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Abstract: Otolaryngology (also known as ear, nose, and throat (ENT)) diseases can be significantly
affected by the level of sex hormones, which indicates that sex differences affect the manifestation,
pathophysiology, and outcomes of these diseases. Recently, increasing evidence has suggested that
proinflammatory responses in ENT diseases are linked to the level of sex hormones. The sex hormone
receptors are present on a wide variety of immune cells; therefore, it is evident that they play crucial
roles in regulating the immune system and hence affect the disease progression of ENT diseases.
In this review, we focus on how sex hormones, particularly estrogens, regulate ENT diseases, such as
chronic rhinosinusitis, vocal fold polyps, thyroid cancer, Sjögren’s syndrome, and head and neck
cancers, from the perspectives of inflammatory responses and specialized proresolving mediator-
driven resolution. This paper aims to clarify why considering sex differences in the field of basic and
medical research on otolaryngology is a key component to successful therapy for both males and
females in the future.

Keywords: sex hormone; ENT diseases; estrogens; resolution of inflammation; resolvins; specialized
lipid mediators; sex difference; otolaryngology; lipoxins; formyl peptide receptor 2

1. Introduction

Ear, nose, and throat (ENT) diseases are referred to as diseases of the ear, nose, and
throat, as well as those related to the head and neck structures. Examples include chronic
rhinosinusitis (CRS), vocal fold polyps, hearing loss, smell and taste disorders, Sjögren’s
syndrome (SS), and head and neck cancers (HNCs) [1–9]. ENT diseases significantly
affect the everyday life of those afflicted, because they affect their ability to hear, smell,
or speak properly. However, most ENT diseases are often overlooked because the patients
are also found to be suffering from other comorbid conditions, such as autoimmune
diseases, cardiovascular diseases, diabetes, and dementia [10–17]. These comorbidities
show significant differences between males and females, implicating that sex plays an
important role in the progression of ENT diseases.

Sex differences include differences in sex hormones and their effects on organ sys-
tems. In fact, sex hormones can positively or negatively affect the immune system [18–23].
Males predominantly produce testosterone from the testes, whereas small amounts of
estrogens and progesterone are produced by other organs, such as the adrenal glands and
peripheral tissues. In contrast, females predominantly produce estrogens and progesterone
from the ovaries, whereas little testosterone is produced from the adrenal glands [23,24].
Testosterone plays important roles in regulating immune cells, such as T-helper 1 (Th1) and
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natural killer cells [25]. Estrogens induce T-cell homing through up-regulation of the C-C
chemokine receptor type 5 expression [26]. These findings indicate that sex hormones influ-
ence the immune system and result in some immune responses being sexually dimorphic,
which eventually determines the fate of the disease progression [19,20,22,23].

Most ENT diseases are associated with chronic inflammatory conditions in which the
endogenous mechanism to restore tissue homeostasis is altered. Therefore, an appropriate
approach to prevent or ameliorate ENT disease progression should involve the activation
of the resolution pathway of the inflammatory process. The resolution of inflammation is a
highly controlled and coordinated process that is mediated by specialized pro-resolving
mediators (SPMs), such as resolvins and lipoxins [27,28]. SPMs are biosynthesized from
ω-3 orω-6 by 5-lipoxygenase [29,30]. These SPMs modulate immune activities, such as the
infiltration of immune cells, removal of apoptotic cell debris, and inhibition of the synthesis
of proinflammatory cytokines [29,30]. Recently, several studies have demonstrated the crit-
ical connection between sex hormones and specialized pro-resolving mediators, implying a
significant difference between sexes in terms of disease progression and outcome [31–33].
For example, some studies demonstrated that SPMs, such as resolvins and lipoxins, can re-
solve uncontrolled inflammation and maintain tissue homeostasis in ENT diseases [34–37].
As the ENTs are chronic inflammatory diseases and their rate of occurrence and severity dif-
fers between sexes, in this review, we present the current understanding of sex differences
in the relationship between the SPM-dependent resolution of inflammation and outcomes
of ENT diseases. Despite the growing significance of the effect of sex hormones on the
immune system in ENT disease progression, it has rarely been characterized.

Studies that investigate the effect of sex hormones, such as testosterone or proges-
terone, on the immune system are more limited compared to those that examine the effects
of estrogens. Therefore, this paper summarizes the sex differences, relating mostly to
estrogens, in ENT diseases. We also summarize the recent advances made in clarifying the
effect of estrogens in some ENT diseases from the perspectives of inflammatory responses
and specialized pro-resolving mediator-driven resolution (Table 1), and discuss the un-
derlying immunological mechanisms that can regulate the progression and outcome of
these diseases.
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Table 1. Sex difference in ENT diseases from the perspectives of inflammatory responses and specialized proresolving mediator-driven resolution.

