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Abstract

Regulation of gene expression is essential to determining the functional complexity and
morphological diversity seen among different cells. Transcriptional regulation is a crucial
step in gene expression regulation because the genetic information is directly read from
DNA by sequence-specific transcription factors (TFs). Although several mouse TF data-
bases created from genome sequences and transcriptomes are available, a cell type-spe-
cific TF database from any normal cell populations is still lacking. We identify cell type-
specific TF genes expressed in cochlear inner hair cells (IHCs) and outer hair cells (OHCs)
using hair cell-specific transcriptomes from adult mice. IHCs and OHCs are the two types of
sensory receptor cells in the mammalian cochlea. We show that 1,563 and 1,616 TF genes
are respectively expressed in IHCs and OHCs among 2,230 putative mouse TF genes.
While 1,536 are commonly expressed in both populations, 73 genes are differentially
expressed (with at least a twofold difference) in IHCs and 13 are differentially expressed in
OHCs. Our datasets represent the first cell type-specific TF databases for two populations
of sensory receptor cells and are key informational resources for understanding the molecu-
lar mechanism underlying the biological properties and phenotypical differences of these
cells.

Introduction

While the genome is identical for nearly every cell in multicellular organisms, the gene expres-
sion profile for each cell is different. Diverse patterns of gene expression underlie phenotypic
variances of different cell types [1,2]. Transcription factors (TFs) play an essential role in the
complex regulation of gene expression patterns in each unique cell type [3]. A TF is a protein
that binds to specific DNA sequence motifs, thereby controlling transcription of genetic
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information from DNA to mRNA [4]. Because cell specificity is enabled by spatial and tempo-
ral patterns of gene expression, which in turn are driven by gene regulatory networks [1-6],
analysis of TFs in a cell or a cell type is of fundamental importance for understanding the
genetic mechanisms that control in toto biological properties of the cells under normal and
pathological conditions [7]. The critical and unique roles of TFs are highlighted by several
studies demonstrating their abilities to reprogram fibroblasts into embryonic stem cells [8,9].
Because of the importance of TFs in genetic regulation, a great amount of effort has been put
into the development of resources for the systematic collection, classification and annotation of
TFs in genomes from diverse lineages [10-13]. However, a cell type-specific TF database from
any normal cell populations is still lacking. A cell type-specific TF database relies on the avail-
ability of cell type-specific transcriptomic information. Although a mouse genome-wide tran-
scriptome has been available for more than a decade [14], the availability of cell type-specific
transcriptomes is still limited. In the mammalian nervous system, translational profiling is
available to only some neurons and sensory receptor cells [15-22].

We recently used DNA microarray technique to analyze transcriptomes of cochlear inner
hair cells (IHCs) and outer hair cells (OHCs) isolated from adult mice [22]. IHCs and OHCs
are the two types of sensory receptor cells critical for hearing in the mammalian inner ear [23].
Although both types of hair cells (HCs) transduce mechanical stimuli into electrical activity,
IHCs and OHCs are morphologically and functionally distinct [23]. The molecular mecha-
nisms that define their morphological and functional specializations are largely unknown. Our
transcriptome analyses show that each HC population contains a considerable number of dif-
ferentially and uniquely expressed genes although a majority of the transcripts are commonly
expressed in both HC types [22]. Since TFs control the gene expression profile, it is important
to identify what TFs are expressed in IHCs and in OHCs. To date, it is still unclear what TFs
are expressed in HCs and what TFs are differentially or uniquely expressed in each population.
Although several mouse TF databases based on mouse genome sequences and genome-wide
transcriptome are available [11-13], no cell type-specific TF databases have ever been created.
We analyzed TF gene expressions in IHCs and OHCs using the HC transcriptome datasets
[22]. Since transcriptomes of developing HCs have become available recently [24,25], our anal-
yses also include TF genes from developing HCs. Riken TF Database, TFCat, LocusLink, Gene
Ontology Consortium and PubMed were used for verification and reference. Our datasets rep-
resent the first cell type-specific TF databases from two specific populations of sensory receptor
cells and are key informational resources for understanding the molecular mechanisms under-
lying these differential properties of HC morphology, function, cell-cycle control and
pathology.

