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INTRODUCTION 
 
Bisphenol A (BPA) is a high-production-volume 
chemical extensively used in the production of plastics, 
epoxy resin linings of food packaging, coatings, and 
fillings, and now leaches into the environment with over 
one million pounds each year [1]. Despite its low 
affinity, BPA could bind classical nuclear estrogen 
receptor (ER) alpha and beta, as well as membrane-
associated GPR30, and may inhibit the function of ER 
and other nuclear hormone receptors for its similar 
structure as diethylstilbestrol (DES), a highly potent ER 
agonist [2]. 
 
Owing to the ubiquitous presence of BPA in the 
environment and its serious endocrine-disrupting  

 

effects, coupled with the increased incidence of 
endocrine-associated cancer, many studies have 
evaluated the carcinogenesis of BPA in hormone-
sensitive organs (prostate, testis, breast and ovary et al.) 
[3, 4]. The US Food and Drug Administration (FDA) 
has set the safe reference dose (RfD) at 50 µg/kg/d for 
humans based on a 1,000-fold reduction of the dose 
used in the rodent study [5]. Recently, the European 
Food Safety Authority (EFSA) lowered the RfD to 4 
µg/kg/d after reevaluating the toxicological data for 
BPA [6].  
 
To explore the role of BPA on the reproductive system, 
scholars have carried out many experiments based on 
rodent models and achieved preliminary results. 
However, due to the differences in animal models, 
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ABSTRACT 
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0.53; Epididymal sperm count; SMD: -3.42; 95% Cl: -3.87, -2.97). Meanwhile, regardless of the dose, early-life 
BPA exposure could result in an adverse effect on sperm parameters of F1 generation male rodents at any 
period. Also, we found the non-monotonic dose response curves of BPA in specific tissues or organs, which may 
challenge the traditional mindset of "safe dose". This study demonstrated that bisphenol A exposure was 
relevant to adverse reproductive-related outcomes at specially appointed dose and period of life. Yet the 
assumption that no adverse effects can occur below the "safe" dose is suspected. 
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dosage, administration methods, and the conflicts of 
interest behind the experiment, the results of the 
experiments were controversial. For example, a study 
sponsored by the Polycarbonate/BPA Global Group, 
which is an organization promoting the welfare and 
interests of polycarbonate plastics and BPA 
manufacturers, stated that, in the SD (Sprague-Dawley) 
rats model, the cancer risk of any organ system exposed 
to BPA for a long time did not increase regardless of the 
exposure dose and period [7]. However, another study 
evaluating BPA exposure prenatally administered to SD 
rats suggested that at postnatal day (PND) 180, low 
dose BPA exposure was sufficient to induce 
hyperplasia/dysplasia of the prostate (control group: 0% 
vs. BPA group: 62%) [8]. 
 
We performed this study to provide a more rigorous 
assessment of the existing rodent model by 
systematically reviewing experimental studies reporting 
BPA and detrimental outcomes. We reviewed and 
conducted a meta-analysis of these rodent studies which 
reported the relationship between prenatal or perinatal 
(early-life) BPA exposure and the following 
reproductive-related outcomes: body weight, prostate 
weight, testis weight, epididymis weight, seminal 
vesicle weight, sperm motility, daily sperm production 
(DSP; testis), efficiency of sperm production, and 
epididymal sperm concentration (Table 1). 
 
RESULTS 
 
Characteristics of included studies 
 
The flowchart of the literature search and selection 
process is shown in Figure 1. After searching PubMed, 
EMBASE, Toxline databases, and additional references 
for relevant articles, a total of 2883 articles were found. 
Of these articles, 103 articles met the criteria for full-
text review. Eventually, 31 articles were included for 
analysis (Table 2) [7, 8, 16–44].  
 
The dose of BPA in studies ranged from 0.1 ug/kg/day 
to 600 mg/kg/day, which was divided by four ascending 
intervals: 0-60ug/kg/day (low); 100-600ug/kg/day 
(medium); 1-50mg/kg/day (high); >50mg/kg/day 
(extremely high). For the timing of data collection, 
outcomes were measured between PND0 and PND455 
and divided by three subgroups: <PND60 (puberty and 
prepuberty); PND60-PND180 (sexual maturity and 
adulthood); >PND180 (middle-aged and aged). More 
details are presented in Table 2. 
 
Rob evaluation 
 
The assessment results of Rob and methodological 
quality were shown in Supplementary Table 2 and  

Figure 2, with many items receiving an “unclear” rating, 
resulting in an unknown Rob. For selection bias (Q1-
Q3), 13 studies reported the sequence generation 
process (Q1); 12 studies reported on the adjustment of 
confounding factors and baseline characteristics of two 
groups (BPA group and control group) (Q2); none of 
study reported the allocation concealment (Q3). 
Regarding performance bias (Q4, Q5), the random 
housing and blinding of caregivers were not reported at 
all. On the aspect of detection bias (Q6, Q7), outcome 
assessor was described blinded in 7 studies (Q7), 
whereas no study reported the randomization of 
outcome measure (Q6). For attrition bias (Q8), 2 studies 
adequately addressed incomplete outcome data. All 
studies had an unclear risk of reporting bias (Q9). 
Besides, one study (Nagao 2002) was scored with a 
high risk of other bias for cesarean section (Q10). With 
respect of methodological quality (Q11-Q14), 19 
studies reported randomization at any level of the 
experiment (Q11); only 8 studies reported the blinding 
(Q12); 13 studies stated that there was no conflict of 
interest (Q13); and the funding source was provided in 
25 studies (Q14). 
 
Effects of BPA on reproductive-related outcomes 
 
The overall meta-analysis results of enrolled studies are 
shown in Table 3 and Supplementary Table 3. Forest 
figures are shown in Supplementary Figure 2–10. 
 
