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Combining neuroimaging and clinical information for diagnosis, as for example behavioral tasks and genetics
characteristics, is potentially beneficial but presents challenges in terms of finding the best data representation for
the different sources of information. Their simple combination usually does not provide an improvement if compared
with using the best source alone. In this paper, we proposed a framework based on a recent multiple kernel learning
algorithm called EasyMKL and we investigated the benefits of this approach for diagnosing two different mental
health diseases. The well known Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset tackling the Alzheimer
Disease (AD) patients versus healthy controls classification task, and a second dataset tackling the task of classifying
an heterogeneous group of depressed patients versus healthy controls. We used EasyMKL to combine a huge amount
of basic kernels alongside a feature selection methodology, pursuing an optimal and sparse solution to facilitate
interpretability. Our results show that the proposed approach, called EasyMKLFS, outperforms baselines (e.g. SVM
and SimpleMKL), state-of-the-art random forests (RF) and feature selection (FS) methods.

and other clinical information (as for example, demographic data or non-
imaging biomarkers). In this context, Multiple Kernel Learning (MKL)
provides an effective approach to combine different sources of informa-

1. Introduction

In this paper we study the problem of combining information from

different data sources (e.g. imaging, clinical information) for diagnoses of
psychiatric/neurological disorders. From a machine learning perspective,
we have to solve a problem in a high dimensional space using only a small
set of examples for training a predictive model. In the past few years,
several papers investigated possible ways to combine heterogeneous data
in neuroimaging-based diagnostic problems. Most of the previous ap-
proaches can handle only few different sources of information. The main
goal of these approaches is to find an optimal combination of the sources in
order to improve predictions, given different modalities of neuroimaging

* Corresponding author.
E-mail address: donini.michele@gmail.com (M. Donini).

tion, considering each source of information as a kernel, and identifying
which information is relevant for the diagnostic problem at hand (Gonen
and Alpaydin, 2011; Bolén-Canedo et al., 2015). It is known that using
multiple kernels instead of a single kernel can improve the classification
performance (see e.g. (Gonen and Alpaydin, 2011) and references therein),
and the goal of MKL is to find the correct trade-off among the different
sources of information (Gonen and Alpaydin, 2011). Moreover, MKL al-
lows the extraction of information from the weights assigned to the ker-
nels, highlighting the different importance of each different source.

1 Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the
investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report.
A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.
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Therefore, applications of MKL to neuroimaging based diagnoses might
help the discovery of biomarkers of neurological/psychiatric disorders.

1.1. Related work

A number of recent studies have applied the MKL approach for multi-
modal neuroimaging based diagnoses. Different MKL algorithms mainly
differ on the type of kernels they use for each source (e.g. linear,
Gaussian, polynomial) and on the way they estimate and combine the
weights of the kernels. In general, most approaches impose some con-
straints on the norm” of the weights (e.g. p-norm (Kloft, 2011)). In
particular, the 1-norm constraint imposes sparsity on the kernel combi-
nation therefore is able to select a subset of relevant kernels for the model
(e.g. Z1-norm (Rakotomamonjy et al., 2008)). The MKL framework is
formally introduced in Section 2.

In (Hinrichs et al., 2011) the authors exploit the standard £p-MKL
approach with p values ranging from 1 (sparse) to 2 (dense). They
combine various sets of basic kernels (Gaussian, linear and polynomial)
generated by selecting the top most relevant features (with the rank of
the features determined by a t-test) extracted from Magnetic Resonance
Imaging (MRI), Positron Emission Tomography (PET) images and clinical
measurements. Their results show that this methodology outperforms the
best kernel generated by exploiting the best unique source (MRI, PET or
clinical measurements), suggesting that the combination of heteroge-
neous information with MKL is beneficial. Nevertheless, using a standard
¢p-MKL approach imposes a limitation on the number of different basic
kernels, due to the computational complexity and memory requirements
of the /p-MKL algorithms (Gonen and Alpaydin, 2011).

Another MKL approach able to combine different source of informa-
tion is presented in Filipovych et al. (2011), in which the authors tackle
the problem of predicting the cognitive decline in older adults. In this
case, the authors use the #2-MKL with two Gaussian kernels, one for the
MRI features and one for the clinical measurements. These kernels have
two different hyper-parameters which were fixed using a heuristic
method. They claim that, by using only the MRI information or the
clinical measurements alone, the kernels do not carry sufficient infor-
mation to predict cognitive decline. On the other hand, using the kernel
obtained by combining the kernels extracted from both sources of in-
formation improves the performances significantly.

The problem of combining heterogeneous data for predicting Alz-
heimer's disease has been handled also using the, so called, Multi-Kernel
SVM. The idea is to use the standard SVM (Cortes and Vapnik, 1995),
with a pre-computed kernel that contains a weighted combination of the
basic kernels. In this case, the combination is evaluated by exploiting a
brute force search of the parameters (i.e. a grid search). In Zhang et al.
(2011) and Zhang and Shen (2012), the authors try to learn an optimal
kernel combining three different kernels, each of which corresponds to a
different sources of information (MRI, PET and clinical data), and the
optimal (convex) combination of these kernels is determined via grid
search. In Zhang et al. (2011), the authors propose, as first step of their
methodology, a simple feature selection by using a t-test algorithm. In
Zhang and Shen (2012), the feature selection phase is improved by using
a common subset of relevant features for related multiple clinical vari-
ables (i.e. Multi-Task learning approach (Argyriou et al., 2008)). In both
studies Zhang et al. (2011) and Zhang and Shen (2012), the feature se-
lection is applied before the generation of the kernels. Moreover, the
brute force selection for the kernels weights, performed by using a grid
search approach, is able to combine only few kernels and often finds a
sub-optimal solution due to the manual selection of the search grid. In
this sense, a MKL approach is more robust and theoretically grounded.

A recent paper by Meng et al. (2017) proposes a framework to predict
clinical measures using a multi-step approach. The authors combine
three different neuroimaging modalities: resting-state functional

2 A norm is a function that assigns a strictly positive length or size to a vector.
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Magnetic Resonance Image (fMRI), structural Magnetic Resonance Image
(sMRI) and Diffusion Tensor Imaging (DTI). After a feature selection step
within each of the single modalities, a selection of well-connected brain
regions is performed. Their multi-modal fusion methodology consists of a
simple concatenation of the selected features, ignoring the relative
contribution of each modality. However, their approach does not include
a weighting phase of the different modalities (in contrast with the MKL
approach).

Other methodologies to combine different sources of information can
be found in the literature (Meng et al., 2017; Tong et al., 2017; Yao et al.,
2018; Liu et al., 2017; Jie et al., 2015; Sui et al., 2018). One way is to
exploit Gaussian Processes for probabilistic classification (see e.g. (Wil-
liams and Barber, 1998)). For example, in Filippone et al. (2012), the
authors combine five different modalities (i.e. segmentation of the brain in
grey matter, white matter and cerebrospinal fluid, from T2 structural im-
ages plus the Fractional Anisotropy (FA) and Mean Diffusivity (MD) im-
ages, from the DTI sequence) to predict three Parkinsonian neurological
disorders. Finally, in Young et al., (2013), the authors used Gaussian
Processes to combine three different heterogeneous source of data: MRI,
PET and the Apolipoprotein E (APOE) genotype, in order to predict con-
version to Alzheimer's in patients with mild cognitive impairment. In these
studies, the Gaussian Process models have similarities with the MKL
models, i.e. the goal is to find a kernel that combine prescribed kernels
corresponding to each source of information plus a bias term. However, in
these cases the models' hyperparameters (kernels coefficients and bias
terms) are selected using the Gaussian Process framework.

Another possible way to combine different sources of information is
using RF-based methods (Gray et al., 2013; Pustina et al., 2017). The
framework used in these studies consists of several steps, where the RF
methods are fundamental in order to obtain the final model as a com-
bination of the different sources.

For example, the method proposed in Gray et al. (2013) uses a RF
model per modality in order to produce a similarity measure, one per
source of information. Then, an approach to reduce the number of fea-
tures is applied and, in order to combine the data from different mo-
dalities, a selection of weights is performed by cross-validation. The
output of this procedure is a weighted sum of the different measures of
similarity that is equivalent to a combination of kernels, each one rep-
resenting one modality.

As another example, the algorithm in Pustina et al. (2017) consists of
a sequential exploitation of graph theory, recursive feature elimination
(RFE) and RF. Graph theory is used to derived a set of features that are
added to the raw data. A RFE procedure is exploited in order to obtain a
low dimensional set of features, one set per source of information. Then,
one predictor per modality is generated by applying the RF to the
selected features. Stacking all the resulting models (one per source of
information) produces the final model.

In all previous studies outlined above, there is a limit on the
maximum number of kernels that we are able to combine (or number of
sources that we can consider) in the predictive model. In addition,
feature selection (when performed) is applied before the generation of
the final representation (i.e. the way how we describe the similarity
among examples), thereby decreasing the connection between the final
model and the selected features. These methods are not able to perform a
fine-grained feature learning because they are heavily dependent on
some priors (imposed by an expert), as for example the selection of which
features are contained in a specific kernel.

1.2. Our contribution

In this paper, we proposed a MKL based approach that is able to re-
weight and select the relevant information when combining heteroge-
neous data. This approach enables us to fragment the information from
each data source into a very large family of kernels, learning the rele-
vance of each fragmented information (kernel weights). Consequently,
our method is very flexible and the final model is based on a kernel that
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uses a small amount of features, due to the feature selection performed as
final step of our approach in synergy with the MKL methodology.

We start describing EasyMKL (Aiolli and Donini, 2015), a recent MKL
algorithm, that can handle a large amount of kernels and we combine it
in synergy with a new feature selection (FS) approach. Our aim is to
evaluate and select the most relevant features from each data source. The
proposed approach is applied to two different classification tasks. The
first one considers the Alzheimer's Disease Neuroimaging Initiative
(ADNI) dataset to classify patients with Alzheimer's disease versus
healthy controls combing structural MRI data and clinical assessments.
Secondly, we tackle the task investigated in Hahn et al. (2011) where the
goal is to classify depressed patients versus healthy controls by inte-
grating fMRI data with additional clinical information. We compare our
approach with SVM (Cortes and Vapnik, 1995) as the baseline approach,
as well as a state-of-the-art MKL approach (SimpleMKL (Rakotomamonjy
et al., 2008)), two feature selection approaches: recursive feature elimi-
nation (RFE) (Guyon et al., 2002) and t-test (Peck and Devore, 2011), and
RF-based methods (Gray et al., 2013; Pustina et al., 2017).

