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Abstract

Allosteric regulation has traditionally been described by mathematically-complex allosteric

rate laws in the form of ratios of polynomials derived from the application of simplifying

kinetic assumptions. Alternatively, an approach that explicitly describes all known ligand-

binding events requires no simplifying assumptions while allowing for the computation of

enzymatic states. Here, we employ such a modeling approach to examine the “catalytic

potential” of an enzyme—an enzyme’s capacity to catalyze a biochemical reaction. The cat-

alytic potential is the fundamental result of multiple ligand-binding events that represents a

“tug of war” among the various regulators and substrates within the network. This formalism

allows for the assessment of interacting allosteric enzymes and development of a network-

level understanding of regulation. We first define the catalytic potential and use it to charac-

terize the response of three key kinases (hexokinase, phosphofructokinase, and pyruvate

kinase) in human red blood cell glycolysis to perturbations in ATP utilization. Next, we exam-

ine the sensitivity of the catalytic potential by using existing personalized models, finding

that the catalytic potential allows for the identification of subtle but important differences in

how individuals respond to such perturbations. Finally, we explore how the catalytic potential

can help to elucidate how enzymes work in tandem to maintain a homeostatic state. Taken

together, this work provides an interpretation and visualization of the dynamic interactions

and network-level effects of interacting allosteric enzymes.

Author summary

Enzymatic rate laws have historically been used to simulate the dynamics of complex met-

abolic networks with regulated reactions represented by allosteric rate laws. Here, we use

detailed elementary reaction descriptions of regulatory enzymes that allow for the explicit

computation of the fraction of the enzymes that are in a catalytically-active state. The frac-

tion of the enzyme that is in the active state represents the time-dependent utilization of
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the enzyme’s “catalytic potential,” its capacity to catalyze a reaction. We apply this inter-

pretation to red blood cell glycolysis, examining how three key kinases with allosteric reg-

ulation modulate their utilization of their catalytic potential based on ligand-binding

events throughout the network in order to maintain a homeostatic state. We then examine

how an enzyme modulates its utilization of its catalytic potential using personalized data

as a case study, visualizing the systems-level properties of a kinetic model.

Introduction

The human red blood cell (RBC) metabolic network has historically been the target of complex

kinetic model building due to its relative simplicity and the vast amounts of data and informa-

tion available on its biochemistry and physiology. RBCs lack cellular compartments (e.g.,

nuclei, mitochondria) and therefore certain cellular functions, such as transcriptional and

translational regulation and the ability to use oxidative phosphorylation to produce energy [1].

As a result, glycolysis is the primary source of ATP generation for the RBC [2] and undergoes

allosteric regulation at major control points. Glycolytic ATP production is thus largely regu-

lated in response to the rate of ATP utilization of known cellular functions, mostly the ATP-

driven sodium/potassium transmembrane pump.

Mathematical models have been used to study the dynamics of RBC metabolism since the

1970s [3]. Constraint-based modeling methods have been used to explore the mechanisms

underlying cellular metabolism [4–6], and specialized methods have been developed that allow

for the study of system dynamics [7–9]. Kinetic models represent an approach that has the

potential to truly capture the temporal dynamics at short time scales [10–13]. The first whole-

cell kinetic model of RBC metabolism was published in the late 1980s [14–17], with other such

models produced since then [18–20]. More recently, so-called “enzyme modules” have been

introduced and used to explicitly model detailed binding events of ligands involved in alloste-

ric regulation as an alternative to the traditional use of allosteric rate laws [21, 22]. These

enzyme modules provide a fine-grained view of the activity and state of a regulated enzyme.

Further, they open up many new possibilities in understanding the metabolic regulation that

results from complex interactions of regulatory signals, as well as providing a way to explicitly

represent biological data types such as sequence variation and protein structures.

Historically, the primary way to visualize the output from a kinetic model is to plot the time

profiles of individual network components (e.g., metabolite concentrations, enzymatic reac-

tion rates). While these quantities are informative, they fail to provide insight into systemic

qualities of the network. Dynamic phase portraits have been explored as an alternative [23].

With the formulation of enzyme modules, there is a need to study alternative ways to visualize

network dynamics to bring about a new understanding of integrated functions similar to what

Bode plots [24] or root loci [25] achieved in the early days of the development of classical con-

trol theory. Enzyme modules allow for the explicit computation of the fraction of the regula-

tory enzyme that is in an active state and generates the reaction flux. The collective action of all

the ligands binding to the enzyme—through the computation of the active enzyme fraction—

fundamentally represent its regulation.