BPA at low dose (0-60ug/kg/day) 
 
Out of 31 studies, 27 studies have applied low-dose 
BPA intervention in one or more experimental groups. 
Regardless of the period, no significant difference was 
found with 52 comparisons investigating the low-dose 
BPA on body weight (SMD: 0.08; 95% Cl: -0.13, 0.29). 
For organ weight, it seem that the exposure of BPA at 
low dose may increase the weight of prostate at any 
period (especially in the period of <PND60) with a 
moderate heterogeneity (I2 = 58.2%) possibly caused by 
the animal model and timing of collection (Prostate 
weight, Total: SMD: 0.46; 95% Cl: 0.26, 0.67; 
<PND60: SMD: 1.09; 95% Cl: 0.42, 1.76; PND60-
PND180: SMD: 0.43; 95% Cl: 0.17, 0.68; >PND180: 
SMD: 0.46; 95% Cl: 0.16, 0.67). However, a 
significantly increased testis weight was only found at 
the period of <PND60 (SMD: 0.40; 95% Cl: 0.06, 0.74) 
with low heterogeneity (I2 = 21.5%). Interestingly, low-
dose BPA exposure exhibited a significantly increased 
epididymis weight at the period of PND<60 (SMD: 
0.70; 95% Cl: 0.08, 1.33; I2 = 61.2%) and PND>180 
(SMD: 0.62; 95% Cl: 0.31, 0.93; I2 = 0.0%), but reverse 
at the period of PND60-PND180 (SMD: -0.25; 95% Cl: 
-0.61, 0.12; I2 = 89.0%). Meanwhile, low-dose BPA 
exposure exhibited a significant positive association  
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Table 1. PECO statement (population, exposure, comparator and outcomes). 

Variable Description 
Population Experimental rodent studies 
Exposure Early-life exposure to bisphenol A (prenatal and early 

postnatal; have a exposure history during gestation period 
to postnatal day 21) 

Comparator Animals exposed to vehicle-only treatment 
Outcomes body weight, prostate weight, testis weight, epididymis 

weight, seminal vesicle weight, sperm motility, daily 
sperm production (testis), efficiency of sperm production 

(g/testis/day), and epididymal sperm concentrations 
 

 
 

Figure 1. Flow diagram of literature search and selection process. 
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Table 2. Characteristics of the studies included in the meta-analysis. 

Reference Year Species 
(strain) 

Dose in µg/kg 
bw/day 

Exposure 
period 

Exposure 
route 

Timing of 
outcome 

measurement 

Effects on male 
reproduction extracted in 

the analysis 

Dabeer et al. 
[16] 2020 Rat (Wistar) 10000 

180 days 
prebreed-
PND35 

Drinking 
water PND35 Organ weight, Sperm 

parameters 

Shi et al. [17] 2018 Mice (CD-1) 0.5/20/50 GD11-PND1 Oral PND60, 
PND120 

Body weight, Organ 
weight, Sperm 

parameters 

Prints et al. [18] 2018 Rat (Sprague-
Dawley) 

2.5/25/250/2500/ 
25000 

Grp1:GD6-
PND365; 

Grp2:GD6- 
PND21 

Gavage PND365 Body weight 

Spörndly-Nees 
et al. [19] 2018 Rat (F344) 0.5/50 GD3.5-GD22 Drinking 

water 
PND35, 
PND360 

Body weight, Organ 
weight 

Dere et al. [20] 2018 Rat (Sprague-
Dawley) 

2.5/25/250/2500/2
5000/250000 GD6-PND90 Gavage PND90 Body weight, Organ 

weight 
Rahman et al. 
[21] 2017 Mice (CD-1) 50/5000/50000 GD7-GD14 Gavage PND120 Sperm parameters 

Bernardo et al. 
[22] 2015 Rat (Sprague-

Dawley) 25/250 GD10-GD21 Gavage PND21, 
PND180 

Body weight, Organ 
weight 

Rodrıguez et al. 
[23] 2015 Gerbil 40 GD17-24 Oral PND1,  

PND90 
Body weight, Organ 

weight 

Hass et al. [24] 2015 Rat (Wistar) 25/250/5000/50000 GD7-PND22 Gavage PND90 Body weight, Organ 
weight 

Delclos et al. 
[25] 2014 Rat (Sprague-

Dawley) 

2.5/8/25/80/260/84
0/2700/100000/300

000 
GD6-PND90 Diet PND90 Organ weight 

Brandt et al. [8] 2014 Rat (Sprague-
Dawley) 25/250 GD10-GD21 Gavage PND21, 

PND180 
Body weight, Organ 

weight 
Gámez et al. 
[26] 2014 Rat (Wistar) 3 GD1-PND21 Drinking 

water PND35 Body weight, Organ 
weight 

Vilela et al. [27] 2013 Mice 
(Vesper) 40/80/200 GD5-PND1 Gavage PND70 Sperm parameters 

Kendig et al. 
[28] 2012 Mice (CD-1) 30/300/3000/30000

/300000 GD1-PND90 Oral PND90 Organ weight, Sperm 
parameters 

Kobayashi et al. 
[29] 2012 Rat (Sprague-

Dawley) 330/3300/33000 GD6-PND21 Diet PND35, 
PND90 

Body weight, Organ 
weight, Sperm 

parameters 
LaRocca et al. 
[30] 2011 Mice 

(C57/Bl6) 50/1000 GD10-GD16 Gavage PND56 Body weight, Organ 
weight 

Salian et al. [31] 2009a Rat 
(Holtzman) 1.2/2.4 GD12-

PND21 Gavage PND125 
Body weight, Organ 

weight, Sperm 
parameters 

Salian et al. [32] 2009b Rat 
(Holtzman) 

100/200/400/830/1
660 PND1-PND5 Injection PND135 Sperm parameters 

Tyl et al. [33] 2007 Mice (CD-1) 3/30/300/5000/500
00/600000 

40 days 
prebreed-
PND140 

Diet PND140 
Body weight, Organ 

weight, Sperm 
parameters 

Howdeshell et 
al. [34] 2007 Rat (Long 

Evans) 2/20/200 GD7-PND1 Gavage PND150 
Body weight, Organ 

weight, Sperm 
parameters 

Kato et al. [35] 2006 Rat (Sprague-
Dawley) 2/11/56/277/97000 PND1-PND9 Injection PND10, PND35, 

PND150 

Body weight, Organ 
weight, Sperm 

parameters 

Ichihara et al. 
[36] 2003 Rat (F344) 50/7500/12000 

3 weeks 
prebreed-
PND22 

Gavage PND455 Body weight, Organ 
weight 

Tyl et al. [7] 2002 Rat (Sprague-
Dawley) 

1/20/300/5000/500
00/500000 

10 weeks 
prebreed- 
PND21 

Diet PND161 
Body weight, Organ 

weight, Sperm 
parameters 
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Tinwell et al. 
[37] 2002 Rat (Wistar) 20/100/50000 GD 6-21 Gavage PND90 

