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CD49a+ tissue resident NK cells have been implicated in memory-like NK cell

responses, but while this population is well-characterized in mice and in humans,

they are poorly described in non-human primates (NHP) which are particularly critical

for modeling human viral infections. Others and we have shown that memory-like

NK cells are enriched in the liver and because of the importance of NHP in

modeling HIV infection, understanding the immunobiology of CD49a+ NK cells in

SIV-infected rhesus macaques is critical to explore the role of this cell type in

retroviral infections. In this study mononuclear cells isolated from livers, spleens, and

peripheral whole blood were analyzed in acutely and chronically lentivirus-infected and

experimentally-naïve Indian rhesus macaques (RM). NK cells were then identified as

CD45+CD14−CD20−CD3−NKG2A/C+ cells and characterized using multiparametric

flow-cytometry. Our data show that in RM, CD49a+ NK cells increase in the liver following

retroviral infections [median = 5.2% (naïve) vs. median = 9.48% (SIV+) or median =

16.8% (SHIV+)]. In contrast, there is little change in CD49a+ NK frequencies in whole

blood or spleens of matched animals. In agreement with human and murine data we

also observed that CD49a+ NK cells were predominantly Eomeslow T-betlow, though

these frequencies are elevated in infected animal cohorts. Functionally, our data suggests

that infection alters TNF-α, IFN-γ, and CD107a expression in stimulated CD49a+ NK

cells. Specifically, our analyses found a decrease in CD49a+ CD107a+ TNFα+ IFNγ−

NK cells, with a simultaneous increase in CD49a+ CD107a+ TNFα− IFNγ+ NK cells

and the non-responsive CD49a+ CD107a− TNFα− IFNγ− NK cell population following

infection, suggesting both pathogenic and inflammatory changes in the NK cell functional

profile. Our data also identified significant global differences in polyfunctionality between

CD49a+ NK cells in the naïve and chronic (SHIV+) cohorts. Our work provides the

first characterization of CD49a+ NK cells in tissues from RM. The significant similarities

between CD49a+ NK cells from RM and what is reported from human samples justifies

the importance of studying CD49a+ NK cells in this species to support preclinical animal

model research.
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INTRODUCTION

Natural killer (NK) cells are considered as the prototypic innate
immune effector cell capable of rapid and broad (non-specific)
responses to several agents—including viral infections and
cancerous cells. NK cells are generally thought to function
through engagement of either activating or inhibitory molecules
on the cell surface, leading to activation, or repression of NK cell
function depending on the ratio of receptor engagement (1–3).
Recently, NK cells have been identified as also having peptide-
specificity and memory-recall potential, once previously thought
to belong only to adaptive immune cells, like B cells or T cells (4–
6). Adaptive NK cells have been shown to be enriched in the livers
of mice (7) and non-human primates (NHP) (5), and recently in
human livers from BLT mice (8).

The α1β1 integrin CD49a (also VLA-1) has been shown
to be associated with liver-resident lymphocytes and is further
described as one of several markers for adaptive NK cells that
accumulate in the liver (7, 9, 10). CD49a expression on uterine
NK cells (uNK) and other tissue-resident NK cells, may also
delineate adaptive-like properties (11–13). CD49a may play a
functional role in NK cell responses in tissues by regulating
migration, or perhaps influencing proliferation in the tissues
(14). In humans it has been shown that CD49a+ NK cells are
enriched in liver cirrhosis and further that CD49a+CD25+ NK
cells have enhanced proliferative capacity ex vivo (15). Further,
ligation of CD49a has been shown to influence tyrosine kinase
signaling leading to IL-2 dependent NK cell activation (16).
CD49a has been shown to have many binding partners, but is
predominantly thought to interact with collagens (I, IV, IX, and
XVI) (17–19) and laminins (111 and 112) (20). Additionally,
CD49a has been shown to interact with Galectins 1, 3, and 8
(21, 22) and semaphorin 7A (23), which has been implicated in
cytokine-induced NK cell memory responses (24).

