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Water corrosivity of polluted 
reservoir and hydropower 
sustainability
Sunardi Sunardi1,4*, Miranti Ariyani2, Mochammad Agustian3, Susanti Withaningsih1,4, 
Parikesit Parikesit1,4, Hafizan Juahir6, Azimah Ismail6 & Oekan S. Abdoellah1,5

Reservoirs play a strategic role in the context of sustainable energy supply. Unfortunately, the 
majority of the reservoirs are facing water-quality degradation due to complex pollutants originating 
from activities both in the catchment and inside the reservoir. This research was aimed at assessing 
the extent of the water degradation, in terms of corrosivity level, and at examining its impacts 
on hydropower capacity and operation. Water quality data (total dissolved solids, pH, calcium, 
bicarbonate, and temperature) were obtained from 20 sampling stations in the Cirata Reservoir 
from 2007 to 2016. The results show that the river water is already corrosive (Langelier Saturation 
Index, LSI = − 0.21 to − 1.08), and, the corrosiveness becoming greater when entering the reservoir 
(LSI = − 0.52 to − 1.49). The water corrosivity has caused damage to the hydro-mechanical equipment 
and lowering production capacity. The external environment of the catchment hosts complex human 
activities, such as agriculture, land conversion, urban and industrial discharge, which have all played a 
major role in the water corrosiveness. Meanwhile, the internal environment, such as floating net cage 
aquaculture, has intensified the problem. As the water corrosiveness has increased, the maintenance 
of the hydro-mechanical facilities has also increased. Strategies must be applied as current conditions 
are certainly a threat to the sustainability of the hydropower operation and, hence, the energy supply.

Currently, water quality has become increasingly more important in the context of reservoir sustainability and 
pristine management. The increasing human population, industrialization, and other anthropogenic activi-
ties, such as agriculture and domestic activities, have caused changes in the physical, chemical, and biological 
conditions of reservoir water1. Corrosivity is one of the qualitative measures of water quality that indicates the 
presence of contaminants2 and is associated with the continuity of hydropower facilities. Corrosion is related to 
the acidity of the hydroenvironment that determines the sustainability of energy provision because corrosion 
leads to costly maintenance of hydro-mechanical equipment, and hence the sustainability of power production3,4.

Corrosion is a physicochemical interaction process between metal and its surroundings5,6. Several indicators 
can be used to measure the corrosivity of water; among others is the Langelier Saturation Index (LSI)7,8. The LSI 
has been employed in the corrosivity analysis of drinking water5,6,9,10, underground water2, river water11, and 
water from treatment plants12. High levels of pollution, caused by various activities, causes hydro-mechanical 
equipment to degrade. Kumar et al.13 reported that the Thatipudi reservoir water in Andhara Pradesh has expe-
rienced corrosiveness, which has also potentially damaged the water distribution system.

Cirata is one of the cascade reservoirs located on the Citarum River, which plays a strategic role in supporting 
development in Indonesia. The reservoir was established in 1987, with the main purpose being energy provi-
sion through hydropower plant construction, to provide 1,008 GWh electricity for Java and Bali14. Its role has 
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been expanded, however, to include water supply to cities, irrigation, flood control, tourism, plant and animal 
conservation, and aquaculture. The continuity of Cirata hydropower substantially depends on the condition 
of the Citarum watershed, in which various socioeconomic activities have spread from the cities of Bandung, 
Soreang, Majalaya, Banjaran, Cimahi, etc.

Apparently, the intensive socioeconomic activities, and tremendous land-use changes in the catchment, 
will contribute to the increasing sedimentation in the reservoir. In the Master Plan document, it was reported 
that, in 2007, the actual sedimentation rate in Cirata Reservoir reached up to 3.96 mm/year, greatly exceeding 
the estimated sedimentation rate of 1.2 mm/year15. Other pollutant sources, such as domestic, industrial, and 
agricultural activities, and leachate generated from landfill, may contribute to the accumulation of organic 
matter on the bottom of the reservoir. The decay of organic matter in the sediments results in highly toxic and 
corrosive substances in the water. The water pollution is exacerbated by the presence of a large population of 
floating net cages, which reach up to 68,000 units16. This figure exceeds the number set by the Government of 
West Java Province through Governor’s Decree No. 41 2002, which allowed only about 20,000 units. Moreover, 
the majority of the farmers who are engaged in aquaculture use food pellets in an inefficient manner, causing 
higher residual sedimentation in the reservoir. Uneaten pellets from the floating net cages could possibly be the 
main factor that is contributing to the water quality degradation, through significant organic decomposition.