Methods
1. Cell collection and transcriptome Analyses

We based our TF analysis on the transcriptome datasets obtained from 2,000 IHCs and 2,000
OHC:s collected from adult (P26 to P30) mice. The use and care of animals in this study were
approved by Institutional Animal Care and Use Committee of Creighton University. The
details of how individual HCs were collected were described in the previous publication
[22,26]. A video segment showing how individual cells are collected using the suction pipette
technique is attached as S1 Video. As we discussed in the previous publication [22], several
steps were taken to avoid contamination by each other and by other cell types in order to
obtain highly specific IHCs and OHCs. First, we identified the cells being collected. IHCs and
OHC:s have unique features and are easily identifiable based on their gross morphology [26]
and we collected the cells only when their identity was unambiguous. Second, we collected only
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solitary HCs that were not attached to any other cell types. Third, we were particularly careful
about the suction pressure applied to the pipette to avoid drawing unwanted cells into the
pipette. We withdrew the suction pipette (to deposit hair cells) only when the pressure was
balanced and no more fluid or cells were being drawn into the pipette. Finally, the chamber,
containing the cells, was perfused (with inlet and outlet) with fresh L-15 medium for 5 minutes
to wash out debris before the cells were collected using the suction pipette technique. This
prevented contamination from lysed cells in the suction pipette. In a separate experiment, we
collected isolated OHCs from experimental bath using the suction pipette technique and trans-
ferred to a fresh experimental bath (reservoir with continuous perfusion) for additional wash.
These cells were then recollected for RNA extraction and microarray analyses. Transcriptome
from these cells were presented as OHC4 in the GEO submission. As shown, the gene expres-
sion profile was consistent with other OHC groups.

Since three microarray repeats were performed for each cell population, means and stan-
dard deviations were calculated. Paired T-tests were done by comparing average intensity val-
ues for each transcript from three repeats. p<0.05 was considered statistically significant when
the mean expression value was compared between IHCs and OHCs. As described in the previ-
ous study [22], we defined the baseline intensity level at 10.90 for both populations of HCs. A
TF gene was regarded as “expressed” if its expression value was > 10.90. We also included anal-
yses of TFs expressed in developing hair cells based on datasets obtained from two recent publi-
cations using RNA-seq for transcriptomic analyses [24,25]. The details of how HCs were
collected and how RNA-seq data were analyzed are provided elsewhere [24,25].

We constructed mouse HC type-specific TF datasets using annotations from two main
mouse TF databases: the Riken TF Database (http://genome.gsc.riken.jp/TFdb) and TFCat
(http://www.tfcat.ca). The commercial database TRANSFAC (http://www.gene-regulation.
com/ pub/databases.html) [27] currently contains more than 6,692 TF genes and their target
genes. Although this database was also used for reference, we prepared our target TF list mainly
based on Riken and TFCat databases. This is because the TRANSFAC database has become
unwieldy from a genome-wide viewpoint. Most of these resources only collect the TFs and
their information in various taxonomies. This practice has led to redundant entry of identical
TF genes due to independent deposition from different contributors. Furthermore, alterna-
tively spliced TF genes that are derived from identical genomic loci are also deposited indepen-
dently. To ensure the comprehensiveness and utility of our reference collection, we compiled a
TF list from all TFs listed in the two databases. The union of the two sets yielded 2,230 putative
mouse TFs. We then used this list to look for TF gene expressions from the transcriptomes
from THCs and OHCs. Genes that were on this list were selected from transcriptome datasets
for further analysis and verification. Entrez Gene, LocusLink, Gene Ontology Consortium and
PubMed were used for verification and reference.

2. Quantitative RT-PCR

We used qPCR to verify the expression of 20 genes (including those encoding TFs). These
genes exhibited differential expression with greater than two-fold difference. For qPCR, addi-
tional biological samples of 500 IHCs and 500 OHCs were separately collected from five adult
mice (24 to 30 days). Before collecting isolated cells, we first perfused the chamber containing
isolated HCs and supporting cells with fresh medium for 10 minutes to wash out debris and
RNA from lysed cells in the bath. The cells were collected using micropipette suction technique
[26] (in picoliter volume) and re-deposited them in a new chamber with fresh medium. These
cells were recollected after their identity was verified under an inverted microscope. By doing
this, we further eliminated the possibility of contamination from supporting cells and RNA in
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the solution. RNA isolation and cDNA transcription was done using the Smart-seq Ultra low
Input RNA kit (Clontech Laboratories, Inc., Mountain View, California).