In summary, the main contributions of this paper are two-fold. Firstly,
we introduce a new methodology to combine a MKL approach using a
huge number of basic kernels and a FS approach in order to improve the
prediction performance, inherited from the previous preliminary work
(Donini et al., 2016). This new procedure, called EasyMKLFS, automat-
ically selects and re-weights the relevant information obtaining sparse
models. EasyMKLFS provides a new optimal kernel that can be used in
every kernel machine (e.g. SVM) in order to generate a new classifier.
Secondly, we demonstrate the performance of the proposed methodology
using two classification tasks. When applied to the ADNI dataset the
proposed approach was able to outperform the previous state-of-art
methods and provide a solution with high level of interpretability (i.e.
the identification of a small subset of features relevant for the predictive
task); when applied to the depression dataset the proposed approach
showed better performance than most approaches (a part from EasyMKL)
with advantage of higher sparsity/interpretability.

The paper is organized as follows. In the first part of Section 2 we
introduce the theory of MKL with an analysis of the most common MKL
methods. Then, the original EasyMKL is presented, followed by the
connection between feature learning and MKL. The proposed method is
described in the last part of section Section 2.4. Section 3 shows the main
information about the datasets, the methods, the validation procedure for
the hyper-parameters and the details concerning the performed experi-
ments. Section 4 describes the datasets used in this study, the methods
used as comparisons against EasyMKLFS, the validation procedure, and
the experimental designs. The results are presented in Section 4 for both
datasets, followed by a discussion in Section 5.

2. Theory

In the next sections, we will introduce the classical MKL framework
and a recent MKL algorithm called EasyMKL. Firstly, we introduce the
notation used in this paper.

Considering the classification task, we define the set of the training ex-
amples as { (x;, yi)}f;l withx; in 27 and y; with values +1 or — 1. In our case,
it is possible to consider the generic set 7 equal to R™, with a very large
number of features m. Then, X € R“*™ denotes the matrix where examples
are arranged in rows. The i" example is represented by the i row of X,
namely X[i, : ] and the r" features by the r* column of X, namely X[:,7].

Specifically, in our cases, the number of examples ¢ refers to the
number of different subjects that are considered in the study.

2.1. Multiple kernel learning (MKL)

MKL (Bach et al., 2004; Gonen and Alpaydin, 2011) is one of the most
popular paradigms used to highlight which information is important,
from a pool of a priori fixed sources. The goal of MKL is to find a new
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optimal kernel in order to solve a specific task. Its effectiveness has been
already demonstrated in several real world applications (Bucak et al.,
2014; Castro et al., 2014). A kernel K generated by these techniques is a
combination of a prescribed set of R basic kernels K, ..., Kg in the form:

K=

r

R
nXKwithg =0, ||, =1.
=1

The value q defines the used norm and is typically fixed to 1 or 2.
When q is fixed to 1, we are interested in a sparse selection of the kernels.
However, if g equals 2, then the model will be dense (with respect to the
selected kernels). It is important to highlight how the value #, represents
the weight assigned to the specific r* source of information.

Using this formulation, we are studying the family of weighted sums
of kernels. It is well known that the sum of two kernels is equivalent to
the concatenation of the features contained in both feature spaces
(Shawe-Taylor and Cristianini, 2004). Extending the same idea, the
weighted sum of a list of basic kernels can be seen as a weighted
concatenation of all the features contained in all feature spaces (where
the weights are the square roots of the learned weights 7,).

Theoretically, MKL algorithms are supported by several results that
bound the estimation error (i.e. the difference between the true error and
the empirical margin error) (Maurer and Pontil, 2012; Srebro and
Ben-david, 2006; Cortes et al., 2010; Hussain and Shawe-Taylor, 2011a;
Hussain and Shawe-Taylor, 2011b; Kakade et al., 2012; Micchelli et al.,
2016; Kloft and Blanchard, 2011).

2.1.1. An overview of the MKL approaches

Existing MKL approaches can be divided in two main categories. In the
first category, Fixed or Heuristic, some fixed rule is applied to obtain the
kernel combination. These approaches scale well with the number of basic
kernels, but their effectiveness critically depend on the domain at hand.
They use a parameterized combination function and find the parameters of
this function (i.e. the weights of the kernels) generally by looking at some
measure obtained from each kernel separately, often giving a suboptimal
solution (since no information sharing among the kernels is exploited).

Alternatively, Optimization based approaches learn the combination
parameters (i.e. the kernels’ weights) by solving a single optimization
problem directly integrated in the learning machine (e.g. exploiting the
generalization error of the algorithm) or formulated as a different model,
as for example by alignment, or other kernel similarity maximization
(Rakotomamonyjy et al., 2008; Bach et al., 2004; Varma and Babu, 2009).

In the Fixed or Heuristic family there are some very simple (but
effective) solutions. In fact, in some applications, the average method
(that equal to the sum of the kernels (Belanche and Tosi, 2013)) can give
better results than the combination of multiple SVMs each trained with
one of these kernels (Pavlidis et al., 2001). Another solution, can be the
element-wise product of the kernel matrices contained in the family of
basic kernels (Aiolli and Donini, 2014).

The second family of MKL algorithms is defined exploiting an opti-
mization problem. Unexpectedly, finding a good kernel by solving an
optimization problem turned out to be a very challenging task, e.g. trying
to obtain better performance than the simple average of the weak kernels
is not an easy task.? Moreover, Optimization based MKL algorithms have a
high computational complexity, for example using semidefinite pro-
gramming or quadratically constrained Quadratic Programming (QP).
Some of the most used MKL algorithms are summarized in Table 1 with
their computational complexities.

2.2. EasyMKL

EasyMKL (Aiolli and Donini, 2015) is a recent MKL algorithm able to
combine sets of basic kernels by solving a simple quadratic optimization

3 www.cse.msu.edu/~cse902/S14/ppt/MKL_Feb2014.pdf.
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Table 1
Frequently used MKL Optimization based methods.
Learner  Time Complexity Reference

SimpleMKL ~ SVM Grad.+ QP Rakotomamonjy et al. (2008)
GMKL SVM Grad.+ QP Varma and Babu (2009)
GLMKL SVM Analytical + QP Kloft (2011)
LMKL SVM Grad.+ QP Gonen and Alpaydin (2008)
NLMKL KRR Grad.+ Matrix Inversion Cortes et al. (2009)

problem. Besides its proved empirical effectiveness, a clear advantage of
EasyMKL compared to other MKL methods is its high scalability with
respect to the number of kernels to be combined. Specifically, its
computational complexity is constant in memory and linear in time.

This remarkable efficiency hardly depends on the particular input
required by EasyMKL. In fact, instead of requiring all the single kernel
matrices (i.e. one per source of information), EasyMKL needs only the
(trace normalized) average of them. See Section Appendix A for a tech-
nical description of EasyMKL.*

2.3. Feature learning using MKL

In the last years, the importance of combining a large amount of kernels
to learn an optimal representation became clear (Aiolli and Donini, 2015).
As presented in the previous section, new methods can combine thousands
of kernels with acceptable computational complexity. This approach con-
trasts with the previous idea that kernel learning is shallow in general, and
often based on some prior knowledge of which specific features are more
effective. Standard MKL algorithms typically cope with a small number of
strong kernels, usually less than 100, and try to combine them (each kernel
representing a different source of information of the same problem). In this
case, the kernels are individually well designed by experts and their
optimal combination hardly leads to a significant improvement of the
performance with respect to, for example, a simple averaging combination.
A new point of view is instead pursued by EasyMKL, where the MKL
paradigm can be exploited to combine a very large amount of basic kernels,
aiming at boosting their combined accuracy in a way similar to feature
weighting (Bolon-Canedo et al., 2015). Moreover, theoretical results prove
that the combination of a large number of kernels using the MKL para-
digms is able to add only a small penalty in the generalization error, as
presented in Maurer and Pontil (2012), Cortes et al. (2010), Hussain and
Shawe-Taylor (2011a, 2011b).

In this sense, we are able to take a set of linear kernels that are
evaluated over a single feature, making the connection between MKL and
feature learning clear. The single kernel weight is, in fact, the weight of
the feature. Using this framework, we can weight the information con-
tained into a set of features, evaluated in different ways (i.e. using
different kernels that can consider different subsets of features).

2.4. EasyMKL and feature selection

In this section, we present our approach to combine MKL (as a feature
learning approach) and feature selection (FS). We start from EasyMKL
with a large family of linear single-feature kernels as basic kernels. We
decided to exploit linear kernels because they do not need hyper-
parameter selection. Dealing with small datasets, this is a serious
advantage. Moreover, in our single-feature context, using other families
of kernels (e.g. RBF or polynomial kernels) has not impact on the final
performances.® Due to the particular definition of this algorithm, we are

4 EasyMKL implementation: github.com/jmikko/EasyMKL.

5 We performed the same experiments as presented in Section 4 using RBF
kernels instead of linear ones and we obtained comparable results with higher
computational requirements. For this reason we decided to maintain only the
linear kernels in our setting. It is important to note that, in general, our method
can be applied to any family of kernels.
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able to combine efficiently millions of kernels. As presented in Section
2.2 and in Appendix A, given the kernel generated by the average of the
trace normalized basic kernels

1 R

>

r=1

K,
Tr(K,)

R

K* =

EasyMKL produces a list of weights 5 € R, one weight per kernel.

Fixing a threshold p > 0, it is possible to remove all the kernels with a
weight less or equal to p, considering them not sufficiently informative
for our classification task. In this way we are able to inject sparsity in our
final model. All the single-feature kernels K, with a weight 5, > p are
weighted and summed obtaining a new kernel

R K
K = v
> T (K)

Algorithm 1 summarizes our approach, called EasyMKLFS. It is
important to note that if p = 0 we are performing the standard MKL
approach over R basic kernels.