In contrast, CD49b+ (DX5 in mice, also α2β1) NK cells
have been characterized as more migratory, and show greater
similarity to conventional spleen NK cells in mice (11, 25),
providing a more direct comparison for tissue-resident vs.
trafficking NK cells. CD49b may also play a role in binding the
complement molecule C1q, although whether this occurs in NK
cells is still unclear (26). Recent mouse studies have shown that
CD49b is not required for NK cell effector responses in the spleen
or liver, but may play a role in the proliferation of NK cells in
response to ectromelia virus (ECTV) and mouse CMV (MCMV)
infection (27). The role of CD49b on human NK cells is not as
clear, though it likely also plays a role in NK cell migration (28).

While there have been several studies characterizing CD49a+

NK cells in mice, humanized mice, and humans, to date these
cells remain unexplored in NHP. Given the role that NHP play
for modeling several human diseases, like HIV/AIDS, ZIKA,
influenza, and tuberculosis (29–36), it is critical to characterize
this population of NK cells in relevant NHP models.

MATERIALS AND METHODS

Ethics Statement
All animals were housed at Biomere Inc. (Worcester, MA)
or the New England Primate Research Center (Southborough,

MA). All study blood samplings were reviewed and approved
by the local Institutional Animal Care and Use Committee. All
animal housing and studies were carried out in accordance with
recommendations detailed in the Guide for the Care and Use
of Laboratory Animals of the National Institutes of Health with
recommendations of the Weatherall report; “The use of non-
human primates in research.” Animals were fed standardmonkey
chow diet supplemented daily with fruit and vegetables and
water ad libitum. Social enrichment was delivered and overseen
by veterinary staff and overall animal health was monitored
daily. Animals showing significant signs of weight loss, disease,
or distress were evaluated clinically and then provided dietary
supplementation, analgesics, and/or therapeutics as necessary.
Animals were euthanized with an overdose of pentobarbital,
followed by necropsy. Liver and spleen samples were then
processed as detailed below.

Animals
Samples from sixteen necropsied Indian origin rhesus
macaques (Macaca mulatta) were analyzed in this study:
four experimentally naïve animals, seven animals that were
infected with SIVmac251/SIVmac239 for 7–14 days, and five
chronically infected with SHIVSF162P3. All experiments were
performed with approval from the local Institutional Animal
Care and Use Committee (IACUC). All animals were group
housed until the start of the study and then infected animals
were housed under BSL2 conditions.

Macaque Samples
Liver and spleen mononuclear cells were isolated using standard
isolation protocols (5). Briefly, after ex vivo excision the liver
was flushed and then liver mononuclear cells were isolated
using mechanical disruption followed by density-gradient
centrifugation layered over 60% Percoll. Splenic mononuclear
cells were isolated by mechanical disruption. Contaminating red
blood cells were lysed using an ACK lysis buffer (Gibco, Cat.
No. A1049201). Cell aliquots were immediately cryopreserved
in 90% FBS, 10% DMSO (Sigma) and stored in liquid nitrogen
vapor. Whole blood samples were collected in EDTA blood
collection tubes and following lysis of red blood cells an aliquot
was immediately used for flow cytometry analysis.

Functional Assay
Cryopreserved liver and spleen mononuclear cells were cultured
in R10 medium (RPMI + 10% FBS) only or stimulated
with phorbol myristate acetate (PMA, 2.2µg/mL, Sigma) and
Ionomycin (5µg/mL, Sigma) for 4 h in the presence of monensin
(GolgiStop) and Brefeldin A (GolgiPlug; BD Biosciences,
concentrations as recommended by manufacturer). Cells were
then processed for flow cytometry.