Seven TF genes were chosen to be analyzed with three technical repeats for each gene. Two
genes, Nono and Ppia, were used for reference and normalization. Each gene is equally
expressed in both IHCs and OHCs. The oligonucleotide primers were designed using A plas-
mid Editor (ApE) software (http://biologylabs.utah.edu/jorgensen/wayned/ape/), and utilizing
BLAST searches (http://blast.ncbi.nlm.nih.gov/Blast.cgi) to find unique and appropriate
sequences with melting temperatures above 60°C that had predicted low rates of homodimeri-
zation. The sequences of the oligonucleotide primers are listed as follows: Bcl2: Forward primer
sequence 5’-3: ATTGCCAAGAAACGTGTGGCTCC, and reverse primer 5°-3: GAGCCTCG
CTTCACTGCCTCCTTAG; Clu: Forward: GCAAGCCCTGCCTGAAGCATAC, and reverse:
TGGAAGCTCGGAGGCCCATAGTG; Fzd4: Forward: AAATGCTGGGTT GGGAGACGTG
TTG, and reverse: AGGTCTCTAGGGTCGGTAAGGTAAG; Hdac3: Forward: TCTCACGG
CCTGATGATTGTCCCTC, and reverse: TGCAGTTAAGGTTTCAGAGAGC CAG; Lbh:
Forward: TCTCACGGCCTGATGATTGTCCCTC, and reverse: ACAGAGCAGA GTGG
AAGCAAGAG; Nono: Forward: GAGAACAAGAGATACGGATGGG, and reverse:
TCAATCCAAGGGTTCCATCTG; Pkrdl: Forward: CCTCAGTGAGCGTGTCAGCATCC,
and reverse: AATGGTGTCCTGGATAGGTCCTG; Ppia: Forward: CAAACACAAACG
GTTCCCAG,; and reverse: TTCACCTTCCCAAAGACCAG; Six2: Forward: AGGCAGTTCC
GAGGATGAGAAGACG, and reverse: TATCGCCCTCCCACACCGCTTCATC. All primers
were acquired from Integrated DNA Technologies (Coralville, Iowa).

Quantitative RT-PCR experiments were run on an Applied Biosystems 7500 Fast Real-Time
PCR system. Ten microliters of Powerup SYBR Green Master Mix (Thermo Fisher Scientific,
Waltham, MA) was used in each 20 microliter reaction. Primer concentrations were 450 nM.
The original cDNA samples were diluted twenty-fold with two microliters for every reaction.
The fast thermal cycling mode of the Applied Biosystems 7500 instrument was used, with an
initial stage of 2 minutes at 50°C followed by a 2 minute period at 95°C. Sixty-five amplification
cycles consisting of 3 seconds at 95°C and 1 minute at 60°C were used. Ct normalization to the
two reference genes, Nono and Ppia, was accomplished by averaging the differences of the two
sets of Ct scores between the IHC and OHC samples. The normalized Ct numbers were then
inverted (1/Ct) and graphed.

3. Immunocytochemistry

Cochleae were perfused with 4% formaldehyde in phosphate buffered saline (PBS) and treated
with 0.2% Triton X-100/PBS. Goat serum (10%) was used to block nonspecific binding. The
tissue was then incubated with an anti-LBH antibody (Sigma, Lot# HPA034669) and washed
with PBS, followed by incubation with secondary antibodies (Life Technologies, Lot#
1579044). A sample was mounted on glass slides with antifade solution (Prolong Antifade Kit,
Invitrogen, Carlsbad, CA) before imaging on a Leica Confocal Microscope (Leica TCS SP8
MP). Three cochleae from three adult (P28-P32) mice were used for immunodetection. Two
adult cochleae were used as negative control (using only secondary antibody).