ENT Diseases Sex Bias Level of
Estrogens

Sex Hormone
Receptors

Cells Involved in
the Pathogenesis

Cytokines Involved
in the Pathogenesis

Involvement of Resolution
of Inflammation Factors References

Chronic
rhinosinusitis with

nasal polyps

1. Male
2. Female with lower

estrogens
Low estrogens High ERα

1. Th2, eosinophile
2. Epithelial cells
3. Macrophages

IL-4, IL-5, IL-13,
IL-25, IL-33

1. Intake of omega-3 fatty acid
show delaying incidence

of recurrence
2. Alteration of RvD2, LXA4,

RvD1, LTD4, LTE4, PGD2, and
11β PGF2α profile [38–71]

Chronic
rhinosinusitis

without
nasal polyps

Female N/A N/A
1. Th1 cells

2. Neutrophil
3. DC

IFN, IL-6, IL-8, IL-17,
TGFβ

1. Alteration of PGD2 and
2. TXA2 profile

Age-related
hearing loss

1. Male
2. Females with

Turner’s syndrome
Low estrogens ERα/ERβ

1. Cochlear
Macrophages

2. Cochlear hair cells
3. Hensen cells

TNF-α, IL-1β, IL-6,
IL-8 ANXA1 [72–104]

Sjögren’s syndrome Female
Low estrogens

(during
menopause)

High ERβ
1. Lymphocytes (T

and B cells)
2. Th17 cells

TNF-α, IL-1β, IL-6,
IL-17, IFNγ RvD1 [105–155]

Head and
Neck Cancers Male Low estrogens High ERα/ERβ/AR 1. Macrophages

2. Stromal cells

TNF-α, IL-6, CXCL10,
COX-2, IL-1a, IL-1b,
IL-4, IL-8, and TGFb

1.LXA4
2. Resolvins (RvD2, RvD4

and RvD5)
[156–197]
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2. Sex Differences and the Influence of Sex Hormones in ENT Diseases: Sex Hormone
Regulation of Inflammatory Responses and Their Resolution
2.1. Chronic Rhinosinusitis
2.1.1. Effect of Sex Hormones on Inflammatory Response in Chronic Rhinosinusitis

CRS is a significant health burden; its global prevalence in the general population is
estimated at 1.0–12.1% [198,199]. CRS is a chronic inflammatory disease of the nasal and
sinus mucosa, and can be classified into CRS with nasal polyps (CRSwNP) and CRS without
nasal polyps (CRSsNP) [4,200]. Increasing reports have suggested that the pathogenesis of
these two groups is linked to sex differences. According to these studies, CRSwNP occurs
more frequently in males than females, whereas CRSsNP occurs more frequently in females
than males. Although men have a higher prevalence of CRSwNP, females are more likely
to develop severe symptoms than males [200–204].

The mechanism behind these sex differences observed in CRSwNP is yet to be deter-
mined, but the findings presented below provide significant implications for understanding
this mechanism. Estrogen receptors (ERα and ERβ) are expressed on immune cells and
play significant roles in inflammatory responses [38–40]. For example, the activation of the
estrogen signaling pathway in ERα-expressing eosinophils leads to the degranulation of
eosinophils, which causes the release of various proinflammatory factors [41,42]. There-
fore, the degranulation of eosinophils is considered a key pathogenic event in chronic
eosinophilic diseases, including eosinophilic CRS. Note that the estrogen levels fluctuate
during the female menstrual cycle, and this affects the number of eosinophils present in the
nasal mucosa [41,43,202]. Consistent with the proinflammatory role of estrogens, the reduc-
tion of eosinophilic inflammation through tamoxifen, an estrogen antagonist, was observed
in an animal asthma model [44,45]. Similarly, as high levels of estrogens were found in
patients with allergic rhinitis, tamoxifen could inhibit the development of allergic reactions
in the nasal cavity in a mouse study through competition with estrogens binding to the
ERs [46,47]. However, regarding nasal polyps, due to the lack of relevant animal model
systems, it remains unclear whether tamoxifen can reduce eosinophilic inflammation.

In clinical studies, the apoptosis of eosinophils is tightly regulated by estrogen dur-
ing the female menstrual cycle. Therefore, the number of eosinophils remains constant
during the menstrual cycle. In contrast, the level of estrogens significantly decreases after
menopause, leading to increased numbers of eosinophils in nasal polyp samples compared
to healthy donors [48–50]. Interestingly, these studies also suggest that ERα is also highly
expressed on the surface of eosinophils [49,50], although the level of estrogens significantly
decreases after menopause in patients with nasal polyps. These studies imply that estrogen
therapy is useful for post-menopausal women, as the binding of estrogen to ERα was
reported to play an important role in regulating the functions of eosinophils, including
their mobilization and apoptosis [51]. In summary, inflammation contributes to CRSwNP;
thus, a possible explanation for why females are more likely to develop severe CRSwNP
symptoms than males involves enhanced inflammatory reactions driven by the levels of
sex hormones, such as estrogens.