In this study, we use previously described enzyme modules to model the allosteric regula-

tory effects of hexokinase (HEX), phosphofructokinase (PFK), and pyruvate kinase (PYK), the

three major regulatory points in RBC glycolytic energy generation. We compute and visualize

each kinase’s utilization of its catalytic potential as a function of the energy charge, a systemic

variable. We analyze the response of each enzyme module to perturbations in ATP utilization,

Network-level allosteric effects are elucidated through enzymatic catalytic potential
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simulating the impact of various physiological stresses on the RBC that affect the energy charge

(e.g., hypoxia). We then examine the robustness of the catalytic potential as a qualitative sys-

temic measure of the state of an enzyme using randomized models and existing personalized

data. Finally, we explore how the catalytic potential can be used to investigate how various

enzymes work in tandem to respond to external perturbations.

Defining the catalytic potential

We are interested in studying the “catalytic potential” of an enzyme—its capacity to catalyze a

reaction—from a network-level perspective. An enzyme achieves its catalytic potential when

all individual enzyme species are in an active form; an enzyme with allosteric regulation modu-

lates its utilization of its catalytic potential based on ligand-binding events throughout the net-

work in order to maintain a homeostatic state. Here, we propose that an enzyme’s utilization

of its catalytic potential can be visualized by computing the fraction of total enzyme that is

available to catalyze a reaction as a function of the adenylate energy charge (Fig 1A). In this

section, we describe both of these properties and how they can be computed using enzyme

modules and mass action kinetics.

The energetic state of a cell can be measured using the adenylate energy charge [27], which

represents the amount of high energy bonds available in the adenosine phosphate pool. The

energy charge is given by

Energy Charge ¼
½ATP� þ 1

2
½ADP�

½ATP� þ ½ADP� þ ½AMP�
ð1Þ

where [AMP], [ADP], and [ATP] represent the concentrations of those respective metabolites.

Because of the number of reactions in which the adenosine phosphates participate, the energy

charge is a systemic variable sensed by important enzymatic regulators [28, 29] which can be

more sensitive to perturbations than are reaction rates (Fig A in S1 File).

Fig 1. Definition of catalytic potential and modeling formalism. (A) The “catalytic potential” of an enzyme is its capacity to

catalyze a reaction and can be visualized by computing the active fraction of enzyme (fA) as a function of the adenylate energy charge.

Systemic perturbations (like adjusting the ATP utilization shown here) allow for a visualization of how an enzyme modulates its

utilization of its catalytic potential in order to maintain a homeostatic state. (B) The structure of one of two PFK homomers along

with the catalytic mechanism shows predicted allosteric binding sites for AMP and ATP [26]. Explicitly modeling elementary

reaction steps and ligand-binding allows for the computation of the catalytically active enzyme fraction, fA.

https://doi.org/10.1371/journal.pcbi.1006356.g001
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To examine individual enzymatic reactions that are regulated by at least one metabolite in

the combined adenosine phosphate pool (i.e., AMP, ADP, or ATP) from a network-level per-

spective, we can compute properties of enzymes as a function of the energy charge. A kinetic

model that explicitly represents each of the elementary steps for an enzymatic reaction (i.e., an

enzyme module) provides enough detail to compute the fraction of uninhibited enzyme

primed to facilitate the conversion of substrate to product for enzymes allosterically regulated

through effector molecules. This catalytically active fraction (fA) can be calculated for an

enzyme from

fA ¼

Pn
i¼0

Ri þ Ri;A þ Ri;AS

Etotal
ð2Þ

where n is the number of enzymatic binding sites, Ri is the unbound enzyme in the active state

(i.e., not bound to inhibitors), Ri,A is the enzyme bound to the cofactor, Ri,AS is the enzyme

bound to the substrate and cofactor, and Etotal is the total amount of enzyme. The subscript i
represents the amount of activators bound to allosteric sites; for tetrameric structures like PFK

and PYK, i ranges between 0 and 4 [30, 31]. Here, we adopted the Monod-Wyman-Changeux

(MWC) reaction framework [32] for PFK and PYK in which the allosteric activator and inhibi-

tor can only bind to the relaxed and tense state, respectively. Both the energy charge and fA
were computed from model simulations.

We use mass action kinetics to model RBC glycolysis with enzyme modules (i.e., explicitly

representing the elementary reactions for ligand-binding) for HEX, PFK, and PYK (see Sup-

plementary Material for the full reaction mechanism for each enzyme module). In the follow-

ing sections, we detail the construction and validation of models with enzyme modules and

examine each enzyme’s utilization of its catalytic potential in response to perturbations in ATP

utilization.