Flow Cytometry
All antibodies were purchased from BD Biosciences unless
specified otherwise and their clone information is in parentheses.
For the liver phenotypic panel, antibodies against the
following cell antigens were used: Eomes-FITC (WD1928,
Life Technologies), CD150-BB630 (A12), CD195-BB700 (3A9),
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SYK-BB790 (4D10), CD49a-PE (SR84), CD49b-PECF594 (AK-
7), CD49e (NKI-SAM1, Biolegend), CD336-PE Cy5 (Z231,
Beckman Coulter), CD20-PE Cy5.5 (2H7, Life Technologies), T-
bet-PE Cy7 (4B10, Life Technologies), DAP12-Alexa405 (405288,
Novus), CD69-BV510 (FN50, Biolegend), CD14-BV570 (M5E2,
Biolegend), CD337-BV605 (p30-15), CD366-BV650 (F38-2E2,
Biolegend), PD-1-BV750 (EH12.1), Zap70-BV786 (1E7.2),
CD3-BUV395 (SP34.2), CD16-BUV496 (3G8), CD8α-BUV563
(RPA-T8), CD45-BUV615 (D058-1283), HLA-DR-BUV661
(G46-6), CD56-BUV737 (NCAM16.2), CD62L-BUV805 (SK11),
CD159a-APC (Z199, Beckman Coulter), FcεRI-A700 (rabbit
polyclonal, Millipore, conjugated in-house). For the liver
functional panel antibodies against the following cell antigens
were used: CD45-FITC (D058-1283), CD49a-PE (SR84), CD49b-
PECF594 (AK-7), CD159a-PE Cy7 (Z199, Beckman Coulter),
CD3-BV450 (SP34.2), TNF-α-BV650 (MAb11), IFN-γ-BV711
(B27), CD107a-BV786 (H4A3), CD20-BUV395 (L27), CD16-
BUV496 (3G8), CD56-BUV563 (NCAM16.2), CD14-BUV737
(MϕP9), HLA-DR-Alexa700 (G46-6), CD8α-APC Cy7 (SK1).
Flow cytometry data was acquired on a BD LSRII or BD
FACSymphony A5 (BD Biosciences, La Jolla, CA) and analyzed
with FlowJo software (version 10.2, Tree Star, Ashland, OR).

For the spleen phenotypic panel, antibodies against the
following cell antigens were used: Eomes-FITC, CD49a-PE,
CD49b-PECF594, CD336-PERCP Cy5.5, CD3-V450, CD56-
BV570, CD337-BV605, CD366-BV-650, CD14-BV711, CD45-
BV786, CD20-BUV395, CD16-BUV496, CD159a-APC, HLA-
DR-A700, and CD8α-APC Cy7. For the spleen functional assay,
the antibodies used were against the following antigens: MIP-
1β-FITC, CD49a-PE, Granzyme B-ECD, CD107a-PERCP Cy5.5,
IFNγ-PE Cy7, CD3-V450, CD56-BV570, CD14-BV711, CD45-
BV786, CD20-BUV395, CD16-BUV496, CD159a-APC, TNF-α-
A700, and CD8α-APC Cy7. All antibody clones were consistent
between spleen and liver samples. The spleen flow cytometry
data was acquired on an LSRII (BD Biosciences, La Jolla, CA)
and analyzed with FlowJo software (version 10.2, Tree Star,
Ashland, OR).

Statistical Analyses
Statistical and graphing analyses were performed with GraphPad
Prism 8.0 software (GraphPad Software, La Jolla, CA). Non-
parametric Mann-WhitneyU-orWilcoxon tests were used where
indicated, and a p-value of p < 0.05 was considered to be
statistically significant. Permutation analyses were carried out in
SPICE (37) in order to compare the polyfunctional data plots.