CRSwNP is also recognized as Th2-dependent eosinophilic nasal inflammation,
whereas CRSsNP is known as non-eosinophilic nasal inflammation [25,52,53,200]. Es-
trogens are known to exert significant control on humoral immunity and increase the
amount of inflammatory infiltration of eosinophils in the nasal mucosa through stimulation
of Th2 cytokine production [25,52,53,200]. Females have higher levels of estrogen, which
skews the immune response toward Th2, whereas males have higher levels of andro-
gen (AR), such as testosterone, which skews the immune response toward Th1 [52,54,55].
In addition, AR signaling can increase the ratio of lung regulatory T cells (Tregs) to Th2
cells and reduce eosinophil infiltration and Th2 cytokine production in allergic airway
inflammation [56,57]. Therefore, it is evident that females with CRSwNP are more likely
to develop severe symptoms than males. Given that female and male hormones usually
act in opposing manners, hormone-dependent mechanisms affect the regulation of the
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immune response under both normal and pathological conditions, leading to different
disease outcomes between females and males.

2.1.2. Effect of Sex Hormones on Resolution of Inflammatory Response in
Chronic Rhinosinusitis

Regarding the resolution of the inflammatory response, CRSwNP is defined as an
uncontrolled inflammatory disease with nose dysfunction for more than 12 weeks without
any sign of resolution [4]. The persistent inflammation of the sinus epithelium, often linked
to the accumulation of immune cells (i.e., eosinophils) with inflammatory signals, is intensi-
fied into a route in which the natural healing process is misoriented, eventually leading to
the destruction of the nasal epithelium [53,198]. Although the underlying role of estrogens
in regulating the resolution of uncontrolled inflammation in CRSwNP remains largely
unknown, ER polymorphism has been implicated in female airway hypersensitivity and
asthma through regulation of the activities of eosinophils, and the regulatory machinery
might also play a role in resolving CRSwNP [58,59]. To resolve uncontrolled inflamma-
tory responses, a natural preresolving mechanism that is critical in maintaining tissue
homeostasis is apparently altered in CRSwNP under the influence of estrogens [60,61].
For example, a specialized proresolving lipid mediator, lipoxin A4 (LXA4), is critical for
reducing innate immune cell trafficking, facilitating the resolution of acute inflammatory re-
sponses. LXA4 is an arachidonic acid (AA) metabolite generated from 12/15-lipoxygenase
(12/15-LO) enzymes, which exhibit anti-inflammatory effects [62,63]. LXA4 has recently
received considerable attention because of its ability to reduce inflammatory conditions
and its multifaceted regulation of certain experimental disease models [36,63–65].

For instance, a previous study showed that epithelial cells and peripheral blood de-
rived from aspirin-sensitive patients (higher incidence in females with CRSwNP) had
significantly lower levels of LXA4 than aspirin-tolerant patients [66]. Hence, the resolu-
tion of inflammation machinery can be altered by the lower levels of LXA4, and thus,
chronic inflammation is common in female aspirin-sensitive patients who also have CR-
SwNP. Considering the hormonal factors in this female-biased disease, these findings
further indicate that hormonal status plays a role in regulating the resolution of inflamma-
tory responses, which, if altered, can worsen the disease outcome for these patients.

Recently, many more findings on specialized proresolving mediators (SPMs) in CR-
SwNP and CRSsNP have been reported [36,37,61,67]. SPMs such as resolvin D2 (RvD2),
derived from omega-3 fatty acid, are elevated in both CRSwNP and CRSsNP as compared
to non-CRS controls [61]. In addition, LXA4 was found to be significantly increased in
CRSwNP compared to CRSsNP. This study also found that an alteration of SPM pathways
(e.g., RvD2, LXA4, RvD1, LTD4, LTE4, PGD2, and 11β PGF2α) was linked to CRSwNP and
that an aberrant signaling of SPMs can contribute to persistent inflammation and bacterial
colonization in CRS [61]. The cause of such phenomena is unknown, but we speculate that
estrogens play a fundamental role. Our speculation is based on the evidence that severe
symptoms occur predominantly in females, even though men have a higher prevalence of
CRSwNP [68,69]. In addition, the dynamic expression of estrogens regulates SPM activity
during a proper menstrual cycle, embryo implantation, pregnancy, and delivery [70,71].
Therefore, estrogens can negatively regulate SPM expression, leading to the development
of severe CRSwNP in women.

2.2. Age-Related Hearing Loss
2.2.1. Effect of Sex Hormones on Inflammatory Response in Age-Related Hearing Loss

The World Health Organization (WHO) estimates that approximately 466 million
people worldwide have disabling hearing loss and that this number will increase to
900 million by 2025 [205]. Untreated hearing loss can significantly affect a patient’s daily
life. For instance, hearing loss in children includes impaired or delayed language and
speech development, worsened educational performance, and impaired cognitive devel-
opment [72,206]. In older adults, hearing loss has been independently associated with
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dementia, cognitive impairment, major depressive disorder, social isolation, and increased
risks of hospitalization, falls, and mortality [72,206]. Hearing loss is more than just an
obstacle to communication, and its negative effects permeate and influence all aspects of
the lives of those afflicted. According to the Centers for Disease Control and Prevention in
the United States, “Those who have hearing loss are more likely to have low employment
rates, lower worker productivity, and high healthcare costs”, indicating a significant burden
of hearing loss on the healthcare system [73,74].