Results

According to our previous microarray analyses of the gene expression profiles in adult IHCs
and OHCs, 16,647 and 17,711 transcripts were expressed in IHCs and OHCs, respectively [22].
To determine what TF genes are respectively expressed in adult IHCs and OHCs, we analyzed
the transcripts of each cell population. We included all transcription-related genes—those with
DNA-binding properties as well as transcription regulation factors that modulate TFs—as
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Fig 1. Expression levels of the top 200 TF genes in adult IHCs (in red) in descending order. For comparison, the expression value of the same genes in
adult OHCs (in blue) is also presented. Color-coded numbers on the right side of each panel represents the abundance ranking of the each TF among 16,647
transcripts considered to be expressed in adult IHCs.

doi:10.1371/journal.pone.0151291.g001

“TFs” in our database. Recent evidence suggests that the contributions of accessory TFs may be
equally important in establishing the spatio-temporal regulation of gene activity [28]. There-
fore, our databases extend beyond a narrow focus of DNA binding proteins by also including
genes involved in histone modifications of the genome. We used the Riken Mouse TF Database
and TFCat as the main sources for reference. Among 16,647 transcripts detected in adult IHCs,
1,563 TF genes are expressed. Fig 1 shows the expression levels of the 200 most abundant TF
genes in IHCs. Expression levels for the same genes in OHC:s are also provided for comparison.
To get a better idea of the expression level of the TF genes in comparison to other genes
expressed in IHCs, the abundance ranking of the TF genes among the 16,647 genes expressed
in IHCs also is presented. There are 17,711 transcripts expressed in adult OHCs. Among them,
1,616 TF genes are expressed. Fig 2 similarly shows the 200 most abundant TF genes in OHCs
compared to the same TF genes in IHCs. The abundance rankings of the TF genes among
17,711 genes expressed in OHCs are also illustrated. As shown in Figs 1 and 2, the vast majority
of the TF genes richly expressed in one population of HCs are also abundantly expressed in the
other. We analyzed TF genes commonly expressed in IHCs and OHCs. Among 16,117 tran-
scripts commonly expressed in both IHCs and OHCs, 1,536 genes were identified as TF genes.
The searchable datasets of TF gene expression profiles in adult HCs are presented in S1 Table.
Hair cell transcriptomes are available from the National Center for Biotechnology Informa-
tion-Gene Expression Omnibus (GEO) (GEO submissions number: GSE56866).
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Fig 2. Expression levels of the top 200 TF genes in adult OHCs (in blue) in descending order. For comparison, the expression value of the same genes
in adult IHCs (in red) is also presented. Color-coded numbers on the right side of each panel represents the abundance ranking of the each TF among 17,711
transcripts considered to be expressed in adult OHCs.

doi:10.1371/journal.pone.0151291.g002

We analyzed the TF genes that are differentially expressed in adult IHCs and OHCs, since
these TFs are critical for the gene expression profiles that define structures and functions of
IHCs and OHCs. We compared the expression levels of all the TF genes in OHCs with those of
IHCs. Fig 3A presents an overall picture of TF gene expression profiles in each population. Dif-
ferentially expressed TFs were categorized as those whose expression levels were above back-
ground and at least a twofold different between the two cell types with statistical significance
(p<0.05). There were 73 differentially expressed TF genes in IHCs (Fig 3B). As shown, the top
10 differentially expressed TF genes include Bcl2, Prkdl, Bcl6, Tlr3, Tbx2, Tfo2m, Jun, Hmgcsl,
Id1, and Etv5 with fold difference (in Log,) between 1.9 and 3.7. In OHCs there were only five
TF genes that met our criteria (Fig 3C). These five TF genes include Lbh, Ikzf2, Six2, Clu, Lmo7
with Log, differences varying from 1.2 to 3.7.