RESULTS

Frequencies of CD49a+ NK Cells Are
Elevated Following Retroviral Infection
Liver NK cells from naïve, acute SIV-infected or
chronically SHIV-infected rhesus macaques were
identified using the following previously defined criteria:
CD45+CD14−CD20−CD3−NKG2AC+ (38, 39). This co-
expression analysis of NKG2A and NKG2C (CD159a and
CD159c) identifies the majority of NK cells in rhesus
macaque blood and tissues. These NK cells were then

further characterized by the expression of CD49a and CD49b
(Figure 1A). Quantification of CD49a±b± NK cells revealed
that the majority of NK cells in the liver did not express
CD49a or CD49b, but interestingly there was a significant
increase in the frequencies of CD49a+b− NK cells from
acute SIV+ (median = 9.48%) or chronic SHIV+ (median
= 16.8%) infected animals as compared to the naïve group
(median = 5.2%; Figure 1B). Statistical comparisons between
acute and chronic infection groups are not shown for most
analyses given the different challenge viruses. For a subgroup
of SIV+ animals we had the opportunity to longitudinally
monitor expression of CD49a and CD49b in the blood, and
though we observed minor animal-to-animal variability we
did not observe any significant changes in the frequencies
of CD49a+ or CD49b+ NK cells over either 7 or 14 days
following challenge with SIV (Supplementary Figure 1).
We also assessed frequencies of CD49a and CD49b in the
spleen and observed a reduction in CD49a+ NK cells in
the chronic (SHIV+) cohort relative to naïve, albeit not
statistically significant (Supplementary Figure 2). Liver
resident NK cells also do not generally express CD49e, as
this integrin is an indicator of cells in circulation (40). For
this reason we also assessed CD49e on NK cells from the
naïve and acute (SIV+) cohorts and found that, as expected,
CD49a+ and CD49e+ NK cells were generally mutually
exclusive (Supplementary Figure 3). Further, we observed
that the frequency of CD49a−e+ NK cells showed a small
but non-significant (p > 0.05) increase in livers of the
acute (SIV+) infection cohort relative to the naïve group
(Supplementary Figure 3).

Liver Resident CD49a+ NK Cells Are
Phenotypically Distinct
Multiparametric flow cytometry analysis revealed several
phenotypic changes following infection in CD49a+ NK cells
from livers (Figure 2A) and spleens (Figure 2B). Interestingly,
in livers we saw significant changes in several proteins, including
altered frequencies Eomes, FcεRI, Syk, CD62L, and PD-1
NK cells in the infected groups relative to naïve (Figure 2A,
Supplementary Data Sheet 1A). In the retrovirus-infected
cohorts we also observed several changes (at or approaching
p ≤ 0.05) between CD49a+ and CD49a− NK cells, including
CD16, CD56, CD62L, CD69, CD150, CD336 (NKp44), CD366
(Tim-3), Eomes, NKG2AChigh, and NKG2AClow and T-bet
(Figure 2A, Supplementary Data Sheet 1A). Though the cell
frequencies are low it is interesting to note elevated levels of
CD336 (NKp44) on CD49a+ NK cells relative to CD49a− NK
in the infected cohorts as NKp44+ NK cells are potent antiviral
effectors (41). It is well-established that the currently available
antibodies to detect NKG2A cross react with NKG2C in NHP
(42) and thus the convention is to term the cell population
identified by the anti-NKG2A antibody as NKG2AC+. As a
result, we have developed an RNA flow-based approach to
discriminate between NKG2A and NKG2C (39, 43). However,
some observations suggest that the NKG2AChigh population
corresponds to a population that predominantly expresses
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FIGURE 1 | CD49a+ NK frequencies vary in in Liver following infection. (A), Representative, gating strategy showing the identification of CD49a±CD49b± NK cells.

(B) Quantification of frequencies of CD49a±CD49b± cells in livers of naïve (n = 4), acute SIV+ (n = 7), or chronic SHIV+ (n = 5) animals. Mann-Whitney U-test was

used to determine statistical significance, *p < 0.05.

FIGURE 2 | CD49a+ NK cells exhibit tissue-specific phenotype. (A) Phenotypic characterization of Liver CD49a± NK cells from naïve macaques (n = 4) or macaques

acutely infected with SIV (n = 6) or chronically infected with SHIV (n = 5). (B) Phenotypic characterization of Spleen CD49a± NK cells from naïve macaques (n = 4) or

macaques acutely infected with SIV (n = 2) or chronically infected with SHIV (n = 7). Mann-Whitney U-test or Wilcoxon test was used as indicated in Supplementary

Data Sheets 1A,B to determine statistical significance.

