch network.

The model without bursts (NB, panel f) has a stationary

distribution consisting of three modes, as reported earlier

[13]. Inclusion of CB (panel e) diversifies the protein expres-

sion and reduces the stability of the mode located at

NX ¼ NY � 230: In the FM (panel b), there is no discernible

concentration of probability in the symmetric mode, hence

the three-way switching capability appears to be absent. We

also note that the saddle of the distribution in the FM is located

at a state with a much lower number of proteins compared

with the NB and CB models. The most likely switching path

[9] from one of the asymmetric modes to the other will

differ significantly between the different variants of the

model. The diffusion approximation of the GB model (panel

(c)) does not capture the outcome of the FM either. Overall,

these findings confirm again that the inclusion of bursting

noise statistics has significant effects on the model outcome.

Finally, we observe in figure 9d that the PDMP model approxi-

mates the FM of the three-way switch well. We conclude that

randomly distributed burst sizes are again the predominant

form of intrinsic noise in the multi-switch network.
6. Discussion and conclusion
Explicitly including mRNA dynamics in gene regulatory

models inevitably introduces more complexity. We have quan-

titatively studied the effects of bursting noise [1] in a

biologically relevant regime of the model organism E. coli.
To our knowledge, this is one of the first attempts to build a

more rigorous connection between existing individual-based

models [3,8–10] and coarse-grained models [11,12,14,15].

We have investigated two biologically motivated observa-

bles: the stationary distribution of the protein expression and

the MFST of the biological switch. The stationary distribution

serves as an approximation of the epigenetic distribution of a

collection of a large number of similar cells. While the station-

ary distribution quantifies time-independent properties of the

system at long times, the MFST is a measure of the timescale

of spontaneous switching. It provides a quantitative charac-

terization of the stability of the switch against intrinsic

noise. We note that other quantities, not studied in this

work, may be of biological interest as well, for example

temporal correlations of fluctuations or indeed the nature of

the path taken during switches between states. Our results

indicate that the bursting statistics of transcription and trans-

lation are essential ingredients of models of gene regulation.

Coarse-grained models need to account for bursting to retain

correct statistics of noise-driven phenomena such as the

switching between different dynamic attractors.

The implications of our observations are relevant to the

abstract modelling of regulatory networks in different ways.

We are now in a better position to address our opening

question and to say how noise propagates between different

levels of modelling. Perhaps more importantly, our study
may ultimately help to decide what level of modelling is

most appropriate to study gene regulatory circuits computa-

tionally. The answer will of course depend on the precise

nature of the question that is asked. We have examined differ-

ent levels of coarse graining, and we have identified the

steps in these reduction procedures at which significant

alternations to different model outcomes are introduced.

Systematically choosing a suitable level of coarse graining

also facilitates the mathematical analysis of regulatory net-

works. The high dimensionality of full regulatory networks

effectively makes them intractable. Model reduction is needed

to make progress, and our analysis demonstrates that the

PDMP formulation is a powerful way forward, and that it can

be more suitable than the conventional diffusion approxi-

mation. The PDMP model explicitly retains the bursting noise

originating from the mRNA dynamics. Even though it effec-

tively disregards the demographic noise from random

degradation of the proteins, it delivers accurate predictions

for stationary distributions and switching times. We remark

that for a lower dimensional system—an autoregulated

network—the PDMP approximates the individual-based

model as well to a good accuracy and we provide analysis

separately [40].

As another strength, the PDMP formulation can be

generalized relatively easily to accommodate more complex

reactions. For example, in the Enterobacteria phage l switch,

it is not the monomer of the synthesized proteins which

acts as the repressor to regulate transcription, but instead

their dimer. Modelling these processes requires the inclusion

of dimerization further downstream after transcription and

translation [7,10,26]. Preliminary results not shown here

reveal that the PDMP approximates such dynamics well. In

addition, the formulation can be generalized to model the

switching between genetic states [26,41].

The fact that the PDMP is successful in approximating

the FM opens a relatively new type of modelling paradigm.

We acknowledge that we are not the first to propose this

type of model [41–46]. Our contribution consists of a first

analytical treatment of PDMP models in the shot-noise

limit g! 1 to investigate the bursting nature due to the pres-

ence of short-lived mRNA molecules in prokaryotic cells.

This is in contrast to the previously cited references which

focus on eukaryotic cells. We have also provided a more

systematic embedding of PDMP into a wider landscape of

modelling approaches.

The bursting phenomenon is ubiquitous whenever there

is a separation of timescales between the source and the pro-

duct of a biological process. These are mRNA and protein in

models of gene regulation, but we expect that these ideas

can be applied to other biological problems with similar

timescale separation.
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