Body weight, Organ 
weight, Sperm 

parameters 

Yoshino et al. 
[38] 2002 Rat (F344) 7500/12000 

3 weeks 
prebreed-
PND21 

Gavage PND90 
Body weight, Organ 

weight, Sperm 
parameters 

Nagao et al. [39] 2002 Mice 
(C57BL/6N) 2/20/200 GD11-GD18 Diet PND84 

Body weight, Organ 
weight, Sperm 

parameters 

Ema et al. [40] 2001 Rat (Sprague-
Dawley) 0.2/2/20/200 G1-PND21 Diet PND120 Body weight, Organ weight 

Kwon et al. [41] 2000 Rat (Sprague-
Dawley) 

3200/32000/32000
0 

GD11-
PND20 Oral PND180 Body weight, Organ 

weight 

Cagen et al. [42] 1999 Mice (CF-1) 0.2/20/200 GD 11-17 Oral PND90 
Body weight, Organ 

weight, Sperm 
parameters 

Ashby et al. [43] 1999 Mice (CF-1) 20-Feb GD11-17 Oral PND183-187 
Body weight, Organ 

weight, Sperm 
parameters 

Vom Saal et al. 
[44] 1998 Mice (CF-1) 20-Feb GD11-17 Drinking 

water PND180 
Body weight, Organ 

weight, Sperm 
parameters 

Notes: PND, postnatal day; GD, gestation day. 
 

 
 

Figure 2. Results of the risk of bias and methodological quality indicators for all included studies. Notes: Q, question. Q1: Was 
the allocation sequence adequately generated and applied?; Q2: Were the groups similar at baseline or were they adjusted for confounders 
in the analysis?; Q3: Was the allocation to the different groups adequately concealed?; Q4: Were the animals randomly housed during the 
experiment?; Q5: Were the caregivers and/or investigators blinded from knowledge which intervention each animal received during the 
experiment?; Q6: Were animals selected at random for outcome assessment?; Q7: Was the outcome assessor blinded?; Q8: Were 
incomplete outcome data adequately addressed?; Q9: Are reports of the study free of selective outcome reporting?; Q10: Was the study 
apparently free of other problems that could result in high risk of bias?; Q11: Was it stated that the experiment was randomized at any level?; 
Q12: Was it stated that the experiment was blinded at any level?; Q13: Was it stated that there was no conflict of interest?; 
Q14: Was the funding source of the study provided? 
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Table 3. Meta-analysis results of enrolled studies. 

 0-60ug/kg/day Pa 100-600ug/kg/day Pa 1-50mg/kg/day Pa >50mg/kg/day Pa 
Body 
weight 

        

<PND60 0.07(-0.48,0.62) <0.001 0.10(-0.61,0.81) 0.046 -0.64 
(-1.17,-0.11) 

0.56 -0.83 
(-1.85,0.20)* 

— 

PND60-
PND180 

0.04(-0.23,0.31) <0.001 0.20(-0.14,0.55) <0.001 -0.17 
(-0.36,0.02) 

0.093 -1.60 
(-2.40,-0.79) 

<0.001 

>PND180 0.31(-0.01,0.63) 0.154 1.18 
(-0.76,3.12)* 

0.007 -0.26 
(-0.69,0.16) 

0.224 — — 

Total 0.08(-0.13,0.29) <0.001 0.25(-0.05,0.26) <0.001 -0.23 
(-0.39,-0.06) 

0.099 -1.49(-2.22,-
0.75) 

<0.001 

Prostate 
weight 

        

<PND60 1.09(0.42,1.76)* — 1.43(0.73,2.12)* — — — — — 
PND60-
PND180 

0.43(0.17,0.68) <0.001 0.55(0.20,0.90) 0.003 0.33(0.16,0.51) 0.101 -4.21 
(-5.97,2.44) 

<0.001 

>PND180 0.46(0.16,0.76) 0.812 — — — — — — 
Total 0.46(0.26,0.67) 0.001 0.63(0.29,0.98) 0.001 0.33(0.16,0.51) 0.101 -4.21 

(-5.97,2.44) 
<0.001 

Testis 
weight 

        

<PND60 0.40(0.06,0.74) 0.232 0.87(-0.28,2.02) 0.024 0.26 
(-0.26,0.78)* 

0.446 -1.18(-2.25,-
0.10)* 

— 

PND60-
PND180 

0.03(-0.14,0.19) <0.001 -0.09(-0.31,0.13) 0.063 0.01 
(-0.21,0.23) 

0.06 -2.03(-2.78,-
1.27) 

<0.001 

>PND180 0.26(-0.72,1.25) 0.007 — — — — — — 
Total 0.12(-0.04,0.28) <0.001 0.02(-0.24,0.27) 0.003 0.04 

(-0.16,0.24) 
0.087 -1.92(-2.61,-

1.23) 
<0.001 

Epididymi
s weight 

        

<PND60 0.70(0.08,1.33) 0.024 -0.07(-0.59,0.73) 0.349 -0.40 
(-1.03,0.22) 

0.467 1.03 
(-0.02,2.08) 

— 

PND60-
PND180 

-0.25(-0.61,0.12) <0.001 -0.15(-0.32,0.02) 0.166 -0.13 
(-0.39,0.13) 

0.001 -2.61 
(-3.92,-1.30) 

<0.001 

>PND180 0.62(0.31,0.93) 0.402 — — — — — — 
Total -0.02(-0.33,0.28) <0.001 -0.14(-0.30,0.03) 0.214 -0.15 

(-0.40,0.09) 
0.001 -2.16 

(-3.47,-0.86) 
<0.001 

Seminal 
vesicle 
weight 

        

<PND60 2.04(0.39,3.68) <0.001 2.57(1.20,3.93)* — 0.47 
(-0.47,1.41)* 

— — — 

PND60-
PND180 

-0.13(-0.40,0.13) <0.001 -0.08(-0.37,0.21) 0.014 0.25(0.04,0.46) 0.068 -0.94 
(-2.05,0.16) 

<0.001 

>PND180 0.41(-0.11,0.94) 0.057 — — — — — — 
Total 0.11(-0.17,0.39) <0.001 0.04(-0.32,0.40) <0.001 0.26(0.05,0.46) 0.105 -0.94 

(-2.05,0.16) 
<0.001 

Sperm 
motility 

        

<PND60 0.40(-0.54,1.34) 0.208 — — — — — — 
PND60-
PND180 

-0.94(-1.23,-0.66) 0.133 -0.59(-0.85,-0.32) 0.106 -0.11 
(-0.47,0.25) 