The same procedure cannot be easily exploited with the standard
MKL algorithms, due to the large amount of memory required to combine
a large family of kernels (see Table 1). In this sense, EasyMKL becomes
fundamental in order to efficiently achieve our goal. In line 8 of Algo-
rithm 1, the amount of memory required by the storage of the kernels is
independent with respect to the number of combined kernels R (and the
computational complexity is linear in time).

Algorithm 1 - EasyMKLFS: feature selection and weighting by using

EasyMKL. Oy ¢ is the zero-matrix in REXL
Require: X € R&*™ y € {—~1,1},A>0,p >0
Ensure: A kernel matrix K* € R(*?
CKA=0,, K =0,

: R=m

: for r =1to R do

X[ X[ T
Tr(X[5rX[:,r)T)
K4 =K*+ +K

: end for
: n =BasyMKL(K4, X, y, \)
: for r =1to R do

o B

=

if . > p then
X[, X[ T

K = 5 XX
11: K*=K*+nK
12: end if
13: end for

3. Materials and methods
3.1. Datasets

In this section, we present a description of the two considered data-
sets, i.e. ADNI and Depression. The first dataset consists of structural
Magnetic Resonance Imaging (sMRI), clinical and genetic information for
each participant. The second dataset consists of functional MRI (fMRI)
and clinical information for each participant.

3.1.1. ADNI

This case study concerns the problem of classifying patients with
possible Alzheimer's disease combining sSMRI and other genetical/clinical
or demographic information. Alzheimer's disease (AD) is a neurodegen-
erative disorder that accounts for most cases of dementia.

In 2003, the ADNI was started as a public-private partnership by
Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI
has been to test whether serial Magnetic Resonance Imaging (MRI),
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Positron Emission Tomography (PET), other biological markers, and
clinical and neuropsychological assessment can be combined to measure
the progression of mild cognitive impairment (MCI) and early Alzheimers
disease (AD).

Here, we use sMRI and clinical information from a subset of 227 in-
dividual from the ADNI dataset. The following pre-processing steps were
applied to sMRI of the selected individuals. The T1 weighted MRI scans
were segmented using the Statistical Parametric Mapping Software
(SPM12, https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) into
gray matter, white matter and cerebrospinal fluid (CFS). The grey matter
probability maps were normalised using Dartel, converted to MNI space
with voxel size of 2mm x 2mm x 2mm and smoothed with a Gaussian
filter with 2 mm full width at half-maximun (FWHM). A mask was then
generated, to select voxels which had an average probability of being
grey matter equal or higher than 10% for the whole dataset. This resulted
in 168130 voxels per subject being used.

Finally, from the non-imaging information contained in ADNI, we
extracted 35 different clinical information, including age and gender of
the patient, the presence of APOE4 allele, items of the Mini-mental State
Exam (MMSE) (Folstein et al., 1975), education level, Clinical Demential
Rating, AD Assessment Schedule 11 and 13, Rey Auditory Verbal Learning
Test and Functional Assessment Questionnaire (Moradi et al., 2017) (see
Appendix A, Table B.12 for the details).

For up-to-date information about the ADNI, see www.adni-info.org.

3.1.2. Depression

The task in this challenging dataset (Hahn et al., 2011) is to classify
depressed patients versus healthy controls by integrating fMRI data and
other clinical measurements.

A total of 30 psychiatric in-patients from the University Hospital of
Psychiatry, Psychosomatics and Psychotherapy (Wuerzburg, Germany)
diagnosed with recurrent depressive disorder, depressive episodes, or
bipolar affective disorder based on the consensus of two trained psy-
chiatrists according to ICD-10 criteria (DSM-IV codes 296.xx) partici-
pated in this study. Accordingly, self report scores in the German version
of the Beck Depression Inventory (second edition) ranged from 2 to 42
(mean standard deviation score, 19.0 [9.4]). Exclusion criteria were age
below 18 or above 60 years, co-morbidity with other currently present
Axis I disorders, mental retardation or mood disorder secondary to sub-
stance abuse, medical conditions as well as severe somatic or neurolog-
ical diseases. Patients suffering from bipolar affective disorder were in a
depressed phase or recovering from a recent one with none showing
manic symptoms. All patients were taking standard antidepressant
medications, consisting of selective serotonin reuptake inhibitors, tricy-
clic antidepressants, tetracyclic antidepressants, or serotonin and
noradrenalin selective reuptake inhibitors. Thirty comparison subjects
from a pool of 94 participants previously recruited by advertisement
from the local community were selected to match the patient group in
regard to gender, age, smoking, and handedness using the optimal
matching algorithm implemented in the Matchlt package for R http:
//www.r-project.org (Ho et al., 2007). In order to exclude potential
Axis I disorders, the German version of the Structured Clinical Interview
for DSM-IV (SCID; 35) Screening Questionnaire was conducted. Addi-
tionally, none of the control subjects showed pathological Beck Depres-
sion Inventory (BDI II) scores (mean = 4.3, SD = 4.6).

From all 60 participants, written informed consent was obtained after
complete description of the study to the subjects. The study was approved
by the Ethics Committee of the University of Wuerzburg, and all pro-
cedures involved were in accordance with the latest version (fifth revi-
sion) of the Declaration of Helsinki.

The fMRI task consisted of passively viewing four types of emotional
faces. Anxious, Happy, Neutral and Sad facial expressions were used in a
blocked design, with each block containing pictures of faces from 8 in-
dividuals obtained from the Karolinska Directed Emotional Faces data-
base: http://www.emotionlab.se/resources/kdef database. Every block
was randomly repeated 4 times. Subjects were instructed to attend to the
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faces and empathise with the emotional expression. Images acquisition
details can be found in previous publication using this dataset (Hahn
et al., 2011).

The images were preprocessed using the Statistical Parametric Map-
ping  software  (SPM5,  https://www.fil.ion.ucl.ac.uk/spm/softw
are/spm5/). Slice-timing correction was applied, images were real-
igned, spatially normalised and smoothed using an 8 mm FWHM
Gaussian isotropic kernel. For each participant, a General Linear Model
(GLM) was applied in which each emotion was modeled by the convo-
lution of the blocks with the hemodynamic response function. The
contrast images corresponding to each emotion were used for the clas-
sification models. More specifically, for each subject we combined four
different contrast images, corresponding to the brain activations to the
four different emotional faces: Anxious, Happy, Neutral and Sad.

From the non-imaging information contained in the Depression
dataset, we generated a list of 48 different clinical and demographic
variables, including age, gender and several results from psychological
tests as Karolinska Directed Emotional Faces (Lundqvist et al., 1998) test,
the Sensitivity to Punishment/Reward Questionnaire (Torrubia et al., 2001),
tests of processing speed (approx. IQ) (Vernon, 1993), Montgomery-Asberg
depression rating scale (Montgomery and Asberg, 1979), Self-report ques-
tionnaire of depression severity (Beck et al., 1996), Positive-Negative Affect
Schedule (Crawford and Henry, 2004) and State-Trait inventory (Spiel-
berger, 1989) (see Appendix A, Table B.13 for the complete list).

It is important to highlight that this dataset includes a very hetero-
geneous group of patients, i.e. the training labels are extremely “noisy”
and unreliable. In fact, there is a very large body of evidence that
depression is highly heterogeneous (regardless of the level of symptoms
or duration of the disorder) and therefore from a machine learning
perspective the labels of the depressed patients can be considered very
“noisy”. For example, different combination of depression symptoms can
lead to 227 unique symptoms profiles for major depressive disorder
(MDD) using the Diagnostic and Statistical Manual (DSM)-5 criteria
(Fried and Nesse, 2015). This means that a sum score of 18 points on a
Beck Depression Inventory (BDI) scale might mean something funda-
mentally different for two patients. Furthermore, there is also evidence
that MDD has low reliability. A DSM-5 field trials showed that MDD is
one of the least reliable diagnosis, with inter-rate reliability of 0.28
(Takasaki and Kajitani, 1990). Since the definition of depression is not
unique, it is not possible to estimate the proportion of the sample that
were likely to have been mislabeled. However, heterogeneity is not
unique to depression but present in all psychiatric disorders. The limi-
tation of categorical labels in psychiatry is well known and has led to the
development of the research domina criteria framework (RDoC) by the
National Institute of Mental Health in United States (Insel et al., 2010).

3.2. Experimental settings

We combine features derived from the images (each voxel is consid-
ered as a single feature) with sets of selected clinical and demographic
features. In the following we will refer to (linear single-feature) basic
kernels or directly to features without distinction.

In our experiments, we consider different subsets and different frag-
mentations of the whole information contained in the datasets. The
considered linear kernels (or features) are divided in 7 different sets:

I represents all image features in one single linear kernel (in case of
the fMRI dataset which contains 4 images it corresponds to concate-
nating all the features in only one kernel).

C represents the whole clinical/demographic information in one
single linear kernel.

I+ C is the kernel containing all the voxels and all the clinical/de-
mographic features, which corresponds to the simplest way of
combining (or concatenating) the different sources.

I & C is the grouping of information with one group for each imaging
information (sMRI or fMRI) each one containing all the voxels and
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one group for the clinical/demographic information. This way of

grouping the data is exploited in the context of RF methods, in order

to maintain a feasible computational complexity.

I & ¢ is the family of basic kernels that contains a single linear kernel

for each whole image (i.e. one kernel per image) plus one kernel for

each clinical/demographic feature. In this case, we are able to tune
the importance of the single clinical feature, and make the correct
trade-off between clinical information and image information.

7" is the family of basic kernels (or basic features) that contains one

kernel for each voxel. Each single voxel can be weighted or selected,

pointing out the relevant voxels of the MR images.

o 7" & 7 is the family of basic kernels (or basic features) that contains
one kernel for each voxel plus one kernel for each clinical feature.
This is the most flexible model which is able to point out the relevant
voxels and clinical/demographic features.