Results

Model construction and validation

We constructed a model of RBC metabolism that comprises glycolysis, the Rapoport-Lueber-

ing (RL) Shunt, and the interaction of hemoglobin with 2,3-diphosphoglycerate [23]; the stoi-

chiometric matrix for the network, all kinetic parameters, and the initial flux values are

provided in S1 Data. This small-scale model allows us to study the regulatory effects on glycol-

ysis. This model contains three allosterically regulated kinases for which enzyme modules were

constructed (see Methods and Supplementary Material): hexokinase (HEX), phosphofructoki-

nase (PFK), and pyruvate kinase (PYK). To validate each of the enzyme modules, we sought to

introduce physiologically relevant perturbations that would affect the energy charge. Several

external pressures—such as hypoxic conditions [33] or sheer stress experienced in vivo due to

arterial constriction [34]—can result in increased release of ATP from RBCs in vivo, while

internal ATP concentrations can drop by as much as 27% or 50% due to aging or the presence

of acute disease states such as gastrointestinal tumors [35]. To model these behaviors, we per-

turbed the rate of ATP utilization (see Methods) to induce a systemic response that is qualita-

tively representative of the observed phenotypes (increasing and decreasing the value of the

rate constant for the hydrolysis of ATP; see Methods). We built and tested models with each

enzyme module individually, examining its utilization of its catalytic potential of the enzyme

as the system returns to its original homeostatic point. To validate these models against previ-

ous experimental results reported in the literature, we make the assumption that the initial

velocity of a reaction is proportional to the amount of catalytically active enzyme, fA [36]; the

Network-level allosteric effects are elucidated through enzymatic catalytic potential
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qualitative shape of a rate versus energy charge plot should then match that of an fA versus

energy charge plot.

Phosphofructokinase. Our primary test case was PFK, which plays a major role in deter-

mining glycolytic flux through the conversion of fructose 6-phosphate (F6P) to fructose

1,6-bisphosphate (FDP). The regulatory mechanism of PFK is complicated [37], so we here

use a simplified reaction mechanism (Fig 1A) where PFK binds first to ATP, forming a com-

plex that then binds F6P and then converts the two bound substrates to FDP producing ADP

in the process (see Methods and Supplementary Material for full details). The four binding

sites operate independently, i.e., they do not “cooperate.” The catalytic activity of PFK is con-

trolled through allosteric regulation by AMP and ATP (Fig 1). AMP and ATP bind to an allo-

steric site distal to the catalytic site [26], inducing a conformational change that modulates the

activity of PFK. We performed a dynamic simulation in which we perturbed the rate of ATP

utilization, observing an inverse relationship between the catalytically active enzyme fraction

and energy charge (Fig 2A); this result corroborated previously reported behavior for PFK

[28]. We can see that PFK senses the change in energy charge and adjusts the flux through

PFK to return the system to its original homeostatic state.

Hexokinase and pyruvate kinase. We also constructed enzyme modules for HEX and

PYK, using mechanisms that allow the substrate to bind cofactors in any order (see Methods

and Supplementary Material for full details). We inserted each of these enzymes modules

into the base model (glycolysis, the RL Shunt, and hemoglobin) separately, resulting in a sep-

arate model for each enzyme module. We then performed the same perturbations (50%

increase and 15% decrease in the rate of ATP utilization) and computed the energy charge

and active fraction of each enzyme. We observed that the qualitative trends for HEX (Fig 2B)

were in agreement with previously observed experimental evidence [38]. However, the

behavior of the PYK module exhibited a direct relationship between fA and energy charge

(Fig 2C), an observation that conflicts with the inverse relationship previously observed in
vitro [38].

Robustness of the catalytic potential of an enzyme

The baseline RBC glycolytic model used to construct the models is based on nominal parame-

ter values [23]. However, genetic variation in the human population leads to varying RBC

Fig 2. Catalytic potential plots for the base model (glycolysis, the RL Shunt, and hemoglobin) plus an enzyme module for (A) PFK, (B)

HEX, and (C) PYK individually. The inset in panel (C) shows the concentration profile of FDP (see Fig D in S1 File for the detailed

concentration profile).

https://doi.org/10.1371/journal.pcbi.1006356.g002
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metabolic dynamics in different individuals. Our next goal was therefore to explore the sensi-

tivity of an enzyme’s catalytic potential to perturbations to model parameters. Because of its

dependence on the energy charge and literature validation of its catalytic potential, PFK was

used for an in depth exploration of the robustness of the catalytic potential.