<0.001 -0.56 
(-1.42,0.30) 

0.001 
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>PND180 — — — — — — — — 
Total -0.72(-1.08,-0.35) 0.004 -0.59 

(-0.85,-0.32) 
0.106 -0.11 

(-0.47,0.25) 
<0.001 -0.56 

(-1.42,0.30) 
0.001 

Daily 
sperm 
production 
(DSP; 
testis) 

        

<PND60 — — — — — — — — 
PND60-
PND180 

-0.38(-0.54,-0.22) 0.271 -0.29 
(-0.50,-0.08) 

0.382 -0.28 
(-0.47,-0.09) 

0.117 -1.90 
(-3.27,-0.53) 

<0.001 

>PND180 — — — — — — — — 
Total -0.38 

(-0.54,-0.22) 
0.271 -0.29 

(-0.50,-0.08) 
0.382 -0.28 

(-0.47,-0.09) 
0.117 -1.90 

(-3.27,-0.53) 
<0.001 

Efficiency 
of sperm 
production 
(testis/g) 

        

<PND60 — — — — — — — — 
PND60-
PND180 

-0.48 
(-0.64,-0.32) 

0.236 -0.43(-0.69,-0.18) 0.209 -0.49 
(-0.96,-0.02) 

<0.001 — — 

>PND180 — — — — — — — — 
Total -0.48 

(-0.64,-0.32) 
0.027 -0.45 

(-0.66,-0.23) 
0.209 -0.49 

(-0.96,-0.02) 
<0.001 — — 

Epididyma
l sperm 
count 

        

<PND60 -1.43 
(-2.38,-0.47) 

0.276 — — -2.17 
(-3.65,-0.70) 

— — — 

PND60-
PND180 

-0.45 
(-0.74,-0.17) 

<0.001 -2.48 
(-3.45,-1.51) 

<0.001 -2.47 
(-3.36,-1.57) 

<0.001 -3.42 
(-3.87,-2.97) 

0.309 

>PND180 — — — — — — — — 
Total -0.54 

(-0.83,-0.25) 
<0.001 -2.48 

(-3.45,-1.51) 
<0.001 -2.43 

(-3.27,-1.59) 
<0.001 -3.42 

(-3.87,-2.97) 
0.309 

Note: Effect sizes are expressed as the SMD with 95% CIs calculated using random-effects or fixed-effects models. Form each 
study, the dose were divided for four ascending intervals: 0-60ug/kg/day (low); 100-600ug/kg/day (medium); 1-50mg/kg/day 
(high); >50mg/kg/day (Extremely high), and the timing of data collection were divided for three subgroups: <PND60 (puberty 
and prepuberty); PND60-PND180 (adulthood); >PND180 (middle-aged and aged) to explore the effect of different doses of 
BPA exposure in early life (Gestation period to postnatal day 21) on reproductive system in different periods. Positive SMDs 
represent an increase in the outcome measure after exposure. Negative SMDs represent a decrease in the outcome measure 
after exposure. Number of studies (No. comparisons) of each analysis see Supplementary Material Excel Table 3. 
a P is a measure of heterogeneity. P>0.1; Random-effects model was used when p value for heterogeneity test <0.1; 
otherwise, fixed-effects model was used 
* This subgroup result only have one comparison, and the reliability is very poor. 

 

with seminal vesicle weight at the period of <PND60 
(SMD: 2.04; 95% Cl: 0.39, 3.68; I2 = 84.5%), same as 
the conclusion of testis weight. 
 
On the aspect of sperm parameters, the results revealed 
that the exposure of low-dose BPA exhibited a 
significantly decreased sperm motility (Total: SMD:  

-0.72; 95% Cl: -1.08, -0.35; <PND60: SMD: 0.40; 
95% Cl: -0.54, 1.34; PND60-PND180: SMD: -0.94; 
95% Cl: -1.23, -0.66) with a moderate heterogeneity 
(I2 = 61.0%). In addition, when PND60 to PND180, 
estimates for both daily sperm production (SMD: -0.38; 
95% Cl: -0.54, -0.22; I2 = 18.1%) and efficiency of 
sperm production (SMD: -0.48; 95% Cl: -0.64, -0.32; 
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I2 =21.7%) were significantly associated with low-dose 
BPA exposure. For epididymal sperm, the exposure of 
BPA at low dose may resulted in a decreased count 
(Total: SMD: -0.54; 95% Cl: -0.83, -0.25; I2 = 68.9%; 
<PND60: SMD: -1.43; 95% Cl: -2.38, -0.47; I2 = 
22.2%; PND60-PND180: SMD: -0.45; 95% Cl: -0.74,  
-0.17; I2 = 69.7%). 
 
BPA at medium dose (100-600ug/kg/day) 
 
In total, 100 independent comparisons in 18 studies 
applied medium-dose BPA intervention. As with low-
dose exposure, medium-dose BPA exposure had no 
significant effect on body weight (SMD: 0.25; 95% Cl: 
-0.05, 0.26; I2 = 75.3%), yet had sufficient effect on 
prostate weight, especially at the period of <PND60 
(Total: SMD: 0.63; 95% Cl: 0.28, 0.98; I2 = 68.7%; 
<PND60: SMD: 1.43; 95% Cl: 0.73, 2.12; PND60-
PND180: SMD: 0.55; 95% Cl: 0.20, 0.90; I2 = 66.1%). 
For testis, epididymis, and seminal vesicle weight, there 
was no significant association at any period (Testis 
weight: SMD: 0.02; 95% Cl: -0.24, 0.27; I2 = 56.1%; 
Epididymis weight: SMD: -0.14; 95% Cl: -0.30, 0.03; I2 

= 21.6%; Seminal vesicle weight: SMD: 0.04; 95% Cl:  
-0.32, 0.40; I2 = 71.4%). 
 
To be noted, at the period of PND60-PND180, BPA 
exposure at medium dose had a significant negative 
association with all the sperm parameters, which 
include sperm motility (SMD: -0.59; 95% Cl: -0.85,  
-0.32; I2 = 47.6%), daily sperm production (SMD: -0.29; 
95% Cl: -0.50, -0.08; I2 = 5.4%), efficiency of sperm 
production (SMD: -0.45; 95% Cl: -0.66, -0.23; I2 

=30.2%) and epididymal sperm count (SMD: -2.48; 
95% Cl: -3.45, -1.51; I2 = 94.0%). 
 