Our new methodology exploits the 7" & # set and it can be divided
in three principal steps. The first step is the extraction of the features and
their vectorization. Then, as a second step, we apply our algorithm
(EasyMKLFS) to weight and select the features. Finally, we are able to
generate a sparse (linear) model by using the obtained kernel in a clas-
sifier (e.g. SVM). The idea behind our methodology is summarized in
Fig. 1. Specifically, in the present work we used the SVM as a classifier as
it is a machine learning algorithm that performs very well in many
different type of problems.

3.3. Comparison with other methods
We performed a balanced accuracy comparison (i.e., the average
between sensitivity and specificity) considering 6 different families of

methods:

e Baseline: Linear SVM (Cortes and Vapnik, 1995), using the linear
kernels generated using the whole images (I), clinical information (C)

_’01—
U9
—_—
Us
o
(&)
Clinical —
data
| Gt |
Vectorization
of the raw features
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or both (I+ C). It is used as baseline to understand the challenge of
the classification tasks.

e FS: the second family of approaches is comprised of two feature se-
lection (FS) methods. We applied these algorithms considering each
voxel of the images as a single feature ( 7”) or adding both one feature
per voxel and one feature for each clinical information ( 7" & #). The
first method is the SVM RFE (Guyon et al., 2002), which corresponds
to the standard recursive feature elimination approach. RFE considers
the importance of individual features in the context of all the other
features, it has the ability to eliminate redundancy, and improves the
generalization accuracy (Mwangi et al., 2014). The second one is the
SVM t-test, a heuristic method that exploits a statistical test for
evaluating the importance of the features. The selected features are
then used in a SVM. In this case the feature selection is univariate
therefore it is not able to take into account the interactions between
features (Peck and Devore, 2011).

e RF: the third comparison is with respect to the RF-based approaches.
The RF methods select the relevant features, in each modality, inde-
pendently with respect to the other sources of information. In this
sense, we consider RF exploiting the I & C as segmentation of the
sources of information in order to highlight the differences compared
to the other presented methodologies. We implement two methods,
namely Gray (Gray et al., 2013) and Pustina (Pustina et al., 2017),
where the RF algorithms are the key in order to find the best repre-
sentation of the single source of information. These methods are not
kernel-based methods, and are composed by a pipeline of different
algorithms. We tried to make the comparison as fair as possible, but
we are aware that the authors in Gray et al. (2013) highlighted that a
direct comparison with other existing methods is hard to perform due
to problems such as the inclusion of different subjects and modalities,
as well as the use of different methods for feature extraction and
cross-validation. Moreover, we highlight that the computational
complexity of these methods is significantly higher than the others.
For this reason, they are not able to handle a larger number of
different sources of information.

vpweight - - w>p _  _
—_— ’U).,,l —_— w’v1
—_— Wy, | —— 0
— | Wy, | — |wy,
We,y We,
—_— | Wey | —— 0
> [We, > 10

Feature weighting and selection

~—

EasyMKLFS

IZ Sparse model WEJ

Fig. 1. Our framework with the three principal steps: (1) extraction of the raw features (from MRIs, i.e. vq,..., vs, and from clinical data, i.e. c1,...,c;); (2) evaluation of

the important information by using EasyMKLFS for feature weighting and selection; (3) generation of the final sparse model.
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e MKL: the fourth comparison is against the standard MKL methodol-
ogy. Firstly, we used SimpleMKL (Rakotomamonjy et al., 2008), a
well known MKL iterative algorithm that implements a linear
approach based on a sparse combination of the kernels. Secondly, we
used EasyMKL, a recent MKL algorithm presented in Section 2.2 and
Appendix A. We provided to these algorithms a family of basic kernels
composed by one kernel per image and one kernel per clinical in-
formation I & # (i.e. a small family of basic kernels).

FW: in this group we applied a different point of view for the MKL
(Aiolli and Donini, 2015). In this new context, we consider MKL as a
feature weighting algorithm and we provide to EasyMKL a single
kernel for each feature (voxels and clinical information, i.e. 7" & #).
We are not able to compare EasyMKL with SimpleMKL in this setting,
because of the computational and memory requirement of this
algorithm.

FWS: the last comparison is our EasyMKLFS, which consists in a
combination of MKL with FW and FS, as described in Section 2.4. We
tested our method with one kernel per voxel ( 7), and one kernel per
voxel plus one kernel per clinical information (7" & #) as basic
kernels.

The kernels, generated by MKL, FW and FWS methods, are plugged
into a standard SVM. In this way, we are able to compare the quality of
different kernels avoiding the possible noise given by different classifiers.
As highlighted before, the RF-methods are based on a different classifier.
In the following, we tried to maintain the comparisons as fair as possible.

It is important to highlight that our approach, similarly to the other
approaches used for comparison, have the following two main assump-
tions: (i) there are features in the data that are able to distinguish be-
tween two groups, despite of their within-group heterogeneity. (ii)
different sources of information might carry complementary information
for the classification task and, consequently, combining them can be
advantageous.

For both datasets, we used the Wilcoxon signed-rank test (Demsar,
2006) to compare the proposed algorithm (EsasyMKLFS) with the other
methods. More specifically, we tested whether the proposed algorithm
provided statistically significant different predictions with respect to the
other methods. We used the Bonferroni correction to account for multiple
comparisons, therefore the p-value threshold for rejecting the null hy-
pothesis that two classifiers are not different was 0.05 divided by the
number of comparisons (i.e. 8 for both datasets).

3.3.1. Validation

All the experiments are performed using an average of 5 repetitions of
a classic nested 10-fold cross-validation. We fixed the same distribution
of the age of the patients among all the subsets.

The validation of the hyper-parameters has been performed in the

family of C € {0.1,1,5,25} for the SVM parameter, 1 € {1% :v=0.0,

0.1,...,0.9,1.0} for the EasyMKL parameter, p € {# :i=0,1, ...,20}

(where m is the number of the features) for the EasyMKLFS parameter.
We fixed the percentage of dropped features at each step of the feature
selection approaches (RFE and t-test) equal to the 5% (using higher
percentages deteriorates the results).

Specifically, we reported the average of 5 repetitions of the following
procedure:

e The dataset is divided in 10 folds f1, ..., f1o respecting the distribution
of the labels and the age of the patients, where f; contains the list of
indexes of the examples in the i-th fold;

¢ One fold fj is selected as test set;

o The remaining nine out of ten folds v; = U}% ; f; are then used as
validation set for the choice of the hyper-parameters. In particular,
another 10-fold cross validation over v; is performed (i.e., nested 10-
fold cross-validation);
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e The set v; is selected as training set to generate a model (using the
validated hyper-parameters);

o The test fold f; is used as test set to evaluate the performance of the
model;

e The collected results are the averages (with standard deviations)
obtained repeating the steps above over all the 10 possible test sets fj,
for each jin {1,...,10}.

3.3.2. Clinical information settings

We considered two different experimental settings. Firstly, we
removed the clinical information which are highly correlated with the
labels. Note that, in both cases, dementia and depression, the diagnosis or
labels are derived from clinical measures due to the lack of biomarkers,
therefore by excluding clinical information highly correlated with the
labels we are basically avoiding circularity or double dipping in the
analysis. We performed a t-test between each individual feature and the
corresponding label, and then excluded the ones that were statistically
correlated with the labels by using p < 0.01 with false discovery rate
(FDR) correction for multiple comparisons. FDR (Benjamini and Hoch-
berg, 2016) is a powerful method for correcting for multiple comparisons
that provides strong control of the family-wise error rate (i.e., the prob-
ability that one or more null hypotheses are mistakenly rejected).

The remaining clinical information after this selection are 25 for the
ADNI dataset and 44 for Depression dataset. The idea is to show that the
improvement of the results is not due to the use of clinical variables
which are directly used by experts to assign the patient labels.

In the second set of experiments, we used all the clinical variables
available. The results of these experiments can be found in the supple-
mentary material, as a sanity check of our datasets and methodologies. A
large increase of accuracy is obtained from this second experiment.
However, these results can be considered over optimistic, as the clinical
features are highly correlated with the labels.

3.4. Weight maps summarization

In the present work we used a method described in Monteiro et al.
(2016) to rank the regions that contribute most to the predictive model
according to the Automated Anatomical Labeling (AAL) Atlas (Tzour-
io-Mazoyer et al., 2002). More specifically, the regions were ranked
based on the average of the absolute weight value within them. There-
fore, regions which contain weights with a large absolute value, and/or
contain several weights with values different from zero, will be ranked
higher.

4. Results

In this section, the results are summarized for both the datasets. When
it is reasonable, we firstly compare all the presented methods considering
only the image or clinical features. Secondly, we compare different
methods to combine heterogeneous data, i.e. images and clinical/de-
mographic information.

4.1. ADNI

In this section we present the results obtained using the ADNI dataset.
The results are presented for the previously described methods: Baseline
(i.e. linear SVM), Feature Selection (FS), Random Forests methods (RF),
Multiple Kernel Learning (MKL), Feature Weighting by using MKL (FW)
and the proposed method Feature Weighting and Selection (FWS). In
Table 2 the results obtained by exploiting only one source of information
are reported, i.e. clinical information or features derived from structural
MRL. It is possible to see that the SVM algorithm with only the clinical
information is not able to generate an effective predictive model. Due to
the small amount of clinical features (with respect to the examples), using
FS or FW would not be effective, therefore, this comparison will not be
presented. Concerning the MR images, there is a small increase in
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Table 2

ADNI Dataset: comparisons of 5 repetitions of a nested 10-fold cross-validation
balanced accuracy using the clinical information selected by a FDR procedure.
The results are divided in 4 families: Baseline, Feature Selection (FS), Feature
Weighting by using MKL (FW) and our method Feature Weighting and Selection
(FWS). R corresponds to the number of kernels used.

Algorithm Kernels R Bal. Acc. %
Baseline SVM C 1 52.12+8.26
SVM 1 1 84.08 +6.94
FS SVM RFE 7" - 86.34 +£6.93
SVM t-test 7 - 85.72+5.32
FW SimpleMKL 7" 168130 Out of memory
EasyMKL 7" 168130 86.12 + 4.54
FWS EasyMKLFS 7" 168130 86.91 +5.12

balanced accuracy when using either feature selection, feature weight-
ing, or both.