TFs play critical roles in HC differentiation and maintenance. Two recent studies examined
transcriptomes of developing HCs from the mouse cochleae using RNA-seq [24,25]. We ana-
lyzed datasets from both studies (GEO accession numbers: GSE65633 and GSE60019) to deter-
mine how many TFs are expressed in developing HCs. Using our HC-specific TF dataset as
reference, we identified 1,486 TF genes among 19,218 genes expressed in neonatal HCs from
the study by Cai et al. [24]. From the datasets by Scheffer et al. [25], 1,251 TF genes were
expressed among 18,199 genes in developing HCs. Since the study by Scheffer et al. contains
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and OHCs. The red line represents the expression level of all individual TF genes of IHCs while each blue dot
represents the expression level of the same TF genes in OHCs. TF genes that are differentially expressed in
OHCs are above the red line while genes that are differentially expressed in IHCs are below the red line. (B)
Differentially expressed IHC TF genes with reference to the expression of same genes in OHCs (in Logy). (C)
Differentially expressed adult OHC TF genes with reference to the expression of the same genes in IHCs.
Only those whose expression levels differ by at least one Log,-fold between the two populations of cells are
showninBandC.

doi:10.1371/journal.pone.0151291.g003

gene expression profiles from four different stages during development, we compared the top
200 enriched TF genes between developing and adult HCs. Fig 4 presents the top 200 TF genes
expressed in HCs at postnatal day 7 (P7). The expression of the same TF genes between embry-
onic day 16 (E16) and P4 is also plotted for comparison. As shown, the TF genes abundantly
expressed in developing HCs are quite different from those in adult HCs (Figs 1 and 2 vs. Fig
4). Among the 200 most abundantly expressed TF genes, 55 TF genes are commonly expressed
in P7 and adult HCs (marked by red asterisks in Fig 4). The searchable datasets of TF gene
expression profiles in developing HCs are also included in S1 Table.
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Fig 4. Expression levels of the top 200 TF genes expressed in P7 HCs. The expression of the same TF genes between E16 and P4 is also plotted for
comparison. Gene expression profiles at different ages are color-coded. 55 TF genes that are expressed in both P7 and adult HCs are marked by red
asterisks.

doi:10.1371/journal.pone.0151291.9004

Using the datasets from Scheffer et al. [25], we examined TF genes that are up- and down-
regulated during development between E16 and P7. Fig 5 shows the top 100 TF genes that are
up- and down-regulated when we compared the expression levels between E16 and P7 using
P7 as reference. We also analyzed the expression of TFs that are known to be important for HC
differentiation in adult HCs to determine whether they are still expressed. The expression of
these TF genes may suggest that they are still required for HC function and maintenance. Fig
6A shows the mean expression levels of those TFs. For comparison, the same TF genes from
developing HCs are presented in Fig 6B. As shown, except for a few genes such as Max, Myc,
Six, Pou4f3, Rb1 and Sox2, most of those TFs are expressed at relatively low levels.

We used quantitative reverse-transcriptase polymerase chain reaction (qQPCR) to verify the
expression of 20 genes (including TF genes and other genes such as Slc26a5, Chrna9, Chrnalo,
SLC17a8, Kcng4, Lmod3, and Strip2). These 20 genes exhibited differential expression with at
least a twofold difference according to our microarray datasets [22]. We included other well
characterized, differentially expressed genes for qPCR since they can serve as an additional vali-
dation. For qPCR, additional biological samples of 500 IHCs and 500 OHCs were separately
collected from five adult mice. Our qPCR study showed that these 20 genes were differentially
expressed in IHCs and OHCs, consistent with our microarray analyses. Fig 7A shows the
expression of seven TF genes in IHCs and OHCs from our qPCR examination. Although the
level of expression is normally not comparable between the two techniques (due to different
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Fig 5. The top 100 TF genes that are up- and down-regulated the expression levels between E16 and
P7 were compared with P7 as reference.

doi:10.1371/journal.pone.0151291.g005

amplification and quantification procedures used in microarray and qPCR), the trend of differ-
ential expression of these seven genes is consistent with our microarray data.