We first generated 50 models from randomly sampled, thermodynamically feasible concen-

trations values (see Methods) and perturbed the rate of ATP utilization. We examined the net

rate of ATP usage (i.e., total flux through ATP-producing reactions minus total flux through

ATP-consuming reactions), the energy charge as a function of time, and the catalytic potential

(Fig D in S1 File). From this analysis, we see that reaction rates (Fig E in S1 File) are not as sen-

sitive to changes in ATP levels, while these changes are captured by the energy charge (Fig E in

S1 File). The catalytic potential then allows us to incorporate this systemic information as we

observe the response of PFK. However, while these randomized models were constructed with

thermodynamically feasible metabolite concentrations, they do not necessarily represent

physiologically feasible concentrations.

Therefore, we further collected previously reported RBC and plasma metabolite levels

from a series of individuals [20], enabling the construction of “personalized” RBC models

(see Methods). We constructed personalized models using glycolytic metabolite concentra-

tions and equilibrium constants for nine individuals from a previous study [20]. Using per-

sonalized models provides a sensitivity analysis that examines physiologically-feasible

parameter values.

The general qualitative trend for the catalytic potential plot of PFK was similar to the one

using literature values (Fig 2A), but initial fA values were significantly lower in the personalized

models (Fig 3A and 3B). In particular, the amount of active PFK for each individual reached a

saturation point that was higher than the initial steady-state value in order to compensate for

the increase in ATP utilization before returning to a final steady-state value. While we observe

that there is little difference among the rate profiles (Fig 3C), we observe much greater differ-

ences in the catalytic potential plots (Fig 3A and 3B) and energy charge profiles (Fig 3D). Nota-

bly, the model for Individual #1 exhibited a much different response than the other eight

personalized models (Fig 3A, 3B and 3D). We examined this behavior and determined that

PFK is highly sensitive to the rate constants for the binding of ATP and F6P to PFK (outliers

with over 99% confidence according to the Dixon’s Q test; see Methods for full details); these

were the only rate constants that were deemed to be outliers out of all enzymatic reactions,

showing that these rate constants are the parameters to which PFK is most sensitive.

Interplay among enzymes

Finally, we examined how an enzyme’s utilization of its catalytic potential can be used to

characterize the interplay among enzymes in the same model. We thus integrated the

enzyme modules for all three kinases studied here (PFK, HEX, and PYK) into the base model

and introduced the same ATP utilization perturbations. We examined the disturbance rejec-

tion capabilities of this complete model compared with models with fewer enzyme modules,

noting increased regulation generally improved the ability of a model to maintain a homeo-

static state (Fig A in S1 File) as expected [39–42]. The inclusion of multiple enzyme modules

in the same model allows us to characterize how the three allosterically regulated enzymes

interact in determining the system’s response to these perturbations through dynamic

simulation.

We characterized the catalytic potential of this complete model’s response to external per-

turbations (Fig 4A). We observed similar qualitative responses for each of the enzymes in the

combined model as for each enzyme module individually (Fig 2). To examine the interplay

Network-level allosteric effects are elucidated through enzymatic catalytic potential
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between enzymes, we looked at phase portraits comparing the catalytically active enzyme frac-

tion (fA) for each pairwise combination of enzymes (Fig 4B and S1 Video). We can see that as

a greater fraction of PFK entered a more catalytically active state, a greater fraction of HEX

become catalytically inactive; a similar behavior was observed for the PFK-PYK pair. We

observed that HEX and PYK moved in tandem, with both enzymes moving into catalytically

active or inactive states together. This behavior is likely due to the fact that these enzymes rep-

resent the boundaries of the system and therefore are linked in order to maintain system

stability.

Fig 3. Disturbance rejection capabilities of personalized glycolytic models with an enzyme module for PFK and hemoglobin. (A)

Superimposed catalytic potential plots for all personalized models. (B) Catalytic potential plots for each individual; the intersection of the gray

lines denotes the initial steady-state value at time zero and helps show the differences among the population. (C) The net rate of ATP usage (i.e.,

total flux through ATP-producing reactions minus total flux through ATP-consuming reactions) is shown as a function of time. The number in

parentheses represents the SSE for each model, quantifying the total deviation of the output from the setpoint. (D) The energy charge is shown

as a function of time.

https://doi.org/10.1371/journal.pcbi.1006356.g003
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Discussion

The ability to mechanistically model cellular metabolism allows for the construction of predic-

tive physiological models. However, the mechanistic results obtained from time-course plots

can complicate the interpretation and analysis of systems-wide responses to relevant perturba-

tions. To help provide a better method of elucidating this behavior, we built modularized gly-

colytic models with enzymes serving as regulators that allows for a new interpretation of the

state of an enzyme—where it operates with respect to its maximum catalytic potential. These

models were then validated against existing empirical data to understand the relationship

between the catalytically active enzyme fraction and energy charge. Visualizing an enzyme’s

utilization of its catalytic potential allowed for the analysis of important systems behaviors.