The second step is to combine heterogeneous data (image and non-
image features) for prediction. Table 3 shows the results obtained
when we combine both image and clinical features in different ways.
Combining the MR images with the clinical information by concatenation
(i.e. SVM with I+ C) or by using standard MKL or RF approaches pro-
duces a model that is similar (in accuracy) to the one generated by using
only the MR features. A small improvement of the results is obtained by
the feature selection methods (i.e. SVM RFE and SVM t-test). EasyMKL
used as feature weighter provides a larger improvement, because it is
able to select a single weight for each voxel of the MR image. Finally, by
removing the noise from the weights of EasyMKL, the proposed method
(EasyMKLFS) is able to provide the best performance.

In order to compare the predictions of the proposed EasyMKLFS with
respect to the other methods we used the non-parametric Wilcoxon
signed-rank test (Demsar, 2006). The results of these tests are presented
in Table 4. Since there were 8 comparisons, the Bonferroni corrected
p-value is 0.05/8 = 6.25-1073. Not surprising the test showed a sig-
nificance difference between the proposed methods with respect to all
compared approaches, and the one with the performance most similar to
the EasyMKLFS is the EasyMKL.

Fig. 2 shows the selection frequency for the FS sparse methods (SVM
RFE and SVM t-test) or the average of the weights 5 (for EasyMKLEFS),
respectively, overlaid onto an anatomical brain template, which can be
used as a surrogate for consistency. These maps show that all approaches
find brain areas previously identified as important for neuroimaging-
based diagnosis of Alzheimer (e.g. bilateral hippocampus and amyg-
dala). However, the SVM RFE and SVM t-test also select features across
the whole brain potentially related to noise, while the EasyMKLFS selects
almost exclusively voxels within the hippocampus and amygdala. In
Table 5 we present the top 10 most selected regions by each method
(SVM RFE, SVM t-test and EasyMKLFS).

Table 3

ADNI Dataset: comparisons of 5 repetitions of a nested 10-fold cross-validation
balanced accuracy using the clinical information selected by a FDR procedure.
The results are divided in 5 families: Baseline, Feature Selection (FS), Random
Forests-based family (RF), standard Multiple Kernel Learning (MKL), Feature
Weighting by using MKL (FW) and our method Feature Weighting and Selection
(FWS). R corresponds to the number of kernels used.

Algorithm Kernels R Bal. Acc. %
Baseline SVM I+C 1 84.10+£7.92
FS SVM RFE 7 & € — 86.53 £5.99
SVM t-test 7 &€ - 86.01 +5.17
RF Gray I1&C — 85.99+10.73
Pustina 1&C - 84.34+11.14
MKL SimpleMKL 1& 7 26 84.29 £11.78
EasyMKL 1& 7 26 84.47 +£7.28
FW SimpleMKL 7 & € 168155 Out of memory
EasyMKL 7 & € 168155 87.97 £6.59
FWS EasyMKLFS 7 & T 168155 92.38+7.27
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Table 4

ADNI Dataset: results of the Wilcoxon signed-rank test comparing EasyMKLFS
with respect to the others. Smaller p-values mean an higher difference between
the models and, in our case, the Bonferoni corrected p-value is 0.05/8 =
6.25-1073.

Algorithm p-value w.r.t. EasyMKLFS
Baseline SVM 2.7-107°
FS SVM RFE 3.2.107°
SVM t-test 5.6-107*
RF Gray 1.9-1077
Pustina 9.1-10°°
MKL SimpleMKL 3.8-10*
EasyMKL 3.7-10*
FW EasyMKL 1.7-1073

In Fig. 3, the weights assigned to the clinical information by EasyMKL
are depicted. These weights are generated by using 7" & ¢ as family of
basic kernels. The top 5 highest weights are assigned to some of the
clinical information concerning the MMSE questionnaire, specifically the
task related to write a sentence (MMWRITE), put a paper on the floor
(MMONFLR), repeat a name of an object (the word “tree” for MMTREE
and the word “flag” for MMFLAG) and answer to a simple question about
an object (in this case a wrist watch for MMWATCH). See Table B.12 for
further information.

Fig. 4 depicts the cumulative weight assigned by EasyMKLFS to each
source of information (sMRI and clinical information). These weights
show that the importance of the sMRI images is larger than the clinical
data. Nevertheless, the accuracy results show that the clinical features
contributed to the improvement of the final predictive model (changing
the performance of our method from 86.91% to 92.38% balanced accu-
racy, in this classification task).

4.2. Depression

In this section we present the results obtained using the Depression
dataset. Table 6 shows the results obtained by exploiting each source of
information alone, i.e. the clinical data or the combination of the four
fMRI derived images of each subject (brain activation to Anxious, Happy,
Neutral and Sad faces). These results highlight the challenge of this
classification task. In this case, the clinical features bring a good amount
of information, which is comparable with the information contained in
the fMRI. In fact, the best accuracy of the single source methods is
79.67% for Linear SVM with the clinical data, and 68% with EasyMKL
with the fMRIs features. Due to the fact that this dataset includes a very
heterogeneous group of patients, the training labels are extremely
“noisy” and unreliable. For this reason, the standard feature selection
methods (i.e. SVM RFE and SVM t-test) fail to select the relevant voxels.
Our method showed a similar performance to EasyMKL (used as a simple
feature weighter) but it is able to produce a sparser solution, providing
more interpretability when compared with a dense model.

Similarly to the previous example, we avoid the comparison of FS or
FW methods using only the clinical information, due to the low dimen-
sionality of the problem with respect to the number of the examples.

Table 7 shows the results by combining the fMRI derived features
with the clinical information. For this challenging classification task, the
FS methods showed similar performance with and without the clinical
information. Some improvement is obtained by the RF approaches,
however a slightly bigger improvement is provided by the standard MKL
methods (with an accuracy of 79.67% for SimpleMKL). The results of the
EasyMKL, EasyMKL as FW, and our method (EasyMKLFS), are compa-
rable to standard MKL. However, once again, our method produces a
sparse model, which is more interpretable.

As for the ADNI dataset, we compared the different methods with
respect the proposed EasyMKLFS concerning the predictions performing
the non-parametric Wilcoxon signed-rank test (Demsar, 2006). The re-
sults of the p-values obtained from of these tests are presented in Table 8.
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(a) SVM RFE with V & C.

(b) SVM t-test with V & C. (c¢) EasyMKLFS with V & C.

Fig. 2. ADNI dataset: comparison of voxels selection frequency (RFE and t-test) and weights (EasyMKLFS), overlayed onto an anatomical template.

Table 5
ADNI dataset: the top 10 most selected brain regions for SVM RFE, SVM t-test and EasyMKLFS (with respect to the assigned weights) with the number of selected voxels.
SVM RFE voxels SVM t-test voxels EasyMKLFS voxels
Amygdala-L 188 Amygdala-L 202 Amygdala-L 121
Amygdala-R 210 Amygdala-R 231 Amygdala-R 102
Hippocampus-L 713 Hippocampus-L 747 Hippocampus-L 255
Hippocampus-R 659 ParaHippocampal-L 798 Hippocampus-R 264
ParaHippocampal-L 738 Hippocampus-R 739 ParaHippocampal-L 142
ParaHippocampal-R 725 ParaHippocampal-R 877 ParaHippocampal-R 88
Temporal-Inf-L 1844 Temporal-Inf-L 2622 Vermis-4-5 30
Vermis-8 165 Fusiform-L 1734 Temporal-Inf-L 118
SupraMarginal-L 653 Temporal-Inf-R 2694 SupraMarginal-L 37
Vermis-7 110 Fusiform-R 1723 Lingual-L 32
= 1
o0
=
%]
= ADNI dataset - Clinical st® E 0.5
MMDRAW {110+ 3
MMWRITE 10.35 g
MMREAD [05.82. 102 S
MMONFLR 1 0.26
MMFOLD 1 1.2-10-3 MRI Clinical
MMHAND 1.9-1073 Source of information
I\'II\/IBEPEAT 310 47. Fig. 4. EasyMKLFS assigned weights for the different sources of information:
MMPENCIL f7.4-10~ MR images and clinical measurements
MMWATCH [6.49- 102 ’
MMBALLDL {773.1-1072
MMW 133 10-2 Similarly to the previous dataset the Bonferroni corrected p-value is
MMO J9-10-4 0.05/8 = 6.25-102. The differences are significant for all the methods
MMR J12-10°3 but EasyMKL. EasyMKL is a fundamental part of the proposed algorithm.
MML |4-10* EasyMKLFS combines the properties of EasyMKL with feature selection.
MMD 3-1073 The uncertainty of the labels and the amount of noise in the Depression
MMTRIALS -0 dataset probably makes the feature selection step not as beneficial as in
MMTREE {7802 1072 the previous example.
MMFLAG [T7716.57- 1072 Fig. 7 shows the selection frequency of the sparse FS methods (SVM
MMBA.LL 0 RFE and SVM t-test) or the average of the weights 5 (for EasyMKLFS)
RAVLT forgetting |7.10-4 overlaid onto an anatomical brain template, which can be used as a
APOE4 171 2.91 ',1072 surrogate of consistency. For each method, we present the selection
PTEDUCAT J4.6- {27‘3 frequency or the average of the weights for the four fMRI derived images
PTGENEE% f; 1374 (i.e. brain activation to Anxious, Happy, Neutral and Sad faces). In Ta-
’ bles 9 and 10, we present the top 10 brain regions selected for each
method (SVM RFE, SVM t-test and EasyMKLFS), and for each fMRI
0 5.10-20.1 015 0.2 025 03 0.35 0.4 derived image. The vast majority of these regions has been previously

Weight 7,

Fig. 3. EasyMKL assigned weights for the clinical information selected by a FDR
procedure exploiting 7" & ¢ as family of basic kernels for the ADNI dataset.
The top 5 highest weights are assigned to the clinical data (see Table B.12 for
further information): MMWRITE, MMONFLR, MMTREE, MMFLAG
and MMWATCH.

described in the depression literature. Especially frontal and temporal
areas, as well as subcortical regions, such as: the hippocampus, the
amygdala, and parts of the reward system (e.g. the pallidum and the
caudate). These regions have been previously identified using both
multivariate pattern recognition approaches, and classic group statistical
analyses (Hahn et al., 2011; Keedwell et al., 2005; Epstein et al., 2006;
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Table 6

Depression Dataset: comparisons of 5 repetitions of a nested 10-fold cross-
validation balanced accuracy using the clinical information selected by a FDR
procedure. The results are divided in 4 families: Baseline, Feature Selection (FS),
Feature Weighting by using MKL (FW) and our method Feature Weighting and
Selection (FWS). R corresponds to the number of kernels used.