This work aims to assess the impacts of the water quality degradation on hydropower sustainability in Cirata 
Reservoir. Referring to the fact that hydro-mechanical equipment may be degraded by corrosive water, the capac-
ity of the hydropower plant may be decreased. Cirata Reservoir is experiencing serious water pollution; assessing 
the corrosiveness of the reservoir water, and evaluating its impact on hydro-mechanical equipment, will provide 
much-needed insight into how water quality may determine hydropower sustainability.

Results
Trend of reservoir water quality.  Regular monitoring activities in Cirata Reservoir found that the water 
quality had been degrading for the last 10 years (Fig. 1). Refering to the national regulations, the Storet Index 
showed that some of the physicochemical parameters did not meet the recommended standards. Based on our 
estimations, the Storet Index values ranged between − 15 and − 40, with an average of − 26. This indicates that the 
quality of the water in the Cirata Reservoir was medium to highly polluted, and that this has worsened over time.

Corrosivity of the tributary and reservoir water.  Our assessment of the reservoir water revealed that 
Cirata, in general, has experienced substantial water corrosivity over the past 10 years (Table 1).

Both the tributaries and reservoir water have been confirmed as having negative LSI values, indicating the 
potential for corrosion (Fig. 2).

Reservoir water corrosivity between floating and non‑floating cage areas.  The compelling scen-
ery of the Cirata Reservoir is the abundant population of floating net cages. According to Table 2, the water in 
the area of dense floating net cages tends to be more corrosive than in the area where these are absent. Statistical 
analysis, however, shows that the difference between water corrosiveness in the caged and empty areas was not 
significant (T-test, p > 0.05, 0.584 > 0.05).

Hydro‑mechanical degradation caused by corrosive water.  The data showed that the frequency 
of maintenance (overhaul, predictive and corrective maintenance) was higher when the water corrosiveness 
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Figure 1.   Trend in the water quality of Cirata Reservoir (indicated by Storet Index values) from 2007 to 2016.
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increased in the period 2009 to 2013 (Table 3). It was proven that the degradation of water quality caused damage 
to the hydromechanical equipment, and thus disrupted the hydropower capacity and operation.

Discussion
The pollution of the Cirata water has threatened the operation of the hydropower plant, as well as affecting other 
activities, such as aquaculture, tourism, monitoring activities, etc. The common problems apparent in the Cirata 
Reservoir due to water pollution are hydro-mechanical corrosion, fish kill in the floating net cage aquaculture, 
excessive growth of algae and water hyacinth, and water pollution by heavy metals17–20. As a eutrophic water, the 
environmental conditions, such as high nutrients, have triggered the microscopic algae growing excessively in 
the Cirata Reservoir. Similar condition has been found in deep drinking water reservoir, the Jinpen Reservoir in 

Table 1.   Water corrosivity of river tributaries, and sampling locations in the reservoir.

No Station LSI Note

Tributaries

1 Citarum-Cimeta encounter area (Station 7) − 0.50 Corrosive

2 Cimeta river-mouth (Station 8) − 0.37 Corrosive

3 Cikundul river-mouth (Station 10) − 0.82 Corrosive

4 Cilaku river-mouth (Station 12) − 0.64 Corrosive

5 Cisokan River (Station 13) − 0.61 Corrosive

6 Citarum River, before Cimeta encounter (Station 14) − 1.08 Corrosive

7 Cimeta River (Station 15) − 0.32 Corrosive

8 Cipicung River (Station 16) 0.21 Scale-forming

9 Cicendo river-mouth (Station 17) − 0.41 Corrosive

Reservoir

1 Bandung Barat district zone (Station 1) − 0.77 Corrosive

2 Trashboom area (Station 2) − 1.32 Corrosive

3 Border of aquaculture-free area (Station 3) − 1.14 Corrosive

4 Purwakarta district zone (Station 4) − 0.52 Corrosive

5 Cisokan river-mouth (Station 5) − 0.59 Corrosive

6 Citarum river-mouth (Station 6) − 0.82 Corrosive

7 Dam site (Station 9) − 0.92 Corrosive

8 Cibalagung river-mouth (Station 11) − 1.28 Corrosive

9 Cilangkap river mouth (Station 18) − 1.49 Corrosive

10 Midpoint zone of Purwakarta (Station 19) − 1.18 Corrosive

11 Midpoint zone of Cianjur (Station 20) − 0.61 Corrosive
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Figure 2.   Water corrosivity level of the Cirata Reservoir and its tributaries, 2007 to 2016.
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China21. Olivia et al.22 indicated that microorganism, such as microalgae and bacteria, in the water can induce 
microbiologically influenced corrosion that leads to degradation of the concrete structures.