A growing body of evidence has suggested that sex hormones are linked to the
differences in hearing loss between aging men and women [72,75,76]. The Baltimore
Longitudinal Study on Aging showed that tested frequencies declined more frequently in
women than in men, particularly in higher frequency regions [77]. Similar to the Baltimore
aging study [77,78], another cross-sectional study also found a significant association
between serum estradiol levels and hearing thresholds (as measured ranging from 0.5
to 8 kHz) in post-menopausal women and concluded that lower levels of estrogen are
associated with decreased hearing sensitivity [79]. Although women tend to suffer from age-
related hearing loss (ARHL), several studies have suggested that men are exposed to more
damaging noise over a lifetime, which may exacerbate ARHL [72,80]. The contributing
factors to ARHL in men include differences in working environments and hobbies between
the sexes, and these are less likely to be dependent on changes in sex hormonal status in
men than in women.

Both clinical and nonclinical studies have suggested that estrogens play a role in
protection against ARHL [75,76,81]. ERα and ERβ are expressed in the auditory brainstem
and can be regulated by estrogens to respond differently between post-menopausal women
and control subjects [76,82]. For instance, low estrogen levels during menopause are
positively associated with hearing loss [81]. In contrast, a clinical study proved that
post-menopausal women receiving estrogen therapy showed protective effects against
ARHL [75,81,83]. The function of estrogens in hearing protection can also be found in
Turner’s syndrome [84,85]. Females with Turner’s syndrome do not produce estrogens,
and some young patients often exhibit otitis media and progressive sensorineural hearing
loss. In males, the prevalence and severity of ARHL is more pronounced in the absence
of confounding factors, such as noise exposure [72]. In addition, males are subjected
to weaker otoacoustic emissions due to the high level of androgen hormones produced
in-utero during their sexual development [86,87].

The abovementioned studies clearly indicate the existence of sex differences in ARHL.
Estrogens are primary hormones in females; unlike the case of CRSwNP, where estrogens
elicit eosinophil infiltration, estrogen signaling can play a significant role in regulating
cochlear macrophages [88,89]. Cochlear macrophages might have a resident purpose in
ARHL pathogenesis because these cells express considerable ERs [31,90]. The increased
recruitment of macrophages is crucial to mediate the immune response upon infection
and is critical for tissue homeostasis. Regarding the ER expression on sensory cells in the
cochlea, various types of ERs are expressed in the cochlear hair cells at varying levels,
whereas ERβ seems to play a predominant role in the maintenance of cochlear function
during aging or following acoustic trauma [91,92]. Estrogen signaling through ERβ has
been shown to enhance antioxidant, antiapoptotic, and anti-inflammatory responses, all of
which can contribute to hearing preservation [90,93,94]. Together, the signaling pathway
activated by estrogens on different cell types can be manipulated according to different
microenvironments, and such compelling results show that we are still just beginning to
understand the complete complexities of sex hormones, especially estrogen regulation in
sex differences.

2.2.2. Effect of Sex Hormones on Resolution of Inflammatory Response in Hearing Loss

While the mechanisms of cochlear resolution remain unclear, significant efforts have
been made to understand the main factors involved in the resolution of inflammation in
other disease models [27,29,95]. Such studies can serve as important evidence for future
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studies on resolving ARHL inflammation. For example, several proresolving mediators
that can promote the resolution of inflammation and tissue repair have been charac-
terized, and a key factor identified is the glucocorticoid-inducible protein annexin A1
(ANXA1), which exerts proresolving/anti-inflammatory effects in regulating macrophage
activities [84]. Other studies have demonstrated that the function and expression level of
ANXA1 can be enhanced by estrogens in various experimental models [31,33,96].

Of all the studies conducted on the cochlear area so far, only one has explored the
presence of resolution mediators and their receptors in the cochlea. In particular, the re-
search group found that ANXA1 is secreted by the macrophages or Hensen cells lining
the cochlea in the animal model. The results indicated that ANXA1 acts as a bridging
or signaling molecule, connecting apoptotic cells to nonprofessional phagocytes and in-
ducing the phagocytosis of apoptotic cells [97]. This signaling network can be indirectly
supported by the research result that the treatment of glucocorticoids induces the release
of ANXA1 from Hensen cells to strictly regulate the infiltration of leukocytes into the scala
media [97]. Consequently, this process can not only promote the clearance of apoptotic
cells, but also avoid uncontrolled inflammation and tissue damage caused by excessive
leukocyte infiltration. Moreover, ANXA1 facilitates the clearance of apoptotic hair cells by
inducing the transformation of supporting cells in the organ of Corti to nonprofessional
macrophages [98,99].