Algorithm Kernels R Bal. Acc. %
Baseline SVM C 1 79.67 +£12.29

SVM I 1 67.00 = 14.87
FS SVM RFE 7" - 65.33 £12.97

SVM t-test 7" - 62.19 +£10.12
FW SimpleMKL 7" 713816 Out of memory

EasyMKL 7" 713816 68.00 +13.67
FWS EasyMKLFS 7" 713816 67.73 £11.32

Table 7

Depression Dataset: comparisons of 5 repetitions of a nested 10-fold cross-
validation balanced accuracy using the clinical information selected by a FDR
procedure. The results are divided in 5 families: Baseline, Feature Selection (FS),
Random Forests-based family (RF), standard Multiple Kernel Learning (MKL),
Feature Weighting by using MKL (FW) and our method Feature Weighting and
Selection (FWS). R corresponds to the number of kernels used.

Algorithm Kernels R Bal. Acc. %
Baseline SVM I+C 1 67.00 = 14.87
FS SVM RFE 7 & € — 64.99 +£13.01

SVM t-test 7 & C - 62.72+11.12
RF Gray I1&C — 75.34 +16.34

Pustina I1&C — 73.88 £15.19
MKL SimpleMKL 1& 7 45 79.67 £13.11

EasyMKL 1& 7 45 79.61 £14.12
Fw SimpleMKL 7 &€ 713860 Out of memory

EasyMKL 7 &€ 713860 80.02 +11.32
FWS EasyMKLFS 7 & C 713860 80.01 +10.11

Table 8

Depression Dataset: results of the Wilcoxon signed-rank test comparing
EasyMKLFS with respect to the others. Smaller p-values mean an higher differ-
ence between the models and, in our case, the Bonferoni corrected p-value is
0.05/8 =6.25-1073.

Algorithm p-value w.r.t. EasyMKLFS
Baseline SVM 8.6-107°
FS SVM RFE 3.8-10*
SVM t-test 1.2-10°4
RF Gray 43.10°°
Pustina 7.8-107*%
MKL SimpleMKL 1.8-10°4
EasyMKL 46-107*
FW EasyMKL 9.6-10°3

Miller et al., 2015).

Fig. 5 depicts the weights assigned by EasyMKL for the clinical in-
formation. The family 7" & # has been used for the basic kernels. For
this dataset, the top 5 highest weights are assigned to the following
clinical information: the Negative Affect Schedule (PANAS neg), the
mean valence ratings for male neutral and sad faces (from KDEF, i.e.
KDEF _val_neu_m and KDEF _val_sad_m), the mean arousal rating for male
happy faces (from KDEF, i.e. KDEF _aro_hap_m) and an extracted feature
from the State-Trait anger expression inventory test (STAXI_TAT). See
Table B.13 for further information.

Fig. 6 shows the sums of the weights that are assigned for each in-
formation source (4 fMRI derived images plus the clinical information)
by our method.

5. Discussion

The main goal of this paper is to present an effective methodology to
combine and select features from different sources of information (SMRI/
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Fig. 5. EasyMKL assigned weights for the clinical information selected by a FDR
procedure exploiting 7” & ¢ as family of basic kernels for the Depression
dataset. The top 5 highest weights are assigned to the clinical data (see
Table B.13 for further information): PANAS_neg, KDEF_val neu_m, KDEF val -

sad_m, KDEF_aro_hap_m and STAXI_TAT.

fMRI, clinical and demographic information) in order to classify patients
with mental health disorders versus healthy controls. The proposed
method (EasyMKLFS) obtained better or similar accuracy than several
compared machine learning approaches with higher levels of sparsity,
therefore consistently improving interpretability.

More specifically, by using the ADNI dataset, we were able to obtain a
significant improvement in the classification accuracy, potentially due to
absence of strong source of noise in the data and presence of predictive
information in the considered sources of information. On the other hand,
in the Depression dataset, we obtained a comparable accuracy to the MKL
gold standard methods. The lack of a significant improvement in classi-
fication accuracy for the depression dataset might be explained by the
noise in the fMRI data and higher label uncertainty for this task (i.e. high
heterogeneity in the depressed group). More importantly, in both the
cases, the EasyMKLFS provides the sparser solution. This particular result
improves the interpretability of our models, identifying which features
are driving the predictions.

In the context of machine learning, interpretability of a model often
refers to its ability to identify a subset of informative features. In contrast,
in neuroscience and clinical neuroscience, researchers often wants to
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Fig. 6. EasyMKLFS assigned weights for the different sources of information of
the Depression dataset: Anxious image, Happy image, Neutral image, Sad image
and clinical measurements.

(j) Sad, SVM RFE.

(k) Sad, SVM t-test.

(1) Sad, EasyMKLFS.

Fig. 7. Depression dataset: comparison of voxels selection frequency (RFE and t-
test) and weights (EasyMKLFS) by using 7” & 7, overlayed onto an anatom-
ical template.

understand why a specific feature contribute or is informative to a pre-
dictive model. Unfortunately, answering the question of why a feature is
informative to a predictive model is not straightforward and has been
topic of a number of studies in the field of neuroimaging (e.g. Haufe et al.,
2014; Weichwald et al.,, 2015; Schrouff et al., 2018; Schrouff and
Mourao-Miranda, 2018). These studies have shown that a feature can be
included in a model due to different reasons (e.g. a feature might be
informative because it has consistently high/low value for one class with
respect to the other class or because it helps cancelling correlated noise).
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Table 9

Depression dataset: the top 10 most selected brain regions for SVM RFE, SVM t-
test and EasyMKLFS (with respect to the assigned weights) with the number of
selected voxels.

Anxious
SVM RFE voxels  SVM t-test voxels  EasyMKLFS voxels
Calcarine-L 783 Pallidum-L 147 Calcarine-L 266
Occipital-Sup- 364 Putamen-L 514 Temporal-Sup- 237
R L
Frontal-Sup- 692 SupraMarginal- 874 Occipital-Sup- 134
Medial-R R R
Calcarine-R 532 Occipital-Sup- 517 Paracentral- 82
R Lobule-R
Temporal-Sup- 655 Postcentral-R 1617 Frontal-Mid-L 394
L
Parietal-Sup-L 534 Frontal-Mid-L 1793 Frontal-Sup-R 319
Frontal-Mid-L 1104 Paracentral- 296 Frontal-Sup- 157
Lobule-R Medial-R
Paracentral- 224 Calcarine-R 662 Frontal-Inf-Tri- 184
Lobule-R L
Temporal-Sup- 869 Frontal-Sup-R 1395 Frontal-Inf- 69
R Oper-L
Cingulum-Mid- 629 Cuneus-R 481 Temporal-Mid- 318
L R
Happy
SVM RFE voxels  SVM t-test voxels  EasyMKLFS voxels
SupraMarginal- 358 Cingulum-Ant- 630 Temporal-Sup- 366
L R L
Temporal-Sup- 666 Cuneus-R 587 SupraMarginal- 204
L L
Calcarine-L 805 Temporal-Sup- 677 Paracentral- 73
L Lobule-R
Precentral-R 1063 Hippocampus- 311 Calcarine-L 222
L
Insula-R 335 Putamen-R 388 Precentral-R 268
Putamen-R 216 Hippocampus- 449 Insula-R 128
R
Temporal-Mid- 1339 Calcarine-R 715 Putamen-R 64
R
Caudate-R 295 Caudate-L 548 Frontal-Mid-L 365
Caudate-L 331 Thalamus-L 500 Caudate-L 87
Calcarine-R 474 Cuneus-L 652 Frontal-Sup-R 311

In the present work we use the machine learning definition of model
interpretability or informativeness. The identified features were
compared with previous literature in terms of how they overlap with
regions previously described as important for discriminating dementia
and depression from healthy subjects.

It is important to note what makes our method different from the
standard approaches to combine heterogeneous information for neuro-
imaging based diagnosis. EasyMKLFS works in a framework where the
initial information is fragmented in small and low informative pieces,
and without exploiting some a priori knowledge from an expert. Due to
the particular ability of EasyMKL to combine huge amounts of different
kernels (i.e. one per feature), we are able to weight all of them. This first
difference with respect to the state-of-art MKL applications is crucial, in
fact, other MKL methods often combine only a small set of different
sources manually selected. Our method is able to work without this bias
and obtain better or similar performance as previous methods. Finally,
the last step of EasyMKLFS is able to find a very sparse model, unifying in
synergy the characteristics of feature weighting (i.e. MKL with a large
amount of basic kernels) and feature selection.

When compared to the RF-based approaches, our method obtains
better accuracy and, as in the MKL case, the main difference is the
computational complexity of these methods. In fact, the two RF-based
methodologies (i.e. Pustina and Gray) have an increase in computa-
tional time to perform the training that is orders of magnitude higher
when the number of different sources of information increase. Moreover,
these approaches are a mixture of heuristics and algorithms, not easily
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Depression dataset: the top 10 most selected Atlas Regions of the brain for SVM RFE, SVM t-test and EasyMKLFS (with respect to the assigned weights) with the number

of selected voxels.