LBH is a transcription co-factor that is important for the development of limb bud and
heart [29]. Its expression and function in cochlear HCs have never been described before. Our
analysis shows that Lbh is differentially expressed (~3.7 fold in Log, scale) in OHC:s. A signifi-
cant increase of Lbh expression in both cochlear and vestibular HCs was also detected between
E18 and P7 [25]. Differential and dynamic expression of Lbh may suggest an important role in
OHC development and function. We examined the expression of Lbh in the adult organ of
Corti using antibody-based immunocytochemistry. Fig 7B shows a representative image of
LBH expression in the organ of Corti in a whole mount preparation using fluorescence micros-
copy. As shown, LBH is strongly expressed in OHCs. Optical sectioning (Fig 7C) using confo-
cal microscopy shows that LBH is expressed in the cytosol and nucleus. The expression pattern
of LBH suggests that it can be used as a biomarker for HCs.

Discussion

Gene expression regulation is one of prominent areas in the field of genetics. Regulation of
gene expression is essential to determining functional complexity and morphological diversity
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Fig 6. The expression levels of some TFs that are critical for hair cell and/or supporting cell
development. (A) TFs in adult IHCs and OHCs. (B) TFs in nascent hair cells.

doi:10.1371/journal.pone.0151291.g006

in different cells and tissues as well as in the wide diversity of species across the tree of life [1-
3]. Transcriptional regulation is a crucial step in gene expression regulation and is mediated by
TF complexes and availability of genomic DNA. The critical roles of TFs in HC differentiation
are highlighted by two studies demonstrating their abilities to reprogram mouse embryonic
stem toward HC-like cells [30]. We examined what TF genes are expressed in mouse HCs and
describe HC type-specific TF databases. Our datasets differ with other genome-wide TF data-
bases in the following ways: First, our analyses are based on actual gene expression profiles
from transcriptome analyses with expression levels and abundance rankings of each TF gene,
whereas other mouse TF databases are bioinformatics-based predictions [11,12,31] with no
numerical values. Second, our datasets are cell type-specific while datasets are not cell type-spe-
cific. In fact, our datasets represent the first TF gene expression database from two specific pop-
ulations of cells from adult mice. So far, no cell type-specific TF databases of any cell types are
available. Third, the two sets of TF gene expression profiles from two purified populations of
cells enables us to identify common versus differentially expressed TF genes in these two types
of HCs and discern possible gene regulatory networks associated with differential morphologi-
cal and functional properties.
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Fig 7. Validation of gene expression by qPCR and immunocytochemistry. (A) Comparison of seven TF
genes expressed in adult IHCs and OHCs using qPCR. Note that the ordinate is the inverse of the number of
PCR cycles necessary to reach fluorescence threshold. So even a small change (such as 0.01) reflects a
large difference. The asterisk represents statistical significance (p < 0.001, Student’s t-test) between each
pair. (B) Fluorescence image of expression of LBH in the adult organ of Corti. (C) Optical sectioning of the
organ of Corti using confocal microscopy. Nuclei were labelled with DAPI. Bar represents 10 um.