The receptor for ANXA1, called ALX/FPR2, is also expressed in the scala media
and cells lining the scala tympani and scala vestibule of the cochlea, which are rich in
sensory outer hair, inner hair, Deiters, and pillar cells [97]. Therefore, the proresolving
ANXA1 released by macrophages or Hensen cells can target the ALX/FPR2 receptor to
induce the resolution of inflammation in ARHL. Increasing evidence has suggested that
the ALX/FPR2 receptor is expressed on the surface of professional and nonprofessional
phagocytic cells, and that its activation via the ANXA1 pathway can promote phagocytosis
to clear apoptotic cellular debris [65,100,101]. In contrast, loss of ALXF/FPR2 can lead
to exacerbated inflammation [102–104]. Together, these nonclinical results suggest that
estrogens can modulate macrophage-mediated proresolving actions in the cochlear and
that a proresolution therapeutic intervention by targeting macrophages can be important
for ameliorating ARHL. However, there are insufficient studies on this topic in the inner
ear, and thus, more studies are required.

2.3. Sjögren’s Syndrome
2.3.1. Effect of Sex Hormones on Inflammatory Response in Sjögren’s Syndrome

SS is a chronic rheumatic disease characterized by the lymphocytic infiltration of the
salivary and lachrymal glands, causing dry eyes and mouth symptoms [1,2,207,208]. Al-
though SS is a well-known systemic disease that differs from most ENT diseases, which are
localized, its geographical distribution is notable because most patients affected by SS
also exhibit otorhinolaryngological manifestations [1,10,12]. For instance, patients with
SS also show bilateral parotid enlargement, recurrent sinusitis, hearing loss, nasal crust
formation, and dysphonia [12–14,209–215]. The incidence rate of SS is estimated to be
6.9 per 100,000 people annually, with an average age of 56 years. SS predominately oc-
curs in females as compared to males at a 9:1 ratio, with distinct immunopathologic
differences that are apparently influenced by sex hormones [2,216–220]. Although SS is
not a life-threatening disease, its clinical manifestations increase patients’ emotional bur-
dens [14,221–225]. For example, most SS patients show fatigue, poor sleep quality, and pain
due to eye and mucosal dryness [13,14,222–224,226]. Moreover, significant lymphocytic
infiltration of salivary glands causes uncontrolled inflammatory response, leading to hypos-
alivation, which is responsible for soreness, adherence of food to the mucosa, dysphagia,
difficulties in speaking or eating, dental caries, and periodontal issues, all of which largely
affect the patients’ quality of life [21,105,226–233]. As otorhinolaryngologists are often the
first practitioners to notice if patients show signs of SS, an ENT examination should be
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performed for all patients to devise early diagnosis with prompt treatments or referral to
other specialists, preventing morbidity and mortality.

The cause of SS is a multifactorial process that involves interaction between genetic
(e.g., HLA, Ro52, IL-10, and TNFα) and environmental (e.g., EBV virus infection [105–110],
comorbid with rheumatoid arthritis (RA), and radiotherapies) factors [14,111–118,207],
which lead to aberrant inflammatory responses mediated by lymphocytes (e.g., T and
B cells) and Th17 cells (e.g., IL-17) [76,77,81–85]. When these inflammatory responses are
not resolved, they proceed to chronic inflammation, which causes significant tissue dam-
age in the epithelium of exocrine glands [105,107,228,231]. As SS mostly affects women,
the regulation of sex hormones and inflammation can provide clues for its pathogene-
sis [22,216,219,220]. Increasing evidence has shown that the hallmarks of SS are uncon-
trolled inflammation (e.g., IFNγ, IL-1β, IL-6, and IL-17) and elevation of autoantibody (i.e.,
Ro/SSA and La/SSB) production found in the exocrine glands, and that these pathological
responses are directly influenced by sex hormones [25,119–131]. For example, estrogen
or androgen receptors are expressed in lymphocytes and salivary gland cells [38,40,132].
The activation of ERs in B cells results in increased levels of antibodies and autoantibodies,
whereas androgens decrease B-cell maturation and reduce antibody and autoantibody
production [133–136]. Increased ER-β expression in the salivary acinar cells was found
to be associated with SS, which is linked to higher susceptibility of apoptosis. Moreover,
cytokine receptors, such as the IL-1 receptor, can be found in most hormone-producing
tissues (i.e., adrenal glands, placenta, and ovaries) [137–139]. These results indicate a dy-
namic interplay between sex hormones and the immune system in a normal physiological
state and disease progression.

According to the literature, estrogens perform the functions of inducing the differentiation
of dendritic cells, stimulating T-cell proliferation, increasing Th2 responses, activating Treg, mod-
ulating Th17 responses, and activating M2 tissue healing-type macrophages [38,39,140–142].
In addition, it can inhibit innate Toll-like receptor (TLR) responses and reduce IFNγ production
in immune cells [38,143]. Furthermore, estrogens can protect the disease progression of SS
by reducing SS-related proinflammatory responses, such as IL-17, IFNγ, and autoantibodies
Ro/SSA and La/SSB [20,82,144–148,216].