NKG2A (relative to NKG2C), whereas the NKG2AClow

population corresponds predominantly NKG2C expressing cells
(39)—shown in Supplementary Figure 4 where gene expression
of KLRC1 (NKG2A) is elevated in the NKG2AC high population,
whereas gene expression of KLRC2 (NKG2C) is elevated in the

NKG2AC low population in peripheral blood mononuclear
cells from both experimentally naïve animals (CMV+) and an
acute SIV+ cohort (39). These observations thus suggest that in
the livers of the chronic (SHIV+) group there is an elevation
of NKG2A+ CD49a+ NK cells. Figures 2A,B also illustrate
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FIGURE 3 | bh-SNE reveals infection-specific expression profiles in Liver CD49a+ NK cells. (A) bh-SNE representations illustrating the distribution of various

phenotypic markers on CD49a+ NK cells from naïve (enclosed by black boundaries), chronic SHIV+ (enclosed by blue boundaries), or acute SIV+ samples (remaining

unbound orange space). (B) Normalized expression of various phenotypic markers are superimposed on (A) showing distribution of: (1) CD8α, (2) CD159AC

(NKG2AC), (3) CD49b, (4) Eomes, (5) T-bet, (6) PD-1, (7) FcεRI/FcRγ, (8) CD16, (9) CD337 (NKp30), (10) CD336 (NKp44), (11) CD150, (12) Dap12, (13) CD62L, (14)

CD69, (15) CD195, (16) CD366 (Tim-3), (17) HLA-DR, and (18) Zap70. (C) UMAP clustering reveals relationships between liver and spleen CD49a+ NK cells.

several differences between liver and spleen CD49a+ NK cells:
elevated CD56 in liver CD49a+NK cells from the acute (SIV+)
cohort relative to spleen, as well as elevated CD8α and HLA-DR
in spleen CD49a+ and CD49b+ NK cells following infection
relative to the liver. There were several significant changes
in the CD49a+ vs. CD49a− NK populations and these are
highlighted in Supplementary Data Sheet 1B. We also utilized
UMAP in order to assess the multiparametric relatedness of the
various CD49a+ NK cell populations between liver and spleen,
and in the naïve, acute (SIV+) and chronic (SHIV+) cohorts
(Figure 3C). We observed that while the populations clustered
into distinct groups, the spleen and liver samples appeared to
generally localize according to infection status. Using bh-SNE
we also observed the clearest overall phenotypic differences
between naïve and chronic (SHIV+) samples as opposed to
naïve and acute (SIV+) animals shown by the distinct clustering
in the chronic (SHIV+) relative to naïve samples (Figure 3).

Interestingly, there was a consolidation/reduction of distinct
CD49a+ NK populations from the naïve samples (outlined
in black) to a smaller number of clusters in both the acute
(SIV+) and chronic (SHIV+) infected cohorts (outlined in
orange and blue, respectively, Figure 3A). By overlaying the
normalized expression of several phenotypic markers, we were
able to see their relative expression on the naïve and infection
cohorts (Figure 3B). There were several phenotypic markers

that seemed to drive the overall differential clustering, including
CD8α, CD16, CD56, NKG2A, CD366, CD337, CD336, T-bet,
and Eomes.