Neutral

SVM RFE voxels SVM t-test voxels EasyMKLFS voxels
Temporal-Sup-L 775 Hippocampus-L 447 Temporal-Sup-L 398
Amygdala-R 115 Thalamus-L 624 SupraMarginal-L 175
Temporal-Mid-R 1444 Hippocampus-R 547 Pallidum-R 44
SupraMarginal-L 388 Amygdala-R 131 Amygdala-L 26
Amygdala-L 79 Temporal-Sup-L 877 Thalamus-L 129
Thalamus-L 461 Putamen-R 488 Temporal-Mid-R 470
Pallidum-R 97 Putamen-L 426 Hippocampus-L 82
Hippocampus-R 329 Temporal-Mid-R 1618 Hippocampus-R 86
Caudate-R 299 Caudate-R 441 Putamen-R 75
Hippocampus-L 238 ParaHippocampal-L 359 Precentral-R 260
Sad

SVM RFE voxels SVM t-test voxels EasyMKLFS voxels
Parietal-Sup-L 717 Amygdala-R 117 Temporal-Sup-L 342
Temporal-Sup-L 760 Postcentral-R 1462 SupraMarginal-L 159
SupraMarginal-L 383 Cingulum-Ant-R 554 Precentral-R 310
Precentral-R 986 Temporal-Sup-L 783 Parietal-Sup-L 199
Caudate-L 213 Caudate-L 398 Caudate-L 87
Insula-L 506 Parietal-Sup-L 934 ParaHippocampal-L 69
Thalamus-L 313 Hippocampus-L 342 ParaHippocampal-R 68
Temporal-Pole-Sup-L 269 Occipital-Sup-R 598 Insula-L 122
Postcentral-R 768 Frontal-Mid-L 1625 Frontal-Inf-Tri-L 150
Occipital-Mid-R 556 Putamen-R 303 Frontal-Mid-L 256

comparable to the other well-theoretically-grounded machine learning
methods used in the paper.

In our experiments, we reported the average accuracy of each method
together with its standard deviation. This procedure is broadly used
when comparing machine learning methods. For the sake of complete-
ness, we have compared the performance of the proposed algorithm,
EasyMKLFS, with each of the other methods using the Wilcoxon signed-
rank test (Demsar, 2006). Results from these comparisons show that the
EasyMKLFS was significantly better than all other methods for the ADNI
dataset and significantly better than all but the EasyMKL for the
depression dataset. The lack of improvement with respect to the
EasyMKL for the Depression dataset suggests that for heterogeneous
datasets with high label uncertainty (i.e. datasets that contain subgroups
of subjects with different characteristics) the feature selection step might
not be advantageous. Unfortunately, label uncertainty is a common issue
in psychiatry disorders. Current diagnostic categories in psychiatric are
only based on symptoms and behaviours due to the lack of biomarkers in
psychiatry (Phillips, 2012). There is a lot of evidence that the boundary
of these categories do not alight with neuroscience, genetics and have
also not been predictive of treatment response (Insel et al., 2010).
Another evidence of the impact of class heterogeneity on the perfor-
mance of neuroimaging based classifiers can be found in Varoquaux et al.
(2017) where the author shows a negative correlation between reported
accuracy and sample size for many diagnostic applications. Bigger sam-
ples are likely to be more heterogeneous than small ones. In summary,
taken together, these results demonstrate the effectiveness of our meth-
odology in two different classification tasks, obtaining similar or higher
accuracy than the compared methods with higher interpretability.

The EasyMKLFS was able to identify, for both datasets, sMRI/fMRI
and clinical/demographic features that overlap with features previously
identified as relevant for discriminating demented and depressed pa-
tients from healthy controls. More specifically, for the ADNI dataset, the
top most selected brain regions according to the AAL atlas were bilateral
amygdala, hippocampus and parahippocampus. The top most selected
clinical information were items of the Mini-Mental State Examination
(MMSE). The MMSE is a 30-point questionnaire that is used extensively
in clinical and research settings to measure cognitive impairment (Fol-
stein et al., 1975). The depression dataset consisted of four brain images,
representing fMRI patterns of brain activation to different emotional

226

faces (Anxious, Happy, Neutral and Sad), in addition to the clinical in-
formation. The top most selected brain regions across the different
emotions included frontal and temporal areas, as well as subcortical re-
gions, such as: the hippocampus, the amygdala, and parts of the reward
system (e.g. the pallidum and the caudate). All these regions have been
has been previously described in the depression literature (Hahn et al.,
2011; Keedwell et al., 2005; Epstein et al., 2006; Miller et al., 2015). The
top most selected clinical information for the depression dataset was the
Negative Affect Schedule (PANAS neg). The Positive and Negative Affect
Schedule (PANAS) is a self-report questionnaire that measures both
positive and negative affect (Watson et al., 1988). Previous studies have
shown that individuals with higher Negative Affect (NA) trait (neuroti-
cism) show heightened emotional reactivity (Haas et al., 2006) and
experience more negative emotions (Clark et al., 1994). Higher NA trait
has been also associated with poor prognosis (Clark et al., 1994) and
predictive of onset of major depression (Ormel et al., 2004). Further-
more, a recent study showed that it is possible to decode individuals NA
trait from patterns of brain activation to threat stimuli in a sample of
healthy subject (Fernandes et al., 2017). Our results corroborate with
these previous studies and support the evidence that Negative Affect trait
might have important clinical implications for depression.

From a clinical perspective, the proposed approach addresses the two
fundamental challenges arising from the unique, multivariate and multi-
modal nature of mental disorders (for an in-depth discussion of both
conceptual challenges, see Hahn et al. (2017)). On the one hand, mental
disorders are characterized by numerous, possibly interacting biological,
intrapsychic, interpersonal and socio-cultural factors (Kendler, 2016;
Maj, 2016). Thus, a clinically useful patient representation must, in many
cases, include data from multiple sources of observation, possibly span-
ning the range from molecules to social interaction. Even within the field
of neuroimaging, we see a plethora of modalities used in daily research;
including e.g. task-related and resting-state fMRI, structural MRI data
and Diffusion Tensor Imaging (DTI) approaches. All these modalities
might contain non-redundant, possibly interacting sources of informa-
tion with regard to the clinical question. In fact, it is this peculiarity —
distinguishing psychiatry from most other areas of medicine — which has
hampered research in general and translational efforts for decades.
Overwhelming evidence shows that no single measurement — be it a
voxel, a gene or a psychometric test — explains substantial variance with
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regards to any practically relevant aspect of a psychiatric disorder
(compare e.g. Ozomaro et al. (2013)). In addition, many if not most
variables are irrelevant for the particular question addressed. It is this
profoundly multivariate nature of mental disorders that necessitates
dimensionality reduction or feature-selection approaches when using
whole-brain neuroimaging data. The fact that EasyMKLFS now addresses,
both, the issue of feature selection and multi-modal data integration in a
single, mathematically principled framework constitutes a major step
forward. From a health economic point of view, approaches such as this
one are especially noteworthy, as they have the potential not only to
identify the best-performance, but also the most efficient model. By using
EasyMKLFS, it is possible to directly test which sources of information are
non-redundant with regards to the model's performance.

From the perspective of biomarker research, it is particularly impor-
tant that EasyMKLFS provides a means to investigate and visualize the
predictive model. Using MKL weights in combination with feature se-
lection provides information regarding feature importance for single
features, as well as for data sources, while guaranteeing sparsity. Our
results show that, compared for example to a classic t-test, the visuali-
zation appears much less noisy and focused, dramatically increasing
interpretability. Accordingly, we were able to identify many of the key-
regions known to be involved in the mental diseases while maintaining
a rather focused list of areas.

Despite our encouraging results, the method does present some lim-
itations. Firstly, our method was not able to show an improvement in
performance when the classification task is very noisy (i.e. for unreliable
patients’ labels), as in the Depression dataset. Heterogeneity is a common
problem in psychiatry and has led to the development of the Research
Domain Criteria (RDoC) framework that supports new approaches to
investigating mental health disorders integrating multiple levels of in-
formation (from genomics and circuits to behavior and self-reports) in
order to explore basic dimensions of functioning that span the full range
of human behavior from normal to abnormal (Insel et al., 2010). Current
psychiatry diagnosis have been considered impediments for advancing
research and for drug development since trials are likely to be unsuc-
cessful due to these heterogeneity. Based on the evidence that categorical
classifications (or labels) in psychiatry are unreliable a number of alter-
native machine learning approaches have been considered for addressing
clinically-relevant problems such as predicting diseases outcome or
treatment response (Bzdok and Meyer-Lindenberg, 2018; Marquand
et al., 2016). For these types of applications, where we cannot rely on
available labels, we need alternative approaches (e.g. unsupervised
learning) for identifying meaningful subgroups. Nevertheless,

Appendix A. A brief introduction to EasyMKL
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investigating these approaches is outside the scope of the current work.

Moreover, we are also aware that small sample sizes can lead to un-
reliable results (Button et al., 2013), on the other hand all our compar-
isons are across methods within sample. This methodology should
mitigate the impact of having a small set of examples. Finally, another
weak point of the presented methodology is that, in this paper, we
studied only the simplest way to combine the information, by generating
exclusively linear kernels. From this point of view, this is a limitation of
our framework with respect to the strength of the kernels methods.

Considering these limitations, there are two possible future di-
rections. Firstly, the improvement of EasyMKL by using a different reg-
ularizer that is more stable with respect to the heterogeneity in the
patient group. The idea is to split the regularization in two different parts:
the first part for the positive examples, and the second part for the
negative examples. In this way, we might be able to handle classification
with heterogeneous classes better (e.g. the Depression dataset). A second
way to evolve our framework is to fragment and to randomly generate
the source of information, improving the accuracy by injecting non-
linearity. In this sense, a good way to proceed is by randomly gener-
ating small subsets of information from the raw data, then projecting
them onto a non-linear feature space before the weighting and selection
phase. In this way, we might be able to increase the expressiveness of our
features and, consequently, the complexity of the generated model. On
the other hand, we have to be able to bound these new degrees of
freedom, in order to avoid overfitting.

In terms of future applications, the proposed EasyMKLFS approach
has the ability to be applied to other clinical relevant classification tasks
such as distinguishing diseases groups and predicting diseases progres-
sion (see for example He et al. (2016); Gao et al. (2018); Long et al.
(2017)). As shown in our results, the performance of the EasyMKLFS
approach on these applications will be bounded by the reliability of the
labels and informativeness of the considered sources of information.
Moreover, our approach might be also particular beneficial for “big-data”
applications focusing on personalized medicine, where the goal is to
predict future outcomes and/or treatment response by combining larger
sources of patient information.
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As introduced in Section 2.2, EasyMKL (Aiolli and Donini, 2015) is a very efficient MKL algorithm with the clear advantage of having high scalability
with respect to the number of kernels to be combined. In fact, its computational complexity is constant in memory and linear in time.