The results presented here have two primary implications.

First, we have studied glycolysis from a perspective in which enzymes are regulators. Indi-

vidual kinases serve as tuning dials for the system by sensing changes in energy charge and

modulating their utilization of their catalytic potentials in order to return the system to a

homeostatic state. If the energy charge dropped, then mass action kinetics would dictate that

more flux would be pushed through a reaction that produces ATP in order to increase the

energy charge. The response of PFK showed that its regulation is strong enough to overcome

Fig 4. Dynamic responses of the base model with all three enzyme modules to perturbations in ATP utilization. (A) Catalytic potential

plots for each of the enzyme modules as a function of the energy charge. Roman numerals indicate comparisons with the steady-state: (I) more

enzyme in active form and higher energy charge; (II) more enzyme in active form and lower energy; (III) more enzyme in inactive form and

lower energy charge; and (IV) more enzyme in inactive form and higher energy charge. The inset shows the concentration profile of FDP (see

Fig D in S1 File for the detailed concentration profile). (B) Phase portraits displaying pairwise relationships between the active fractions of two

kinases.

https://doi.org/10.1371/journal.pcbi.1006356.g004
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the dynamics that would result from these mass action trends alone. HEX behaves as is

expected due to mass action (a lower energy charge results in a reduced fraction of catalytically

active enzyme), but the observed behavior of PYK is opposite what would be expected based

on the law of mass action. A decrease in energy charge would intuitively result in more catalyt-

ically active PYK since that would then result in more ATP. The literature reports this expected

behavior for initial velocity of PYK [38]. However, these assays did not contain FDP, an allo-

steric activator of PYK. We observed that an increase in energy charge led to an initial increase

in FDP concentration and a corresponding increase in the amount of PYK in the catalytically

active form (Figs 2C and 4A). These plots suggest that the regulation of PYK by FDP leads to

this unintuitive behavior.

Second, we have shown that examining an enzyme’s catalytic potential can provide addi-

tional insight into how metabolic networks maintain a homeostatic state following physiologi-

cally-relevant perturbations. A small-scale model that explicitly accounted for the regulatory

mechanisms of the three glycolytic kinases allowed us to directly investigate the interplay

among these three enzymes (S1 Video). When we applied this metric to examine the response

of personalized models to ATP utilization perturbations, we observed differences that were not

apparent simply from the rate profile. The kinases modulated the response of the system, as

demonstrated by examining individual parameterization of personalized models (Fig 3).

Through an examination of how PFK operates with respect to its catalytic potential, we were

able to gain insight into how the regulator within a model is tuned in different individuals in

order to maintain homeostasis (Fig 3A, 3B and 3D), a behavior that was not discernible

through more typical metrics like rates of reaction (Fig 3C). Hence, the catalytic potential plots

describe how enzymatic entities respond to system-wide changes in order to drive the cell

towards a homeostatic state after environmental alterations. Upon further investigation, we

determined that the utilization of catalytic potential for Individual #1 was different than the

others due to differences in the binding affinities of ATP and F6P to PFK, indicating that the

PFK module was most sensitive to these parameters. Thus, the catalytic potential helped pro-

vide insight into how subtle differences among individuals can lead to differing systemic

responses to perturbations that push the system away from the homeostatic state.

The use of kinetic models to study the dynamics of cellular metabolism presents many well-

documented challenges and limitations [43, 44]. Many of these issues revolve around attempt-

ing to parameterize biochemical processes that may not be well understood [43], one of the

reasons that we adopted several simplified approaches in this study. Here, we employed the

use of so-called “enzyme modules” (explicit representations of all ligand-binding reactions [21,

22]) for the allosterically regulated kinases in glycolysis, a modeling formulation which allowed

us to compute the catalytically active enzyme fraction. We used the same reaction mechanisms

(predicted by a computational method) from the previous study using enzyme modules [22]

because our focus here was on interpreting the output from enzyme modules. Many alternative

mechanisms exist [45], and the impact of employing different mechanisms on computing fA
could be explored in the future. Mass action kinetics were used for the other enzymes in the

network and represent an approximation previously examined in the literature [22]. While the

final reaction step for each enzyme module could be represented by two bimolecular steps

[46], we have used a simplified termolecular step (i.e., all bound molecules are released in a sin-

gle reaction step) due to a lack of high-confidence kinetic parameters. Kinetic models of

metabolism are generally stiff systems [12], and the inclusion of enzyme modules exacerbates

this issue due to the addition of several reactions with concentration variables that span several

orders of magnitude (PFK module: 24 reactions; HEX module: 8 reactions; PYK: 34 reactions;

see Supplementary Material for full mechanisms). Finally, the size of a model inevitably

impacts the behavior of a model; we have chosen to draw our system boundary at the end of

Network-level allosteric effects are elucidated through enzymatic catalytic potential
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glycolysis, thereby not accounting for any downstream effects on the activity of PYK (such as

flux leaving the pyruvate node and entering the citric acid cycle remnant reactions).