BPA at high dose (1-50mg/kg/day) 
 
A total of 17 studies applied high-dose BPA 
intervention in one or more experimental groups. When 
the dose increased to a high level, the negative effect of 
BPA on body weight seemed to begin to show (Total: 
SMD: -0.23; 95% Cl: -0.39, -0.06; I2 = 27.8%; 
<PND60: SMD: -0.64; 95% Cl: -1.17, -0.11; I2 = 0.0%; 
PND60-PND180: SMD: -0.17; 95% Cl: -0.36, 0.02; I2 = 
33.6%; >PND180: SMD: -0.26; 95% Cl: -0.69, 0.16; I2 

= 28.2%). The prostate weight was increased exposed to 
high-dose BPA at the period of PND60-PND180 (SMD: 
0.33; 95% Cl: 0.16, 0.51; I2 =37.4%). However, no 
significant correlation was observed between high-dose 
BPA exposure and testis weight (SMD: 0.04; 95% Cl:  
-0.16, 0.24; I2 = 33.7%) or epididymis weight (SMD:  
-0.15; 95% Cl: -0.40, 0.09; I2 = 60.1%). Nevertheless, 
high-dose BPA exposure might increase the weight of 
seminal vesicle weight (SMD: 0.26; 95% Cl: 0.04, 0.46; 
I2 = 42.8%). 

For sperm parameters, high-dose exposure could inhibit 
daily sperm production (SMD: -0.28; 95% Cl: -0.47,  
-0.09; I2 = 41.1%), efficiency of sperm production 
(SMD: -0.49; 95% Cl: -0.96, -0.02; I2 = 82.7%) and 
epididymal sperm count (SMD: -2.43; 95% Cl: -3.27,  
-1.59; I2 = 90.5%), except for sperm motility (SMD:  
-0.11; 95% Cl: -0.47, 0.25; I2 = 71.5%). 
 
BPA at extremely high dose (>50mg/kg/day) 
 
Out of 31 studies, 8 studies have applied extremely high-
dose BPA intervention in one or more experimental 
groups. The result indicated that extremely high-dose 
BPA exposure was significantly associated with 
decreased weight of body (SMD: -1.49; 95% Cl: -2.22,  
-0.75; I2 = 82.6%) and reproductive-related organ 
(Prostate weight: SMD: -4.21; 95% Cl: -5.97, -2.44; I2 = 
91.1%; Testis weight; SMD: -1.92; 95% Cl: -2.61, -1.23; 
I2 = 81.4%; Epididymis weight; SMD: -2.16; 95% Cl:  
-3.47, -0.86; I2 = 95.2%), as well as negative sperm 
parameters (Daily sperm production; SMD: -1.90; 95% 
Cl: -3.27, -0.53; I2 = 93.3%; Epididymal sperm count; 
SMD: -3.42; 95% Cl: -3.87, -2.97; I2 = 14.8%). 

 
Publication bias 
 
Funnel plot (Supplementary Figure 1) and Egger’s test 
(Supplementary Table 4) were used to assess 
publication bias. The funnel plot indicates no significant 
publication bias, which were confirmed by Egger’s test, 
respectively.  
 
Sensitivity analyses 
 
Sensitivity analysis was utilized to detect the influence 
of each study by repeating the meta-analysis while 
omitting one study each time. The result was shown in 
Supplementary Table 5, and no change in direction of 
the association was found after sensitivity analyses.  
 
Confidence ratings 
 
Owing to many items of Rob were scored with 
“unclear”, the initial high confidence for all outcome 
measures was downgraded (Table 4). By reason of 
varying point estimates, minimal or no overlap of 
confidence intervals between studies, and substantial 
heterogeneity (I2 > 75%), the confidence rating of body 
weight and seminal vesicle weight were downgraded for 
unexplained inconsistency. The confidence rating of 
testis weight, epididymis weight and epididymal sperm 
concentration were downgraded for varying point 
estimates and moderate heterogeneity (I2 > 50%), 
whereas the sperm motility was downgraded because of 
varying point estimates and minimal overlap of 
confidence intervals between studies. All the outcome 
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Table 4. Quality of the evidence of the overall effects of bisphenol A on the reproductive-related outcome measures 
using the office of health assessment and translation confidence rating methodology (NTP 2015). 

Outcome 
measure 

Body of 
evidence 
(animal 
studies) 

Factors 
for 

downgr
ading 

    
Factors 

for 
upgrading 

   
Final 

confidence 
rating 

  
Risk of 

bias 

Unexplained 
inconsistenc

y 
Indirectness Imprecision 

Publication 
bias 

Magnitude 
Dose 

response 
Residual 

confounding 
Consistency 

species 
 

Body weight 
Initial high 
confidence 

↓f ↓↓c – – –d – –e – – Low 

Prostate 
weight 

Initial high 
confidence 

↓f – – – –d – –e – – Moderate 

Testis weight 
Initial high 
confidence 

↓f ↓h – – –d – –e – – 
Low to 

Moderate 
Epididymis 
weight 

Initial high 
confidence 

↓f ↓h – – –d – –e – – Low 

Seminal 
vesicle weight 

Initial high 
confidence 

↓f ↓↓c – – –d – –e – – Low 

Sperm motility 
Initial high 
confidence 

↓f ↓g – – –d – –e – – 
Low to 

Moderate 
Daily sperm 
production 
(testis) 

Initial high 
confidence 

↓f – – – –d – –e – – Moderate 

Efficiency of 
sperm 
production 

Initial high 
confidence 

↓f – – – –d – –e – – Moderate 

Epididymal 
sperm 
concentration 

Initial high 
confidence 

↓f ↓h – – –d – –e – – 
Low to 

Moderate 

Note: –, no concern, or not present;  ↓, serious concern;  ↑, sufficient to upgrade evidence. 
a The factors “large effect magnitude” and “residual confounding” were not assessed in this study and consequently were not 
used to upgrade the evidence. 
b Serious concern because of many “unclear” scores and a change in direction of the association after sensitivity analyses. 
c Serious concern because of varying point estimates, minimal or no overlap of confidence intervals between studies, and 
substantial heterogeneity (I2 > 75%). 
d No strongly suspected publication bias observed. 
e Indications for dose–response effects either within or across studies, but the consistency of these indications was not 
considered sufficient to upgrade the confidence. 
f Serious concern because of many “unclear” scores. 
g Serious concern because of varying point estimates and minimal overlap of confidence intervals between studies. 
h Serious concern because of varying point estimates and moderate heterogeneity (I2 > 50%). 
i Serious concern because of varying point estimates. 
j No subgroup differences were estimated across species and strains. 
k Body of evidence was already downgraded for unexplained inconsistency and additional downgrading for imprecision was 
not considered appropriate (NTP 2015). 
 

measures were not upgraded for the factors of 
magnitude, dose response, residual confounding and 
consistency species.  
 