Some clinical studies have further suggested that the loss of estrogens (i.e., menopause)
promotes SS development [146,147]. More direct evidence regarding how estrogens regu-
late SS can be found in some nonclinical studies. For example, a recent study on ovariec-
tomized mice to model menopause showed significantly increased inflammation in the
lacrimal and salivary glands, and estrogen replacement successfully reversed this effect by
reducing the lymphocytic infiltration in the glands, suggesting that estrogens can directly
reduce SS disease progression [145,149]. However, estrogens can also act as a double-sided
blade in SS development. One significant example is observed in pregnant women, where
an increased amount of estrogens promote the production of SS-related autoantibodies
Ro/SSA and La/SSB [150,151].

2.3.2. Effect of Sex Hormones on Resolution of Inflammatory Response in
Sjögren’s Syndrome

Sustained and unresolved inflammation has now been recognized as an important
feature in many autoimmune diseases, including RA, systemic lupus erythematosus, and
SS [152–154]. This unresolved inflammation is attributed to the misregulated acute in-
flammatory responses, which accumulate proinflammatory signals over time, leading
to chronic inflammation with an altered resolution of inflammatory responses [152–154].
Under normal conditions, these acute inflammatory responses are tightly controlled and
should be resolved in a timely manner to avoid the occurrence of chronic status [28,30,95];
however, such a proresolving mechanism seems to be altered in SS [155]. In fact, there is
a class of chemical mediators produced in our body that can be used to mitigate unre-
solved inflammation. These chemical mediators are now recognized as SPMs, which
have been demonstrated to limit uncontrolled inflammation while promoting natural
healing processes by blocking inflammatory cytokine signaling and stimulating tissue
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repair [27,29,30,234]. For example, one of these SPMs, called resolvin D1 (RvD1), can pre-
vent the TNFα-mediated disruption of the salivary gland epithelium and promote the
survival of salivary gland cells in nonclinical studies [35,228,235–237]. In particular, RvD1
can ameliorate SS-like disease progression in an SS-like mouse model by maintaining
the integrity and function of the salivary gland epithelium [35,236,238]. Furthermore,
treatment with AT-RvD1 can increase the saliva flow rate and inhibit the infiltration of
Th17 cells in the salivary glands [35,235,236]. Note that mice lacking the RvD1 receptor
ALX/FPR2 show significant impairment in both innate and adaptive immunities, along
with an elevated production of proinflammatory cytokines and antibodies [103,104,236].
These results suggest that the resolution of the inflammation pathway is altered in SS, and
the use of therapies such as AT-RvD1 can promote the resolution of inflammation to reverse
SS progression.

As SS is predominately found in women, several nonclinical studies have also revealed
that treatment with RvD1 is more effective in female mice [35,104]. Therefore, we can spec-
ulate that sex hormones are involved in the resolution of inflammation. Some experimental
evidence has suggested that ovariectomized female mice (to mimic menopause) show
significantly increased inflammation, and that estrogen replacement can reverse the SS-like
phenotype [145,149]. These results further demonstrate that sex hormones regulate the
resolution of inflammation and tissue homeostasis, especially in salivary glands. However,
the underlying mechanism is still limited and requires more evidence to support this notion
in a clinical setting. For instance, a recent nonclinical study suggested that sex difference is
involved in regulating the resolution of inflammation using an SS-like animal model [155].
The results indicated that the RvD1 level in female mice after developing SS-like features
is altered in plasma and saliva. Besides the level of lipid mediators found to be altered in
SS-like female mice, the enzymes responsible for SPM synthesis, 5-LOX and 12/15-LOX,
were also altered in SS-like female mice. Moreover, female mice lacking the RvD1 receptor
ALX/FPR2 showed exacerbated salivary gland inflammation, reduction in saliva flow rate,
and increased population of CD-20 positive B cells [104]. In contrast, ALX/FPR2 activation
through RvD1 plays a critical role in promoting the resolution of inflammation and regu-
lating antibody production in B cells. Together, these nonclinical studies further indicate
that sex hormones play important roles in regulating the resolution of inflammation in
SS. However, these results only indicate the potential underlying mechanisms that can
elucidate sex differences in SS. Future studies should investigate the SPM level and the
activity of SPM biosynthetic enzymes in SS patients.