The RBC metabolic network consists of well-studied metabolic pathways and their associ-

ated metabolites. New methods for the visualization of regulatory behaviors—such as the cata-

lytic potential plot introduced here—can lead to new insights and discoveries. We have

evaluated the utilization of an enzyme’s catalytic potential as a sensor which can be used to

visualize the state of that enzyme in the context of the metabolic network. Viewing enzymes as

regulators through which we can tune the system response opens the door for us to investigate

what the optimal state might be and how that state helps maintain homeostasis.

Methods

All calculations were performed in Mathematica 11.1 [47]. Simulations were conducted using

the Mass Action Stoichiometric Simulation (MASS) Toolbox kinetic modeling package

(https://github.com/opencobra/MASS-Toolbox). Details for formulating a MASS model are

found in Jamshidi et al. [21]. The system of ordinary differential equations was solved using

the built-in Mathematica solver, which is embedded within the MASS Toolbox. All models

used are provided in S2 Data.

Glycolysis and the Rapoport-Luebering Shunt

The base glycolysis network included all 10 glycolytic enzymes and lactate dehydrogenase; the

complete stoichiometric matrix is provided in S1 Data. Reaction rates were defined using mass

action kinetics, representing enzyme catalysis as a single step. These simplified reactions were

systematically replaced with enzyme modules following the procedure outlined by Du et al.

[22]. Additionally, a phosphate exchange reaction was incorporated into the glycolytic network

utilizing parameters obtained from Prankerd et al. [48]. Similarly, the Rapoport-Luebering

Shunt was included in some models to account for the presence of hemoglobin, whose binding

to oxygen is regulated by 2,3-diphosphoglycerate (2,3-DPG). Incorporation of this shunt was

accompanied by parameter changes as previously described [23]. All model parameters are

provided in S1 Data.

Comparison against cell-scale model. We compared our model against the cell-scale

model constructed by Bordbar et al. [20]. Our model is based on this larger model and com-

prises a subset of the metabolic network (described above). We compared the qualitative

behavior of our small-scale model against that of the full cell-scale model in response to a pulse

that increased the ATP concentration by 50% and observed similar qualitative responses for

the fluxes through each of the studied kinases and the energy charge (Fig F in S1 File).

Enzyme module construction

Regulation was manually incorporated into the enzyme reactions. Initial conditions from the

glycolysis and hemoglobin MASS toolbox example data were used in conjunction with equilib-

rium constants which were obtained from from various sources (see Supplementary Material).

These values were subsequently utilized to solve for new kinetic parameters by setting the fol-

lowing constraint:

d~x
dt
¼ S � vðx; kÞ ¼ 0 ð3Þ

where d~x=dt is the concentration rate of change with respect to time for metabolites, S is the

stoichiometric matrix, and v(x; k) is a vector containing reaction fluxes as a function of metab-

olite concentrations (x) and rate constants (k).
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The parameters for all enzyme modules were determined using the methods described by

Du et al. [22]. In short, the workflow includes: (1) defining all ligand-binding events and their

associated equilibrium constants, (2) symbolically solving the resultant steady state mass bal-

ance, (3) solving for the pseudo-first-order elementary rate constant (kPERC) [23] of each

enzymatic reaction using the overall flux state as a constraint, and (4) using the estimated

kPERCs to approximate steady state concentration values for each enzyme form (e.g., enzyme

bound to all combinations of ligands). The kPERC for a reaction is estimated using the follow-

ing equation:

ki ¼
vi

Pireactantsi � Piproductsi=Keq
ð4Þ

where ki is the kPERC for reaction i and vi is the flux through that reaction [23]; reactions

assumed to be irreversible were assigned an arbitrarily high K − eq (Mathematica allows for the

assignment of infinity).

We constructed a total of ten different models with varying amounts of regulation, span-

ning from the base glycolytic model with no enzyme modules (and therefore no regulation) to

a model with three enzyme modules and the Rapaport-Luebering Shunt. The remaining mod-

els represented each combination of the three kinase modules. Enzyme module incorporation

was accompanied by the deletion of the original single-step reaction in order to avoid redun-

dant reactions. Stability for all systems was verified by simulating the network and ensuring

that a steady-state point was found for all metabolites.