Finally, based on this stringent confidence rating, the 
evidence of prostate weight, daily sperm production 

(testis) and efficiency of sperm production were rated 
as moderate; the evidence of testis weight, sperm 
motility and epididymal sperm concentration were 
rated as low-to-moderate; the evidence of body weight, 
epididymis weight and seminal vesicle weight were 
rated as low. 
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DISCUSSION 
 
As a common-used chemical with weak estrogenic 
properties, BPA may influence the developmental 
plasticity during early life, and injury the hormone-
sensitive organs (prostate, testis, breast, ovary et al.) 
[45]. In fact, despite the endocrine interference effect, 
its prospective promotion on the carcinogenesis and 
reproductive damage is still controversial.  
 
To our knowledge, this meta-analysis is the first  
study that focuses on the effect of BPA exposure  
(low, medium, high, extremely high) on reproductive-
related outcomes in male rodents (<PND60, PND60-
PND180, >PND180). In our analysis, we found that 
different doses of BPA early-life exposure may harm 
the male rodents at different periods, especially in 
prostate weight, sperm motility, daily sperm 
production, efficiency of sperm production and 
epididymal sperm count, which has been described 
above.  
 
Our analysis on body weight showed that high (1-
50mg/kg/day) and extremely high (>50mg/kg/day) dose 
of BPA could decrease the weight of body. However, 
when the dose was reduced to the level of low (0-
60ug/kg/day) and medium (100-600ug/kg/day), this 
negative association became insignificance. Another 
meta-analysis conducted by Wassenaar et al. [46], 
estimating the effect of early-life BPA exposure on 
body weight, revealed that the dose of >50ug/kg/day 
might lead to a decreased body weight, which was not 
absolutely aligned with our result. We supposed that it 
may be related to the different BPA concentrations and 
selection bias.  
 
For the prostate, its correlation with estrogen has been 
studied in vivo, in vitro, and clinically [47, 48]. Due to 
the limited data of enrolled studies, we only analyzed 
the association between BPA and prostate weight. 
Interestingly, the result revealed that BPA could 
increase prostate weight at the dose of <50mg/kg/day, 
yet decrease at the dose of >50mg/kg/day. This trend 
of bi-phasic dose responses is consistent with previous 
findings conducted by Huang et al. [49], which 
manifested that 0.01-1 nM BPA promoted cell growth, 
but 10-1,000 nM elicited growth inhibition. This effect 
may be explained by several possible mechanisms. 
First, relatively high-dose BPA could induce cell death 
for its cytotoxic effects, and then decrease the weight 
of prostate [50]. Second, with a different affinity of 
BPA and ERα or ERβ, the combination of BPA and 
ER (ERα and ERβ) could promote cell proliferation or 
inhibition [51]. Generally, ERα is considered to 
promote the proliferation of prostatic epithelial cells, 
while ERβ has an anti-proliferative effect [52]. Third, 

evidence showed that the interaction of BPA and 
androgen receptors (AR) may produce an impact on 
the prostate [53]. 
 
From our result, the secretiveness’ of the testis, 
epididymis, and seminal vesicle to BPA seemed to be 
inferior to the prostate. But interestingly, we found that 
puberty and prepuberty male rodents (<PND60) may be 
more sensitive to low-dose BPA (0-60ug/kg/day) 
compared with other periods and other doses. While the 
specific mechanism is not clear, we speculated that it 
might be associated with the changes of hormones and 
its receptors in vivo [54].  
 
The analysis of sperm parameters showed a strong 
correlation. Early-life BPA exposure, at extremely 
high level (>50mg/kg/day), is an independent factor 
for impaired spermatogenesis and motility at any 
period of life. Despite the fact that the combined 
result of sperm motility was not significantly changed 
at the dose of higher than 1mg/kg/day, the negative 
pooled SMD (-0.11) still showed this trend. As an AR 
antagonist, BPA could block the normal binding 
activity and its interaction between AR and 
endogenous androgen, and thus impaired the normal 
spermatogenesis [55]. Concomitantly, BPA may have 
a direct adverse impact on spermatogenesis by 
targeting Sertoli cells and interrupting the meiotic 
progression of germ cells [56]. Also, some experi-
mental studies stated that BPA could inhibit the sperm 
mobility, which might be mediated by means of 
compromising mitochondrial functions (increase the 
mitochondrial ROS or reduce the high mitochondrial 
inner transmembrane potential) and decreasing ATP 
levels in spermatozoa [57, 58]. In fact, the damage to 
sperm parameters was observed in our pooled analysis 
at the dose of far below 50mg/kg/day (RfD formulated 
by FDA for rodents) and 4mg/kg/day (RfD formulated 
by EFSA for rodents), which might be considered 
insignificant in a single study. 
 
For male rodents, as expected, early-life exposure to 
doses higher than 50mg/kg/day showed a negative 
association with body weight, organ weight and sperm 
parameters. However, when we reviewed the full data 
(Table 3), we found a non-monotonic association (or 
non-monotonic dose response curves; NMDRCs) for 
body weight and organ weight. The mathematical 
definition of NMDRCs is that the slope of curve 
changes from positive to negative (or vice versa) at 
somewhere along the range of doses examined [59]. 
Actually, with traditional toxicology dogma “the dose 
makes the poison”, people always straightly believe 
that there is no or little toxicity under so-called “safe” 
dose for most endocrine-disrupting chemical (EDC) 
[60]. If there is a monotonic relationship between dose 
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and effect, the assumption that a dose below NOAEL 
(unobserved level of adverse reactions) is a “safe” dose 
seems to be reliable. Yet the NMDRCs are common in 
the BPA in vitro experiments [61], and thus we deem it 
flawed for the premise of high dose testing to 
extrapolate to low “safe” doses. 
 