Activities in the catchment seem to have had an influence on the corrosiveness of the input water, while the 
activities within the reservoir have intensified the water corrosiveness. Ekholm et al.23 regarded that the catch-
ment charasteristics had affected the concentration of nutrients and total suspended solids in the river system. 
The average water corrosiveness in the reservoir was significantly higher, compared to that in the tributaries 
(T-test, p < 0.05, 0.04 < 0.05).

The contribution of activities in the catchment to the water corrosiveness seems to be greater than those in the 
reservoir area. The catchments host complex activities, and contain sources, that cause the input water to be cor-
rosive. The Institute of Ecology, Universitas Padjadjaran (2010) reported that the catchments had contributed up 
to 675,768 ton/year of particulate matter from suspended and dissolved solids alone; however, when the dissolved 
and deposited material from the rivers is considered, the total amount of material causing the corrosiveness is 
much higher. Garno24 stated that an amount of 145,334 ton/year of organic matter came from the fish cages in 
the reservoir, which is partially deposited, suspended or dissolved in the water.

Based on the scientific evaluation of each input into the water, i.e., from the tributaries, there is an indica-
tion that these waters were already corrosive, which increases the level of corrosiveness when the water enters 
the reservoir (Table 1). Most of the sampling stations showed that the water corrosivity in the catchment area 
was high. Due to natural geographical features, the water changed from flowing in the rivers to stagnant in the 
reservoir, potentially causing different precipitation rates among chemical compounds. Further, this indicates 
that eutrophication generates a high potential for water corrosivity in the reservoir.

Considering the input water, the contribution from the nine rivers flowing into the Cirata Reservoir has 
obviously worsened the water quality. Various activities in the catchment area, such as agriculture, residential 
settlement, and commercial, industrial and municipal wastewater discharge, to some extent have contributed 
to the reservoir water degradation. Out of the nine rivers, the Citarum, Cikundul, Cilaku, and Cisokan rivers 
contributed the most to the water quality degradation. These four rivers run through the most densely-populated 
parts of the catchment, where human activities are most concentrated. The Citarum river itself is the longest river 
in the West Java Province, crossing the Greater Bandung, the capital of the province.

The main feature related to the corrosivity of the four rivers has been confirmed as high total dissolved solid. 
The concentration of total dissolved solid indicates the amount of material dissolved in the water, including both 
organic and inorganic ions, such as chloride, nitrate, sulfate, phosphate, sodium, magnesium, calcium, iron, 
and aluminium Kumar et al.13. The type of material contained in the total dissolved solid affect the properties of 
water corrosivity. When it contains more corrosive ions, such as chloride, the water becomes corrosive, or has 
a strong tendency to form carat13. Previous studies have shown that the upper Citarum basin has experienced 
serious environmental degradation, due to massive conversion of land for settlement and agriculture25, pesticide 
and fertilizer pollution from intensive horticulture and paddy fields26, and domestic waste from urban centres27.

Table 2.   Corrosivity levels of water in caged and empty areas, Cirata Reservoir.

No Station Corrosivity index (LSI) Note

Zone of floating net cages

1 Bandung Barat district zone (Station 1) − 1.49 Corrosive

2 Midpoint zone of Purwakarta (Station 19) − 1.18 Corrosive

3 Midpoint zone of Cianjur (Station 20) − 0.61 Corrosive

Average − 1.09 Corrosive

Zone of no floating net cages

1 Bandung Barat district zone (Station 4) − 1.23 Corrosive

2 Cisokan river-mouth (Station 5) − 0.52 Corrosive

3 Citarum river-mouth (Station 6) − 0.62 Corrosive

4 Cibalagung river-mouth (Station 11) − 0.92 Corrosive

5 Cilangkap river-mouth (Station 18) − 1.34 Corrosive

Average − 0.92 Corrosive

Table 3.   Frequency of maintenance of the hydro-mechanical equipment in the Cirata hydropower station.