Technically, EasyMKL finds the coefficients # that maximize the margin on the training set. The margin is computed as the distance between the
smaller convex envelopes (i.e. convex hulls) of positive and negative examples in the feature space, as shown in Figure A.8.

Margin

Convex hull of
positive examples

Convex hull of
negative examples

Fig. A.8. The margin is the distance between the convex hull of the positive examples (in red) and the convex hull of the negative examples (in green). EasyMKL is

able to find a combination of kernels that maximizes this distance.
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In particular, EasyMKL tries to optimize the following general problem:

R
(n°,7") = arg max min yTY<ZmK,>Y7+ﬂ 7|l>- (A1)
r=0

||| l=1 7€F

where Y is a diagonal matrix with training labels on the diagonal, and 1 is a regularization hyper-parameter. The domain I" represents two probability
distributions over the set of positive and negative examples of the training set, thatis ' = {y € R > y—r1%i = 1,25, 17 = 1} Note that any element

y € T corresponds to a pair of points, the first contained in the convex hull of positive training examples and the second in the convex hull of negative
training examples. At the solution, the first term of the objective function represents the obtained (squared) margin, that is the (squared) distance
between a point in the convex hull of positive examples and a point in the convex hull of negative examples, in the considered feature space.

Eq. (A.1) can be seen as a minimax problem that can be reduced to a simple quadratic problem with a technical derivation described in (Aiolli and
Donini, 2015). The solution of the quadratic problem is an approximation of the optimal y* for the original formulation and due to the particular
structure of this approximated problem, it is sufficient to provide the average kernel of all the trace-normalized basic kernels, i.e.

1 K,
A _ 7
K =% Z Tr(K,)

r=1

For this reason, we can avoid to store in memory all the single basic kernels obtaining a very scalable MKL algorithm (with respect to the number of
kernels).
Finally, from y*, it is easy to obtain the optimal weights for the single basic kernels K, by using the following formula

— Ty K, Yyt
n=v 7r(K,) Y

Vr=1,..,R. (A.2)

Appendix B. A further analysis of ADNI and Depression datasets

In Table B.11, the required memory of the different MKL methods is presented. As already noted, SimpleMKL requires a huge amount of memory to
handle large family of basic kernels. For example, generating one linear kernel for each voxel, we have to provide more than 50 Gb of memory to store
all the required information. EasyMKL and our EasyMKLFS use a fixed amount of memory independently with respect to the number of kernels, due to
the particular definition of the optimization problem (see Sections 2.2 and 2.4).

Table B.11

ADNI dataset: required memory for different methods to handle different families of basic kernels.

Finally, the list of the extracted clinical information from the ADNI and Depression datasets are summarized in Table B.12
and Table B.13 respectively.

Algorithm R Memory Memory (real)
Baseline Linear SVM 1 “(£?) 293 Kb
FS SVM RFE - K‘(ﬂ) 293 Kb
SVM t-test - () 293 Kb
MKL SimpleMKL 26 “(RC?) ~ 10 Mb
EasyMKL 26 “(£?) 293 Kb
FW SimpleMKL 168155 (RE?) ~ 50 Gb
EasyMKL 168155 “(£2) 293 Kb
FWS EasyMKLFS 168155 “(£?) 293 Kb

Table B.12
ADNI clinical information. In italic red, the clinical information removed by the FDR procedure. All the clinical information starting with “MM” are part
of a quite widely used exam that is performed on patients with dementia (Folstein et al., 1975).

ID Clinical Information code Description

1 AGE The age of the subject.

2 PTGENDER The gender of the subject.

3 PTEDUCAT The level of education of the subject.

4 APOE4 The presence of the APOE4 allele.

5 CDRSB Clinical Dementia Rating.

6 ADAS11 Variant of the Alzheimer's Disease Assessment Scale.

7 ADAS13 Variant of the Alzheimer's Disease Assessment Scale.

8 RAVLT immediate Rey Auditory Verbal Learning Test: sum of the scores from first 5 trials (Moradi et al., 2017).
9 RAVLT learning Rey Auditory Verbal Learning Test: score of trial 5 minus the score of trial 1.

10 RAVLT forgetting Rey Auditory Verbal Learning Test: score of trial 5 minus score of the delayed recall.
11 RAVLT perc_forgetting Rey Auditory Verbal Learning Test: RAVLT forgetting divided by score of trial 5.

12 FAQ Functional Assessment Questionnaire.

13 MMSE Total score of Mini-Mental State Examination (Folstein et al., 1975).

14 MMBALL MMSE Task: Repeat name of object (ball).

15 MMFLAG MMSE Task: Repeat name of object (flag).

(continued on next column)
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Table B.12 (continued )
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ID Clinical Information code Description

16 MMTREE MMSE Task: Repeat name of object (tree).

17 MMTRIALS MMSE: Number of trials to complete the naming task.

18 MMD MMSE Task: Spell “world” backwards (letter D).

19 MML MMSE Task: Spell “world” backwards (letter L).

20 MMR MMSE Task: Spell “world” backwards (letter R).

21 MMO MMSE Task: Spell “world” backwards (letter O).

22 MMW MMSE Task: Spell “world” backwards (letter W).

23 MMBALLDL MMSE Task: Remember object named earlier (ball).

24 MMFLAGDL MMSE Task: Remember object named earlier (flag).

25 MMTREEDL MMSE Task: Remember object named earlier (tree).

26 MMWATCH MMSE Task: Show a wrist watch and ask “What is this?”

27 MMPENCIL MMSE Task: Show a pencil and ask “What is this?”

28 MMREPEAT MMSE Task: Ask to repeat a sentence.

29 MMHAND MMSE Task: Ask to take paper with the right hand.

30 MMFOLD MMSE Task: Ask to fold paper in half.

31 MMONFLR MMSE Task: Ask to put paper on the floor.

32 MMREAD MMSE Task: Ask to read and obey a command (“close your eyes™).

33 MMWRITE MMSE Task: Ask to write a sentence.

34 MMDRAW MMSE Task: Ask to draw a copy of a design.

35 MMSCORE Total score of Mini-Mental State Examination

Table B.13
Depression clinical information. In italic red, the clinical information removed by the FDR procedure.
D Clinical Information code Description
1 age The age of the patient
2 zvt_mean Average of all the tests of processing speed (approx. IQ) (Vernon, 1993)
3 zvt_sd Standard deviation of all the tests of processing speed
4 BDLII Self-report questionnaire of depression severity (Beck et al., 1996)
5 MADRS Montgomery-Asberg depression rating scale (Montgomery and Asberg, 1979)
6 SPSRQ_R Reward score of “Sensitivity to Punishment/Reward Questionnaire” (Torrubia et al., 2001)
7 SPSRQ P Punishment score of “Sensitivity to Punishment/Reward Questionnaire”
8 PANAS neg Negative Affect Schedule (Crawford and Henry, 2004)
9 PANAS _pos Positive Affect Schedule
10 STAL G X1
11 STALG X2 }
[State-Trait anxiety inventory (Spielberger, 1989)
12 STAXI S
13 STAXI_.TA
14 STAXI_TAT
15 STAXI_TAR
16 STAXI_AI
17 STAXI_AO
18 STAXI_AC
[State-Trait anger expression inventory (Spielberger, 1988)

19 gender The gender of the patient
20 education The education level of the patient
21 anx_before Visual analog scale of subjective anxiety
22 anx_after Anxiety after the scanning
23 KDEF _val_neutral Mean Valence ratings for neutral faces from the KDEF (Lundqvist et al., 1998) collection
24 KDEF _val_anxious Mean Valence ratings for Anxious faces from the KDEF collection
25 KDEF _val_sad Mean Valence ratings for Sad faces from the KDEF collection
26 KDEF _val_happy Mean Valence ratings for Happy faces from the KDEF collection
27 KDEF aro_neutral Mean Arousal ratings for Neutral faces from the KDEF collection
28 KDEF _aro_anxious Mean Arousal ratings for Anxious faces from the KDEF collection
29 KDEF _aro_sad Mean Arousal ratings for Sad faces from the KDEF collection
30 KDEF _aro_happy Mean Arousal ratings for Happy faces from the KDEF collection
31 KDEF _val_miss Mean Valence rating missing from the KDEF collection
32 KDEF _aro_miss Mean Arousal rating missing from the KDEF collection
33 KDEF _val_neu_fem Mean Valence ratings for female Neutral faces from the KDEF collection
34 KDEF _val neu_m Mean Valence ratings for male Neutral faces from the KDEF collection
35 KDEF _val_anx_fem Mean Valence ratings for female Anxious faces from the KDEF collection
36 KDEF _val_anx_m Mean Valence ratings for male Anxious faces from the KDEF collection
37 KDEF val sad_fem Mean Valence ratings for female Sad faces from the KDEF collection
38 KDEF _val_sad_m Mean Valence ratings for male Sad faces from the KDEF collection
39 KDEF val_hap_fem Mean Valence ratings for female Happy faces from the KDEF collection
40 KDEF _val_hap_m Mean Valence ratings for male Happy faces from the KDEF collection
41 KDEF _aro_neu_fem Mean Arousal ratings for female Neutral faces from the KDEF collection
42 KDEF_aro_neu_m Mean Arousal ratings for male Neutral faces from the KDEF collection
43 KDEF_aro_anx_fem Mean Arousal ratings for female Anxious faces from the KDEF collection
44 KDEF _aro_anx_m Mean Arousal ratings for male Anxious faces from the KDEF collection
45 KDEF _aro_sad_fem Mean Arousal ratings for female Sad faces from the KDEF collection

(continued on next column)
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D Clinical Information code Description

46 KDEF _aro_sad_m Mean Arousal ratings for male Sad faces from the KDEF collection

47 KDEF _aro_hap_fem Mean Arousal ratings for female Happy faces from the KDEF collection
48 KDEF _aro_hap_m Mean Arousal ratings for male happy Faces from the KDEF collection

Appendix C. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.neuroimage.2019.01.053.
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