Liver CD49a+ NK Cells Display Preferential
IFNγ Production During Infection
Following stimulation of liver mononuclear cells, CD49a+ NK
cells upregulated CD107a and production of TNFα and IFNγ

(Figure 4). Interestingly, relative to the naïve cohort, cells from
the chronic SHIV+ cohort produced reduced levels of TNFα
(p = 0.016; Figure 4A). TNFα levels were also reduced in the
acute SIV+ cohort relative to naïve (p= 0.067). While all groups
showed elevated frequencies of IFNγ in CD49a+ relative to
CD49a− NK cells, the differences were most robust in retrovirus-
infected cohorts. We also assessed functional properties of
spleen CD49a+ NK cells in naïve, acute (SIV+) and chronic
(SHIV+) and observed significant elevation of IFNγ, Granzyme
B (GZB), and MIP1β in CD49a+ vs. CD49a− NK cells in the
chronic infection cohort (Supplementary Figure 5). Analysis of
polyfunctionality in liver samples revealed a significant loss of
CD49a+ CD107a+ IFNγ− TNFα+ NK cells following retroviral
infection, whereas there was a significant increase in the CD49a+

CD107a+ IFNγ+ TNFα− only in the acute SIV+ cohort
(Figures 4B,C). Further, we observed an increase in the CD49a+

CD107a− TNFα− IFNγ− population in the chronic infection
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FIGURE 4 | CD49a+ NK cells exhibit enhanced IFNγ during infection. (A) Bar graphs showing quantification of IFNγ , TNFα, and CD107a expression following 4 h

stimulation with PMA and ionomycin in liver CD49a± NK cells from naïve macaques (n = 4) or macaques acutely infected with SIV (n = 6) or chronically infected with

SHIV (n = 5). (B) Pie charts illustrating the proportion of NK cells that exhibit polyfunctional characteristics following 4 h stimulation with PMA and ionomycin. (C)

Heatmap showing comparison of polyfunctional phenotype across the infection groups. The scale shows population frequencies of NK cells. Mann-Whitney U-test or

Wilcoxon test was used to determine statistical significance.

group relative to naïve animals. In order to compare the various
polyfunctional populations we also carried out a permutation test
with 1,000,000 permutations. This analysis revealed significant
differences between naïve and chronic (SHIV+) CD49a+ NK
cells (p= 0.0492, Supplementary Data Sheet 1C).

DISCUSSION

CD49a+ NK cells are still poorly characterized in any tissue
from NHP. Given their association with liver-residence and
that liver-resident CD49a+ NK cells have been thought to
play a role in the adaptive NK cell response (5, 7, 9, 10),
understanding CD49a+ NK cells may provide a potential novel
avenue for vaccine or immunotherapy design. It is therefore
crucial to evaluate the impact of HIV and SIV infections
on this population. In human livers CD49a+ NK cells have
been shown to also express high levels of NKG2C (10). Here

we also show elevation of NKG2AChigh CD49a+ NK cells
following chronic infection (with SHIV). This suggests that the

resulting NK cells may possess greater inhibitory properties,
since NKG2A is an inhibitory molecule and has been suggested

to play a role in diminution of the NK response in the liver
of humanized mice (44). This may provide an opportunity for
NKG2A blockade therapy in order to restore NK cell function
(44, 45). The concurrent observation of increased frequencies of
the putatively non-functional CD49a+CD107a−TNFα−IFNγ−

NK cell following retroviral infection may suggest a diminished
NK cell response following retroviral infection that may be
different from what is seen in human livers, albeit in the
context of cancer (10). While the expansion of the polyfunctional
CD49a+CD107a+IFNγ+TNFα− population was not necessarily
surprising, given the role of IFNγ in antiviral responses, it was
surprising to see a loss of the CD49a+ CD107a+ IFNγ− TNFα+

population in CD49a+ NK cells from the acute (SIV+) cohort
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and both CD49a+ and CD49a− NK cells in the chronic (SHIV+)
cohort. It is unclear why the frequency of CD107a+ IFNγ−

TNFα+ polyfunctional NK cells were unchanged in the CD49a−

NK cells from acute (SIV+) cohort as compared to the naïve
cohort.Whether or not acute or chronic infection result in altered
responses requires further investigation as this study was not
designed to specifically resolve this possibility.