Hexokinase (HEX). HEX (EC 2.7.1.1) was modeled as a monomer to account for the fact

that it contains only one active catalytic site. The previously specified mechanism was chosen

to match that used by [22] because all kinetic parameters were obtained from this source. A

hemoglobin module is necessary to include when the HEX module is included because it

affects the level of 2,3-DPG, which serves as a regulatory molecule for HEX. The full mecha-

nism used for the HEX module is provided in the Supplementary Material.

Phosphofructokinase (PFK). PFK (EC 2.7.1.11) was modeled as a homotetramer to

account for its four catalytic and allosteric binding sites [49]. The previously specified mecha-

nism was chosen to match that used by [22] because all kinetic parameters were obtained from

this source; this mechanism does not account for cooperative binding. The full mechanism

used for the PFK module is provided in the Supplementary Material.

Pyruvate kinase (PYK). PYK (EC 2.7.1.40) was modeled to include allosteric regulation.

Additional reactions were also included to account for the equilibration of both enzymes

between the relaxed (R) and tense (T) state [31]. Additionally, PYK was modeled as a tetramer

to account for the four catalytic and allosteric sites on each enzyme. Dissociation constants

were obtained from [16] and rate constants were solved using Eq (3). The full mechanism used

for the PYK module is provided in the Supplementary Material.

Simulating ATP utilization perturbations

In order to mimic a physiologically-relevant perturbation away from the homeostatic state, we

simulated a 50% increase in ATP utilization for 1,000 hours and a 15% decrease in ATP utiliza-

tion [33–35]. These magnitudes were chosen because they resulted in observable changes in

the energy charge which could then be used to qualitatively assess the impact on the system.

Changes in ATP utilization were applied by changing the rate (kATP) associated with ATP

hydrolysis:

ATP þH2OÐ
kATP ADPþHþ Pi ð5Þ
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where Pi represents inorganic phosphate which was modeled as a variable quantity to allow the

system to respond to these perturbations. Increasing this rate decreases the amount of available

ATP and ADP. We calculated the sum of squared error (SSE) for each model in order to quan-

tify the total deviation of the output from its setpoint, which is zero. The resulting quantity

(i.e., the SSE) is compared between models, with a smaller value indicating better disturbance

rejection capabilities.

Sensitivity analysis

Randomized models. Using the procedure outlined in Du et al. [22], we constructed 50

randomized models based on thermodynamically feasible metabolite concentrations that com-

prised glycolysis, the RL Shunt with hemoglobin, and PFK. In short, we utilized the cell-scale

model constructed by Bordbar et al. [20] for parameter sampling, with the concentration

range based on the measurements from that study. Thermodynamically feasible metabolite

concentrations were then generated using equilibrium constants derived from eQuilibrator

[50] and sampled using the COBRA Toolbox [51]. kPERCs were then calculated from these

parameters and fluxes from the base model as described above, resulting in 50 randomized

models.

Personalized models. Personalized models were constructed by replacing all primary

intracellular glycolytic metabolite concentrations and equilibrium constants with values

reported by Bordbar et al. [20]. New pseudo-elementary rate constant (PERC) values were cal-

culated using the personalized concentration data as initial conditions instead of the nomial

values used to formulate the non-personalized models. The PFK enzyme modules was parame-

terized for all individuals using the resulting concentration values after the addition of the

Rapoport-Luebering pathway. The models used in the original publication accounted for a

much larger network than just glycolysis (our focus here), resulting in potentially infeasible

parameter sets. We encountered numerical issues due to the stiffness of the system, and thus

we only used 9/24 of the models available in [20]; these data and model parameters are pro-

vided in S1 Data. Individuals #1-9 in our study correspond to individuals 2, 4, 5, 6, 7, 8, 10, 16,

and 18, respectively, from [20].

To identify outliers within the reaction PERCs compared with the other personalized mod-

els, we performed a Dixon’s Q test [52]:

Q ¼
gap

range
ð6Þ

where the gap is the absolute difference between the point in question and the nearest value,

and the range is the range of all values. For a set with nine samples, we can be 99% confident

that a point is an outlier if the Q value is greater than 0.598; the Q values for the ATP and F6P

binding steps had Q values of 0.84257 and 0.73164, respectively.