Type of maintenance

Frequency

2009 2010 2011 2012 2013

Predictive maintenance 9 10 29 48 63

Overhaul 2 3 6 6 5

Corrective maintenance 112 146 234 200 140

Total 123 159 269 254 208
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The floating cages are common in the reservoir, hosting tilapia, common carp, catfish, and pangasius. The 
number of cages is countinuously increasing, and, according to the last census, the population of the cages had 
reached 68,000 units in 201316. The floating net cage activities significantly deleteriously impact water corrosivity, 
due to the excessive amounts of residual feed derived from it. Fish food contains organic ingredients, nutrients, 
and other chemical elements that increase the pollution load in the reservoir28. Garno24 estimated that, during 
the last five years, the floating net cages in the Cirata Reservoir had generated as much as 145,334 tons/year of 
organic waste, containing 6,611.8 tons nitrogen and 1,041.4 tons phosporus. The implication concerning water 
corrosiveness is clear; the level of corrosivity in dense floating net cages are higher than that in the area where 
the floating net cage are absent (see Table 2).

Negative effects of the corrosive water in the Cirata Reservoir were noticable, particularly in hydro-mechanical 
equipment, such as turbines, generator mechanical sets, air coolers, brake valves, piping, etc. The problems of 
corrosion were more severe for metal instruments that had direct contact with the reservoir water. The mainte-
nance records indicated that a greater effort of maintenance on the hydro-mechanical equipment corresponded 
to the worsening water quality.

Organic matter entering the water is another issue related to water corrosivity. This originates mainly from 
settlements, industry and the floating net cages. The presence of organic matter in the water column, as repre-
sented by the dissolved and suspended solids content, contributed to the increased maintenance of the hydro-
mechanical equipment through corrosion and cavitation, due to the nucleation of the turbine29. Cavitation is a 
process whereby water bubbles form due to pressure differences, and where the rupture of the bubbles potentially 
corrodes the turbine30. Gregorc et al.31 stated that the presence of particles in the water can increase cavitation 
due to increasing pressure differences in water-containing particles. Thus, the higher the solid content of water, 
the greater the possibility of corrosion32.

Aside from organic matter, the corrosiveness of the water in the reservoir area is also triggered by dissolved 
and suspended solids from activities such as inappropriate agricultural practices and land conversion. If particu-
late matter does not settle, it increases turbidity in the water column for a longer amount of time, resulting in 
greater corrosion of the hydro-mechanical equipment29. The utilization of synthetic fertilizer, such as NPK, urea, 
TSP, and potassium chloride, also generates chemical residues, such as ammonia, phosphate, sulfate, and chloride, 
which are corrosive33. Ammonia is a major source of nitrogen in synthetic fertilizers, produced through a reaction 
of pure nitrogen gas and hydrogen forming ammonium nitrate, which is highly corrosive34. Liao et al.35 stated 
that ammonium, nitrate, nitrite, and chloride ions may lead to localized corrosion, which will eventually damage 
metallic equipment. Kinouchi et al.36 regarded phosphate compounds generated from fertilizers in agricultural 
activities to be a compound that would be easily leached into rivers. According to Biglari et al.2 phosphate is one 
of the chemical compounds that contributes to water corrosiveness properties.

Water corrosivity in the Cirata Reservoir is a real threat to the sustainability of the hydropower operations, 
and hence to the energy supply of Java and Bali; however, is has been shown that the catchments have been a 
greater influence on water corrosivenes than the activities in the reservoir. Several strategies may be applied to 
cope with the corrosivity problem, such as controlling pollution from the catchments, and adopting a more eco-
friendly aquaculture. The urban centers may also need to provide effective waste water treatment for domestic 
discharge; while agriculture could use pesticides and fertilizer more efficiently. Sustainable agriculture could 
also be the best option for future agricultural sector development. In the reservoir area, a reduction of floating 
net cages, alternative feeding practices, such as automated feeding, and provision of more digestable pellets, 
should be considered.