2.4. Head and Neck Cancers
2.4.1. Effect of Sex Hormones on Inflammatory Response in Head and Neck Cancers

Numerous epidemiological studies have indicated that sex difference is an important
factor for cancer incidence and survival. In general, females have a lower risk and better
prognosis than males in most cancer types, such as colon, head and neck, esophagus, lung,
and liver [239,240]. The higher incidence in the male population can be attributed to diet,
occupational exposure (i.e., chemicals or carcinogens), and unhealthy lifestyle (i.e., smoking
and alcohol consumption). HNCs (including nasopharyngeal carcinoma and oral squa-
mous cell carcinoma) are examples that display sex difference with a higher incidence rate
in males than females at a 5:1 ratio [241–243]. HNCs are the seventh most common tumors
worldwide, with an estimated annual burden of 625,173 new cases and 323,160 deaths in
2018. More than 90% of all HNCs are oral squamous cell carcinoma, arising in the mucosal
surface lining the aerodigestive tract [243]. According to the WHO, the incidence rates of
HNCs are high in certain Asian-Pacific countries [8,241]. Although their prevalence is low
in Western countries, the incidence rates of oral cancer driven by human papillomavirus in-
fections and certain lifestyle habits have increased significantly and become a public health
concern [9,244]. Besides the multiple factors (i.e., alcohol and smoking) that lead to HNC
development, sex hormones can also contribute to head and neck carcinogenesis [156,157].
For instance, previous clinical studies on HNC patients have shown that estrogen levels in
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females play a protective role in developing cancer [158–162]. As males have lower levels
of estrogen, they are more predisposed to develop cancer. Moreover, the destruction of liver
function in alcoholics leads to an alteration in the metabolism of estrogens. Several studies
have shown that alcohol can interfere with the balance of sex hormones by promoting the
aromatization of androgens into estrogens and thereby impairing the ratio of androgens to
estrogen [163–166].

As estrogens and their receptors have been found to be present in oral cavity, laryngeal,
or hypopharyngeal cancers, we can speculate that estrogens play a direct role in regulating
HNC progression [141,156,157]. For instance, recent studies have suggested that an altered
expression of ERs is found in the malignant tissues of oral mucosa and is correlated with
HNC survival [156,167]. Moreover, higher estrogen levels are linked with lower HNC risk
in women who have undergone hormone replacement therapy, are pregnant, or given birth
below 35 years of age [158]. In contrast, higher HNC risk is associated with menopause
onset before 52 years of age [158]. Although estrogens have been proven to play a protective
role in some studies, other studies have shown opposite results [168,169]. The mechanisms
underlying these contradictory results originate from the alteration and fluctuation of
endogenous estrogen levels in HNC progression [156,157]. In particular, a previous study
showed that 75% of young women who never smoked and drank were HNC patients at
age 19–39 years [170], implying that estrogens at different physiological statuses may affect
HNC tumorigenesis, probably due to the polymorphism of estrogen and its receptors in
the expression level.

Furthermore, increasing evidence has suggested that estrogens can regulate a wide va-
riety of cellular functions, such as anti-inflammation, proliferation, migration, and differenti-
ation of cancer cells and other cells within the tumor microenvironment [31,38,119,168,171].
Among the cells involved in the inflammatory tumor microenvironment, the essential player,
the macrophage, is involved during all phases of inflammation and can be regulated by
estrogens as it expresses ERs [31]. When the immune system fails to resolve inflamma-
tion, the chronic inflammatory response dominates and influences important metabolic
functions, including cell homeostasis and genomic changes, which eventually lead to the
development of carcinogenesis [172–175]. The infiltrated tumor-associated macrophages
are major inflammatory cells that promote the progression of malignancies by supporting
tumor growth and shaping the tumor microenvironment by secreting proinflammatory cy-
tokines, including the TNF superfamily, interleukins (i.e., IL-1, IL-8, and IL-6), chemokines
(i.e., CXCL-10), prostaglandins, and reactive oxygen species (ROS), which promote the
development of oral cancers [175,176]. Specifically, TNF-α, IL-6, and PGE-2 participate in
the process of submucous fibrosis, which plays a critical role in enhancing the malignant
transformation of oral cancer cells [177,178]. Several nonclinical studies have shown that
circulating estrogens can regulate the activities of macrophages and reduce inflammatory
responses. Specifically, ER activation by estrogens can decrease the synthesis of proin-
flammatory factors (e.g., TNFα, IL-6, and COX-2) in macrophages to clear the damaged
proteins through the activation of proteasomes [179,180]. Moreover, estrogens inactivate
NF-κB-mediated inflammatory responses via the pathway involved in the activation of the
estrogen-activated receptor function and phosphatidylinositol 3-kinase [179]. Recent studies
have also suggested that estrogens decrease the expression of TLR4, which plays a critical
role in producing proinflammatory cytokines [143,181]. Therefore, these results suggest that
the regulatory function of macrophages can be modulated by estrogen and linked to the
reduction of proinflammatory responses that limit the growth of tumors.