Furthermore, despite we strictly followed the guidelines 
of SYRCLE (specifically designed to evaluate animal 
studies) and got robust statistical evidence through this 
study, some limitations have been identified. First, most 
studies in our analysis have an unknown Rob for many 
items receiving an “unclear” rating in the assessments 
and methodological quality. In fact, it is common for 
most rodent studies. To rectify this situation, in the 
future, scholars could use some checklists to improve 
the quality, for example, the ARRIVE guidelines et al. 
[62]. Second and unavoidingly considerable 
heterogeneity existed in our study, which was not 
effectively reduced after subgroup analysis, indicating 
that the heterogeneity may be attributed to the diversity 
of experimental design and quality. Thus, the result 
should be interpreted with caution. Third, owing to the 
limitation of data, direct evidence of damage, such as 
pathology, was not analyzed. Consequently, if more 
experiments are present in the future, the results would 
be more accurate. 
 
CONCLUSIONS 
 
In conclusion, the result of our meta-analysis suggested 
a significant negative association between early-life 
BPA exposure and reproductive-related outcomes, 
especially at the dose of >50mg/kg/day. Meanwhile, 
sperm parameters seem to be more sensitive to BPA - 
the adverse effects occurred at any dose level. Moreover, 
we found that the NMDRCs of BPA for organ weight 
and body weight, which may challenge the existing 
“safe dose” theory. Consequently, we believe that, with 
more studies focused on the effect of BPA in the future, 
the understanding of BPA toxicity will be more limpid. 
 
MATERIALS AND METHODS 
 
This meta-analysis followed the Systematic Review 
Centre for Laboratory Animal Experimentation 
(SYRCLE) [9] and PRISMA guidelines [10]. 
 
Search strategy 
 
We searched PubMed, EMBASE, and Toxline 
databases from inception until December 2019 for 
relevant studies on the effects of developmental 
exposure to BPA on the reproductive system. The 
search strategy in PubMed, EMBASE and Toxline 
database included the following domains of Medical 

Subject Heading (MeSH) terms: “bisphenol A”, 
“reproductive”, “sperm” and “rodents”. These terms 
were combined with “AND” or “OR”. Comprehensive 
search strategies were shown in Supplementary Table 1. 
Besides, the reference lists of included studies and 
related comments were manually filtered for new 
studies that may be relevant.  
 
Study screening 
 
Two authors (RX and ZT) independently reviewed the 
title and abstract of the primary selection and then 
conducted a full-text screening when necessary. The 
inclusion criteria were as follows: (1) experimental 
rodent study; (2) exposure to BPA; (3) have an 
exposure history during gestation and/or lactation; (4) 
complete and interested outcome indicators and (5) 
outcomes measured in F1 males. 
 
The exclusion criteria were as follows: (1) did not 
contain a control group; (2) non-English article; (3) not 
a rodent study; (4) no outcomes; (5) not early-life 
exposure; (6) exposure to a chemical other than BPA, 
(7) outcomes not measured in F1 generation and (8) 
disunity of administration unit (for example: ug/kg and 
ppm) 
 
Data extraction 
 
The data of bibliography (journal, year and authors), 
animal model (species, strain, and sex), BPA exposure 
(time, period, dose, and frequency), study design 
(number of animals, duration of follow-up, and timing 
of data collection), and outcome measures (body 
weight, prostate weight, ventral prostate (VP) weight, 
testis weight, epididymis weight, seminal vesicle 
weight, sperm motility, DSP, efficiency of sperm 
production, and epididymal sperm concentrations) were 
extracted from each study. Engauge Digitizer 4.1 
software (markmitch, Boston, MA, USA) was used to 
extract data from figures [11]. 
 
Risk of bias (RoB) 
 
We used SYRCLE’s RoB tool, adapted from the 
Cochrane RoB tool and adjusted for aspects of bias that 
play a specific role in animal experiments, to assess the 
risk of bias in the studies we included [12]. Following 
the instructions of SYRCLE’s RoB tool, two authors 
(RX and ZT) independently assessed the risk of bias, 
and disagreements were resolved by discussion. This 
RoB tool consists of 10 items, which could evaluate 6 
types of bias: selection, performance, reporting, 
detection, attrition and other bias [12]. Moreover, we 
further assessed the quality of the enrolled studies 
from four aspects: random, blind, conflict and fund. 
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Statistical analysis 
 
Stata 16.0 software (Stata Corporation, College Station, 
TX, USA) was used to perform analyses. All P-values 
were two-sided, and P < 0.05 was regarded as 
significant. The results of individual study were 
summarized. Considering the different scale of reported 
data and time of data collection, as well as the average 
value of vast differences, standardized mean differences 
(SMDs) was used to calculate the combined estimates. 
The estimates were calculated using fixed-effects or 
random-effects models according to the heterogeneity, 
which was reported using the Cochrane Q-test [13] and 
the inconsistency index value [14] (Higgins et al. 2003). 
Funnel plot and Egger’s test were used to judge the 
publication bias. 
 
Confidence rating 
 
The OHAT method (NTP 2015), which is based on the 
Grading of Recommendations, Assessment, Develop-
ment and Evaluation (GRADE) method [15], was used 
to rate the quality of evidence. Upon OHAT method, 
the initial evidence was divided into four grades (high 
quality, moderate quality, low quality, and very low 
quality) following rating the features of experiment 
design: a) controlled exposure; b) exposure before 
outcome development; c) outcome assessment on the 
individual level; and d) inclusion of a comparison 
group. Based on such evaluation, four factors could 
increase the confidence rating (large magnitude of 
effect, dose-response relationship, residual 
confounding, and consistency across study designs) and 
five factors could decrease the confidence rating (risk of 
bias, unexplained inconsistency for the outcomes, 
indirectness or reduced applicability in the results, 
imprecision, and publication bias). 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 
 
 

 
 