Methods
Research site.  The study was conducted in the Cirata Reservoir, located in West Java Province, from 2007 
to 2016. The reservoir is one of the cascade reservoirs in the Citarum River Basin with a very strategic role in 
development at both the local and national levels. The inundation of the Cirata Reservoir was started in Septem-
ber, 1987, with covered an area of 62 Km2. The priority goal of the reservoir development was to provide support 
for the national electricity need through establishment of a hydropower with capacity of 1,008 MW. However, as 
an open fostered ecosystem the Cirata Reservoir in fact has multiple functions such as to support aquaculture 
activities, irrigation, transportation and tourism. The sampling points were placed in both the inundation area, 
i.e., the reservoir, and the river-mouths where they flow into the reservoir (see Fig. 3); water samples were taken 
from 20 sampling points.

Research procedure.  This work was divided into two stages: (1) laboratory analysis of water samples; and 
(2) assessment of water corrosivity levels. Sampling of water from the reservoir was conducted quarterly, i.e., in 
February, May, August and October, from 2007 until 2016. The water samples were taken at a depth of 0.2 m 
from the surface, using a water sampler. The collection technique refers to SNI 03-7016-2004, regarding Sam-
pling Procedures for Water Quality Monitoring of Rivers and Lakes, while the physicochemical characteritics 
of total dissolved solid, pH (acidity), calcium, bicarbonate, and temperature, were measured based on APHA 
AWWA WCPF37. The state of the water pollution is expressed as the Storet Index.

The data obtained were used to assess the level of water corrosivity, expressed in LSI7,8. When the LSI value 
was negative, it showed that the water had limited scale-forming potential, but tended to be corrosive. Conversely, 
when the LSI was positive, the water had a tendency to form scale. As the value increased, the scaling potential 
increased in tandem13. The formulae used were:

(1)LSI = pH − pHs



6

Vol:.(1234567890)

Scientific Reports |        (2020) 10:11110  | https://doi.org/10.1038/s41598-020-68026-x

www.nature.com/scientificreports/

where the LSI indicates the driving force for scale formation and growth, in terms of pH as a master variable. 
pH is actual acidity, and pHs is the saturation acidity. pHs is calculated by the formulation of A, B, C, and D, as 
presented below:

(2)pHs = (9.3+ A+ B)− (C + D)

(3)A =
(log [TDS]− 1)

10

(4)B = − 13.12× log
(

◦C+ 237
)

+ 34.55

Figure 3.   Water sampling points in the Cirata Reservoir. Note: (1) Bandung Barat district zone, (2) trashboom 
area, (3) border of aquaculture-free area, (4) Purakarta Barat district zone, (5) Cisokan river-mouth, (6) Citarum 
river-mouth, (7) Citarum-Cimeta encounter area, (8) Cimeta river-mouth, (9) dam area, (10) Cikundul river-
mouth, (11) Cibalagung river-mouth, (12) Cilaku river-mouth, (13) Cisokan River, (14) Citarum River (before 
Cimeta encounter), (15) Cimeta River, (16) Cipicung River, (17) Cicendo river-mouth, (18) Cilangkap river-
mouth, (19) midpoint zone of Purwakarta, and (20) midpoint zone of Cianjur.
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where the estimation of A, B, C, and D variables use alkalinity (mg/L as CaCO3), calcium hardness (mg/L Ca2+ 
as CaCO3), TDS (mg/L), and the temperature of the water (°C) as inputs.

The classification of water corrosivity levels of the LSI is presented in Table 4.
To obtain information on the hydro-mechanical damage, maintenance data were collected from the relevant 

sections of the hydropower company, PT PJB. The data were accessible only for the years 2009 until 2013.

Data analysis.  To see if there were any differences in the water corrosiveness between the river and the res-
ervoir water, and between the floating net cage and empty areas, the T-test was employed. Statistical analysis was 
performed using version R-3.6.1 of the ‘R’ software environment for Microsoft Windows.

Conclusions
Water corrosiveness in the Cirata Reservoir has apparently threatened the continuity of hydropower operations, 
and hence the energy supply. In the reservoir, corrosive water has noticeably caused damage to the hydro-
mechanical equipment, and increased the frequency of maintenance. The catchments, as the focus of complex 
human activities, have contributed the greatest influence to the water corrosiveness, while the activities and 
limnological processes in the reservoir have played a role in intensifying the corrosiveness of the reservoir water. 
Several strategies can be taken to cope with the problem, with measures to restrict harmful activities around the 
catchments to be made a priority.
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