However, some opposite results regarding the effect of estrogens in cancers have also
been reported. For instance, some experimental studies have suggested that estrogens
exhibit genotoxic, mutagenic, and carcinogenic effects. In particular, a previous study
suggested that genes or proteins associated with estrogen metabolism (i.e., ERα, Erβ, and
the androgen receptor) are highly expressed in isolated human head and neck cells and
that these molecules can contribute to the tumorigenesis of HNC [157,182,183].
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In addition to estrogens, other sex hormones, such as androgens, can also contribute
to the tumorigenesis of HNC. It has been demonstrated that AR is expressed in patients
with oral squamous cell carcinoma (OSCC), and the expression of this receptor is critical for
promoting OSCC growth [184,185]. A more recent study using clinical samples found that
more than 20% of neoplastic OSSC epithelium patient samples were stained positive with
androgen receptors [184]. Considering that ERs and ARs play roles in the tumorigenesis of
HNC, the aforementioned studies identify some issues that are worth further investigation,
including whether the ratios of the expression levels of estrogen and androgen and their
receptors in cancer cells play roles in the tumorigenesis of HNC.

2.4.2. Effect of Sex Hormones on Resolution of Inflammatory Response in Head and
Neck Cancers

While the cause of HNC has been associated with the abovementioned risk factors,
unresolved chronic inflammation has been implicated as a critical driving force that can
lead to genetic and epigenetic changes in HNC malignancies [173,178,186,187]. For exam-
ple, the pathogenesis of oral squamous cancer cells involves several oral inflammatory
conditions, such as oral submucous fibrosis, oral lichen planus, discoid lupus erythemato-
sus, oral ulcers related to repetitive tissue injury, and chronic periodontal disease [188,189].
The infiltration of inflammatory cells in oral submucous fibrosis mainly comprises lym-
phocytes, plasma cells, and macrophages, which are altered by tumor cells to produce
proinflammatory cytokines (i.e., TNF-α, IL-8, and IL-6), prostaglandins, COX-2, and ROS,
elevating the inflammatory status in the local microenvironment, which favors tumor
growth [186,187,190]. Therefore, targeting these tumor-associated inflammatory factors
appears to be a tempting strategy to devise novel therapeutics for treating oral cancers.

Furthermore, recent studies have explained the application of SPMs that can resolve
uncontrolled inflammation and maintain tissue homeostasis. These SPMs are derived from
ω-3 orω-6 polyunsaturated fatty acids through enzymatic processing with lipoxygenases
(i.e., 5- and 12/15-LO) [32,191–193]. For example, resolvins and lipoxins are SPMs that
can be naturally synthesized from AA, docosahexaenoic acid and aspirin, and perform
potent proresolving and anti-inflammatory functions by regulating the infiltration of im-
mune cells, removing apoptotic cell debris, inhibiting the synthesis of proinflammatory
cytokines (e.g., TNF-α, IL-6, CXCL10, COX-2, and MCP-1), and inhibiting tumor migra-
tion/metastasis [32,191–194]. These findings suggest the proresolving actions of SPMs in
anticancer functions. Although the involvement of sex hormones in regulating the bio-
logical events between SPMs and HNC remains unclear, a recent study has suggested a
potential link of how estrogens regulate the resolution of inflammation in HNC. In partic-
ular, a proresolving mediator, LXA4, has been found to share structural similarities with
estrogens (i.e., estrogen 17-estradiol) and compete with ER to inhibit estrogen’s function,
which indicates the therapeutic potential of LXA4 in treating estrogen-associated diseases,
such as cancers [64,195]. Moreover, LXA4 or another proresolving mediator RvD1 can
inhibit estrogen-induced epithelial–mesenchymal transition through ALX/FPR2 receptor
signaling in several disease models, including endometriosis, lung cancer, and nasopharyn-
geal carcinoma [31,34,100,103,155,177,193,196,197]. Together, these results further imply an
important link between estrogens and the resolution of inflammation in HNC; however, the
exact mechanism remains largely unknown.

3. Conclusions

This review article aims to highlight the interconnections among sex hormones, ENT
diseases, and immune responses. We discussed several ENT diseases that involve both
sex hormones and immune responses, and found that sex hormones play important roles
in regulating inflammatory responses and resolution of inflammation after tissue injury.
In addition, we reviewed the recent findings that have shown that the machinery in immune
response is mostly altered in ENT diseases under the influence of hormonal status (Table 1).

To date, studies addressing the role of estrogens in ENT diseases have largely been
restrained by significant experimental obstacles. For example, most in vitro settings con-
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ducted using exogenous estrogens or antagonists to ERs are too simplified to address the
complex in vivo system. Moreover, the dose, duration, and route of estrogen treatment
in both in vitro and in vivo models should be considered as important factors in future
experimental designs. Estrogen signaling can exert completely opposite effects on ENT
diseases for improvement or augmentation, depending on the microenvironment and
cell type.

In conclusion, estrogens and other sex hormones play important roles in regulating
the immune system and thus influence the disease outcomes. Hence, increased efforts are
required to identify their functions in terms of driving the inflammation and its resolution
in ENT diseases. This is particularly important given that the established importance of sex
differences in ENT disease can yield a novel therapeutic strategy to ameliorate or reverse
ENT disease progression.
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