doi:10.1371/journal.pone.0151291.g007

We show the expression of 1,563 and 1,616 TF genes and their abundance rankings in IHCs
and OHCs. These TF genes account for approximately 9% of the total genes expressed in HCs
for both populations. The Riken mouse TF database identifies 1,675 TFs [11], among which
939 and 972 are respectively expressed in IHCs and OHCs. The remainder of the TF genes are
neither detected nor above the cutoff threshold. This is not surprising since the Riken datasets
are based on genome-wide transcriptome of mice while our study identifies TFs only expressed
in HCs. We include additional TF genes in our database. This addition reflects the fact that a
broader definition of TFs was used in our analyses. Although several mouse TF databases have
been created [11,12], there is still no consensus on how many TFs are present in the mouse
genome. This reflects the fact that experimental verification of each of the candidate TF genes
is still technically impractical. Therefore, up-to-date identification of candidate TFs still largely
depends on bioinformatics and predictions based on mouse cDNA sequences. Because a vari-
ety of TF identification methods have been used by different investigators, inconsistent criteria
and methods used by different studies have resulted in different databases that contain differ-
ent numbers and annotations of the candidate TFs. For example, the Riken database includes
all transcription-related genes, both TFs with DNA-binding properties as well as transcription
regulation factors that modulate TFs, for inclusion as TFs [11]. The TFCat database broadly
defined a TF as any protein directly involved in the activation or repression of the initiation of
synthesis of RNA from a DNA template [12]. Under this definition, 3,230 putative mouse TFs
were initially identified. However, further analyses show that fewer than 1,000 TFs were found
to have sufficient experimental evidence to be classified either as a TF or as a TF candidate
[12]. The initial analyses of the complete human genome sequence [32] estimated that there
are between 2,000 and 3,000 TFs. The DBD database includes 1,508 human loci as TFs [33],
while it is estimated that there are 1,700 to 1,900 TF-coding genes in the human genome with a
high-confidence data set of 1,391 genomic loci [7]. Another study using an ORFeome-based
analysis of human TF genes estimated that there are 1,962 TFs [34]. We would like to add that
it is likely that the actual number of TF genes in HCs may be greater than what we currently
report here. This is because approximately a proportion of transcripts identified in HC tran-
scriptomes have not been characterized. It is very likely that some of those transcripts are TF
genes.
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An advantage of our study is the ability to compare the expression of TF genes between the
two types of HCs, which share many common features and yet are morphologically and func-
tionally different. This enables us to identify common versus unique TFs in these HC types.
While identification of the common genes is important to ascertain TFs that regulate gene
expression for shared structures and functions (such as stereocilia bundles, mechanotransduc-
tion, and synaptic machinery), identification of differentially expressed TFs reveals gene regu-
lation for the unique morphological and functional properties of IHCs and OHCs. Although
the roles of the majority of these commonly and differentially expressed TFs in HCs are not yet
characterized, identification of common and differentially expressed TFs is the first step that
can lead to characterization of the TFs that are important to HC functions. For example, recent
evidence suggests that TMC1 may be a component of the mechanotransduction channels
[35,36]. What TF regulates the TmclI gene expression is unknown. Since both types of HCs are
mechanosensitive, the TF that regulates Tmcl gene must be present in both IHCs and OHCs.
Conversely, Slc26a5, the gene that encodes motor protein prestin, is significantly differentially
expressed in OHCs [22,37]. The TF regulating Slc26a5 expression is expected to be differen-
tially expressed in OHCs.

Although the specific function of each of the TFs in HCs is not known, some possible func-
tion may be inferred from their known function revealed in other cells. Three TFs that are dif-
ferentially expressed in IHCs may offer some clue for understanding why there is a differential
vulnerability to ototoxic drugs and noise insult between IHCs and OHC:s [38,39]. Noise
trauma, aging, and ototoxicity preferentially damage the OHCs, leading to increased hearing
thresholds and poorer frequency resolution [39,40]. BCL6, an evolutionarily conserved zinc
finger TF, is generally regarded as an important anti-apoptotic regulator [41]. As shown in Fig
3B, Bcl6 expression in IHCs is 2.7-fold greater than in OHCs. BCL2 also regulates cell apoptosis
and is specifically considered as an important anti-apoptotic protein [42]. Some evidence sug-
gests that BCL2 is also a transcription suppressor [43]. The expression of Bcl2 in IHCs is 3.7
Log, greater than in OHCs. Clusterin, encoded by Clu, is a 75-80 kDa disulfide-linked hetero-
dimeric protein associated with the clearance of cellular debris and apoptosis. One isoform of
CLU, localized in the nucleus, can induce apoptosis [44]. As shown in Fig 3C, Clu expression
in OHCs is 1.6 Log, greater than in IHC:s. Differential expression of anti-apoptotic Bcl6 and
Bcl2 in THCs and differential expression of pro-apoptotic Clu in OHCs may underlie the
molecular mechanism that predisposes OHC:s to being more susceptible to apoptosis and aging
than IHC:s.