System analysis

Rate pools for enzymes were defined as the rate at which enzyme produced product. This was

accomplished by defining a pool from the product’s ODE consisting solely of the terms con-

tributing to product formation. In other words:

rateenzyme ¼
X

vformation ð7Þ

where vformation represents the forward rate of the enzyme reaction and possesses units of

mmol/L � hr. Defining the rate pools in this manner neglected effects of reversible reactions
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contributing to the formation of product. A negative value corresponds to a net-consumption

of ATP.
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22. Du B, Zielinski DC, Kavvas ES, Dräger A, Tan J, Zhang Z, et al. Evaluation of rate law approximations

in bottom-up kinetic models of metabolism. BMC Systems Biology. 2016; 10(1). https://doi.org/10.1186/

s12918-016-0283-2

23. Palsson BO. Systems Biology: Simulation of Dynamic Network States. New York: Cambridge Univer-

sity Press; 2011.

24. Bode HW. Variable equalizers. The Bell System Technical Journal. 1938; 17(2):229–244. https://doi.

org/10.1002/j.1538-7305.1938.tb00429.x

25. Cavicehi TJ. Phase-root locus and relative stability. IEEE Control Systems Magazine. 1996; 16(4):69–

77. https://doi.org/10.1109/37.526916

26. Webb BA, Forouhar F, Szu FE, Seetharaman J, Tong L, Barber DL. Structures of human phosphofruc-

tokinase-1 and atomic basis of cancer-associated mutations. Nature. 2015; 523(7558):111–114.

https://doi.org/10.1038/nature14405 PMID: 25985179

27. Atkinson DE, Walton GM. Adenosine triphosphate conservation in metabolic regulation rat liver citrate

cleavage enzyme. Journal of Biological Chemistry. 1967; 242(13):3239–3241. PMID: 6027798

28. Shen L, Fall L, Walton GM, Atkinson DE. Interaction between energy charge and metabolite modula-

tion in the regulation of enzymes of amphibolic sequences. Phosphofructokinase and pyruvate

Network-level allosteric effects are elucidated through enzymatic catalytic potential

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006356 August 7, 2018 14 / 16

https://doi.org/10.1016/S0006-3495(02)73903-9
http://www.ncbi.nlm.nih.gov/pubmed/12202358
https://doi.org/10.1016/j.jtbi.2014.10.035
https://doi.org/10.1016/j.jtbi.2014.10.035
http://www.ncbi.nlm.nih.gov/pubmed/25451533
https://doi.org/10.1038/srep46249
http://www.ncbi.nlm.nih.gov/pubmed/28387366
https://doi.org/10.1038/msb.2008.8
http://www.ncbi.nlm.nih.gov/pubmed/18319723
https://doi.org/10.1371/journal.pone.0079195
https://doi.org/10.1371/journal.pone.0079195
http://www.ncbi.nlm.nih.gov/pubmed/24324546
https://doi.org/10.1016/j.copbio.2015.08.019
https://doi.org/10.1016/j.copbio.2015.08.019
http://www.ncbi.nlm.nih.gov/pubmed/26342586
https://doi.org/10.1016/j.coisb.2017.01.007
http://www.ncbi.nlm.nih.gov/pubmed/2630803
https://doi.org/10.1016/S0022-5193(89)80234-6
http://www.ncbi.nlm.nih.gov/pubmed/2630804
https://doi.org/10.1016/S0022-5193(05)80012-8
http://www.ncbi.nlm.nih.gov/pubmed/2141093
http://www.ncbi.nlm.nih.gov/pubmed/2141094
http://www.ncbi.nlm.nih.gov/pubmed/10477270
https://doi.org/10.1186/1742-4682-2-18
https://doi.org/10.1186/1742-4682-2-18
http://www.ncbi.nlm.nih.gov/pubmed/15882454
https://doi.org/10.1016/j.cels.2015.10.003
http://www.ncbi.nlm.nih.gov/pubmed/27136057
https://doi.org/10.1016/j.bpj.2009.09.064
https://doi.org/10.1016/j.bpj.2009.09.064
http://www.ncbi.nlm.nih.gov/pubmed/20338839
https://doi.org/10.1186/s12918-016-0283-2
https://doi.org/10.1186/s12918-016-0283-2
https://doi.org/10.1002/j.1538-7305.1938.tb00429.x
https://doi.org/10.1002/j.1538-7305.1938.tb00429.x
https://doi.org/10.1109/37.526916
https://doi.org/10.1038/nature14405
http://www.ncbi.nlm.nih.gov/pubmed/25985179
http://www.ncbi.nlm.nih.gov/pubmed/6027798
https://doi.org/10.1371/journal.pcbi.1006356


dehydrogenase. Biochemistry. 1968; 7(11):4041–4045. https://doi.org/10.1021/bi00851a035 PMID:

4301881

29. Berg JM, Tymoczko JL, Stryer L. Biochemistry (Chapters 1-34). W. H. Freeman; 2002.
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