Our phenotypic characterization has also highlighted several
populations of interest, including CD49a+ NK cells expressing
CD56 or CD150 (SLAM) during acute or chronic retrovirus
infections. While the expression of certain proteins like Eomes
and T-bet appear low in our naïve samples, overall the ranges fall
within observed values from our work and from others as well
(5, 8, 46). We also see several differences in CD49a+ NK cells
between the liver and the spleen, particularly in their differential
expression of HLA-DR following retroviral infection. The role of
HLA-DR on NK cells is still unclear. HLA-DR expression has
been posited as a marker of NK cell activation but it has also
been shown to play a role in immune modulation (47), though
it has also been suggested that while HLA-DR+ NK cells are less
phenotypically mature they still display high functional activity
(48). While we did not see a statistically significant increase in
frequencies of CD49a−e+ NK cells in the livers of acute SIV-
infected macaques relative to naïve animals, the small increasing
trendmay be interesting to explore in further studies with a larger
animal cohort. Regardless, our multiparametric phenotypic and
functional characterization of CD49a+ NK cells provides the first
investigation of CD49a+ NK cells in livers of both naïve and
infected RM cohorts. Understanding how CD49a+NK cells are
modulated in the liver following infection may provide clues to
howwe can best engage this liver-resident NK cell population and
possibly improve responses to SIV/HIV infections.
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Supplementary Figure 1 | Frequencies of peripheral blood CD49a+ NK cells are

unchanged during acute SIV infection. (A) Frequencies of NK cells in whole blood

of acute-SIV infected animals. Frequencies of (B) CD49a+ or (C) CD49b+ NK

cells in the whole blood following acute SIV infection.

Supplementary Figure 2 | Frequencies of CD49a±b± in spleens. Quantification

of frequencies of CD49a±CD49b± cells in spleens of naïve (n = 4), acute SIV+

(n = 2), or chronic SHIV+ (n = 7) animals. Mann-Whitney U-test was used to

determine statistical significance, ∗p ≤ 0.05.

Supplementary Figure 3 | Frequencies of CD49a±e± NK cells in livers. (A)

Representative flow plot showing identification of CD49a±e± NK cells from liver

samples. (B) Quantification of CD49a±e± NK cell populations from livers of naïve

(n = 3) and acute SIV+ (n = 3) animals.

Supplementary Figure 4 | NKG2AChigh and NKG2AClow populations exhibit

unique KLRC1 and KLRC2 gene expression patterns. (A) Gating strategy showing

identification of gene expression of KLRC1 and KLRC2 in NKG2AC high and

NKG2AC low populations. (B) Quantification of KLRC1+KLRC2+ (K1+K2+) and

KLRC1−KLRC2+ (K1–K2+) populations in NKG2AChigh (H) or NKG2AClow (L) NK

cells from CMV+ and SIV-infected animals as per (39). Mann-Whitney U-test was

used to determine statistical significance, ∗p < 0.05, ∗∗p < 0.01.

Supplementary Figure 5 | Functional characterization of spleen CD49a+ NK

cells. (A) Bar graphs showing quantification of CD107a, TNFα, and IFNγ

expression in spleen CD49a± NK cells from naïve macaques (n = 2) or macaques

acutely infected with SIV (n = 2) or chronically infected with SHIV (n = 5).

Wilcoxon test was used to determine statistical significance, ∗p < 0.05.

Supplementary Data Sheet 1 | Statistics tables. p-value tables showing

comparisons in (A) liver and (B) spleen phenotype data (from Figure 2) as well as

(C) permutation testing of polyfunctional populations (from Figure 4B). For (A,B)

Wilcox test was used when comparing CD49a+ and CD49a−from the same

infection group whereas Mann-Whitney U-test was used when comparing across

infection cohorts. p ≤ 0.05 is shown by bold font. 1,000,000 iterations were used

in order to carry out the permutation test in (C). p ≤ 0.05 is shown in cells

highlighted in pink as generated by SPICE (37). Statistical comparisons between

acute and chronic infection groups are not shown for these analyses given the

different challenge viruses.
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