Supplementary Figure 1. Funnel plots of the analysis. Notes: (A) Funnel plot of prostate weight (0-60ug/kg/day); (B) Funnel plot of 
testis weight (0-60ug/kg/day);(C) Funnel plot of epididymis weight (0-60ug/kg/day); (D) Funnel plot of seminal vesicle weight (0-60ug/kg/day); 
(E) Funnel plot of daily sperm production (0-60ug/kg/day); (F) Funnel plot of epididymal sperm count (0-60ug/kg/day). 
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Supplementary Figure 2. Forest plots of body weight. Notes: (A) Forest plot of body weight (0-60ug/kg/day); (B), Forest plot of body 
weight (100-600ug/kg/day); (C) Forest plot of body weight (1-50mg/kg/day); (D), Forest plot of body weight (>50mg/kg/day). 
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Supplementary Figure 3. Forest plots of prostate weight. Notes: (A) Forest plot of prostate weight (0-60ug/kg/day); (B) Forest plot of 
prostate weight (100-600ug/kg/day); (C) Forest plot of prostate weight (1-50mg/kg/day); (D) Forest plot of prostate weight (>50mg/kg/day). 
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Supplementary Figure 4. Forest plots of testis weight. Notes: (A) Forest plot of testis weight (0-60ug/kg/day); (B) Forest plot of testis 
weight (100-600ug/kg/day); (C) Forest plot of testis weight (1-50mg/kg/day); (D) Forest plot of testis weight (>50mg/kg/day) 
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Supplementary Figure 5. Forest plots of epididymis weight. Notes: (A) Forest plot of epididymis weight (0-60ug/kg/day); (B) Forest 
plot of epididymis weight (100–600ug/kg/day); (C) Forest plot of epididymis weight (1-50mg/kg/day); (D) Forest plot of epididymis weight 
(>50mg/kg/day) 
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Supplementary Figure 6. Forest plots of seminal vesicle weight. Notes: (A) Forest plot of seminal vesicle weight (0-60ug/kg/day); 
(B) Forest plot of seminal vesicle weight (100–600ug/kg/day); (C) Forest plot of seminal vesicle weight (1-50mg/kg/day); (D) Forest plot of 
seminal vesicle weight (>50mg/kg/day). 
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Supplementary Figure 7. Forest plots of sperm motility. Notes: (A) Forest plot of sperm motility (0-60ug/kg/day); (B) Forest plot of 
sperm motility (100–600ug/kg/day); (C) Forest plot of sperm motility (1-50mg/kg/day); (D) Forest plot of sperm motility (>50mg/kg/day). 
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Supplementary Figure 8. Forest plots of daily sperm production. Notes: (A) Forest plot of daily sperm production (0-60ug/kg/day); 
(B) Forest plot of daily sperm production (100–600ug/kg/day); (C) Forest plot of daily sperm production (1-50mg/kg/day); (D) Forest plot of 
daily sperm production (>50mg/kg/day). 
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Supplementary Figure 9. Forest plots of efficiency of sperm production. Notes: (A) Forest plot of daily sperm production (0-
60ug/kg/day); (B) Forest plot of daily sperm production (100–600ug/kg/day); (C) Forest plot of daily sperm production (1-50mg/kg/day). 
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Supplementary Figure 10. Forest plots of epididymal sperm count. Notes: (A) Forest plot of epididymal sperm count 
(0-60ug/kg/day); (B) Forest plot of epididymal sperm count (100–600ug/kg/day); (C) Forest plot of epididymal sperm count 
(1-50mg/kg/day); (D) Forest plot of daily epididymal sperm count (>50mg/kg/day). 
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Supplementary Tables 
 
Please browse Full Text version to see the data of Supplementary Tables 1, 2, 5. 
 
Supplementary Table 1. Comprehensive search strategies for PubMed, EMBASE and Toxline database. 

 
Supplementary Table 2. Risk of Bias and methodological quality of the included studies. 

 
Supplementary Table 3. Number of studies (No. compasions) of each analysis. 

Author Ref 
  Dose  

0-60ug/kg/day 100-600ug/kg/day 1-50mg/kg/day >50mg/kg/day 
Body weight 

<PND60 6(11) 4(4) 2(3) 1(1) 
PND60-PND180 15(32) 13(15) 9(16) 4(5) 
>PND180 4(9) 1(2) 2(6) — 
Total 20(52) 14(21) 11(25) 4(6) 

Prostate weight 
<PND60 1(1) 1(1) — — 
PND60-PND180 7(15) 8(9) 5(11) 2(3) 
>PND180 2(3) — — — 
Total 9(19) 8(10) 5(11) 2(3) 

Testis weight 
<PND60 4(12) 2(3) 2(3) 1(1) 
PND60-PND180 15(33) 11(13) 6(14) 5(6) 
>PND180 2(3) — — — 
Total 16(48) 11(16) 7(17) 6(7) 

Epididymis weight 
<PND60 2(6) 2(2) 1(2) 1(1) 
PND60-PND180 12(28) 12(13) 7(14) 6(7) 
>PND180 2(4) — — — 
Total 13(38) 12(15) 7(16) 6(8) 

Seminal vesicle weight 
<PND60 2(4) — 1(1) — 
PND60-PND180 11(22) 9(10) 4(6) 3(4) 
>PND180 2(4) — — — 
Total 14(30) 9(10) 5(7) 3(4) 

Sperm motility 
<PND60 1(3) — — — 
PND60-PND180 3(8) 4(5) 5(11) 4(4) 
>PND180 — — — — 
Total 4(11) 4(5) 5(11) 4(4) 

Daily sperm production (DSP; testis) 
<PND60 — — — — 
PND60-PND180 5(11) 4(6) 3(7) 2(3) 
>PND180 1(2) — — — 
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Total 6(13) 4(6) 3(7) 2(3) 
Efficiency of sperm production (testis/g) 

<PND60 — — — — 
PND60-PND180 5(11) 4(6) 3(7) — 
>PND180 1(2) — — — 
Total 6(13) 4(6) 3(7) — 

Epididymal sperm count 
<PND60 1(3) — 1(1) — 
PND60-PND180 7(15) 7(10) 4(8) 2(3) 
>PND180 — — — — 
Total 8(18) 7(10) 5(9) 2(3) 

 

Supplementary Table 4. Egger’s regression test of each analysis. 

Author Ref 
Dose 

0-60ug/kg/day 100-600ug/kg/day 1-50mg/kg/day >50mg/kg/day 
Body weight 0.146 0.555 0.866 0.086 
Prostate weight 0.945 0.651 0.797 0.190 
Testis weight 0.177 0.144 0.922 0.928 
Epididymis weight 0.847 0.740 0.061 0.057 
Seminal vesicle weight 0.280 0.952 0.341 0.059 
Sperm motility 0.071 0.442 0.472 0.279 
Daily sperm production (DSP; testis) 0.334 0.351 0.231 0.354 
Efficiency of sperm production (testis/g) 0.812 0.053 0.526 —— 
Epididymal sperm count 0.312 0.081 0.143 0.268 
 

Supplementary Table 5. Sensitivity analyses of the included studies. 