Previous studies have identified a number of TFs that are critical for HC differentiation and
development [45]. We show that a majority of those TF genes are still expressed in adult HCs
although at relatively low levels (Fig 6A). The fact that those TF genes are still expressed in
adult HCs suggests that they may play an important role in HC function and maintenance. For
example, our datasets show that Atoh1 is still expressed in adult IHCs and OHCs. Atohl is a
TF that plays a critical role in HC differentiation [46]. AtohI is highly expressed in HCs during
inner ear development. Embryonic AfohI-null mice fail to generate cochlear and vestibular
HC:s [46]. Terminating Atohl expression after birth results in a complete loss of HCs in less
than four weeks [47]. Low level expression of Atohl shown in our study supports the notion
that Atoh1 expression in adult HCs is required for HC survival [47,48]. Two members of the
SoxC family, Sox4 and Sox11, are downregulated during development (Figs 5 and 6). A recent
study shows that conditional deletion of Sox4 and Sox11 results in loss of HCs and abnormal
development of the organ of Corti. Increased expression of these two TFs restores supporting
cell proliferation and the production of new HCs in adult vestibular epithelia [49]. Sox2 is also
required for the development of inner ear sensory domains [50]. Mutants for Sox2 have absent
or disordered formation of sensory domains and HCs [50]. Sox2 is detected in both HCs and
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supporting cells before birth [51]. In the adult organ of Corti, SOX2 is detected only in the sup-
porting cells using immunocytochemistry [51]. This is in contrast to our microarray analyses,
which show that Sox2 is still expressed in adult (P26 to P30) HCs. The discrepancy is actually
not surprising since the levels of gene expression and protein expression may be attributed to
the role of miRNAs, which function in RNA silencing and post-transcriptional regulation of
gene expression [52]. Sox2 is a predicted target of miR-183 family [53], which is abundantly
expressed in HCs, especially in IHCs [53]. The relative higher level of expression of Sox2 in
IHCs is consistent with relative higher level expression of miR-183 in IHCs [53]. Besides,
immunocytochemistry is not as sensitive as PCR-based techniques. Proteins that are expressed
at low levels are often missed by antibody-based immunocytochemistry. A recent study using
RNA-seq also detected relatively high-level expression of Sox2 in vestibular HCs at P16 [25].
Finally, our recent unpublished study using RNA-seq to characterize transcriptomes of pillar
cells, Deiters’ cells, IHCs, and OHCs from three-month-old mice confirms that Sox2 is still
expressed in IHCs and OHCs. Thus, it is possible that, like Atohl, a low level expression of
Sox2 may be necessary for HC survival and function in adult HCs.

The expression of a number of TFs may offer some important clues to understand why
adult mammalian HCs have lost the capacity to proliferate. The proliferation and development
of embryonic HCs are impacted by the presence of N-Myc paralogs [54]. MYC belongs to an
extended TF network involving Myc paralogs and MYC-associated protein genes, referred to as
the Max and Mlx genes [55]. In adult cochlear HCs very low levels of Myc and Mycn transcripts
are present, while Max, the obligate binding partner of the MYC proteins, is expressed at ~60
fold greater levels. A heterodimer between MAX and the MYC paralogs are necessary to bind
E-box elements for gene transcription [56]. MAX homodimers and MAX heterodimers with
the Mxd and Mnt proteins will lead to cycle-cycle arrest and may also contribute to differentia-
tion [56]. Three of the four Mxd paralogs, Mxdl, Mxd3, and Mxd4, as well as Mnt are
expressed at low levels; whereas Mxil (alias-Mxd2) is ~1.5-2 Log, higher than Max in [HC
and OHC expression. The presence of MAX and MXI1 in HCs should provide significant cell-
cycle arrest and are likely impediments to the successful realization of therapeutic approaches
using cell-cycle regulatory genes, including Myc itself [57].

Finally, the TF databases of the two types of HCs presented here will likely provide many
opportunities for a broad range of further research into transcriptional regulation of gene
expression in HCs. The longitudinal and radial gradients of gene expression in cochlear HCs
should be particularly interesting since it may contribute to the understanding of the quantita-
tive-based regulatory mechanisms of TFs and miRNAs. So far we know very little about the
biological processes that most of these TFs mediate. By indicating which TFs are present in
IHCs and in OHCs we provide a starting point for future studies into the activity of individual
TFs and how groups of TFs mediate HC phenotype and regulate differentiation, cell cycle con-
trol and survival. Understanding HC fate determination, cell cycle regulation and long-term
maintenance are essential for developing strategies for HC repair, regeneration and mainte-
nance, all of which are critical for maintenance of HCs as well as restoring lost hearing using
gene therapy [58,59].

Supporting Information

$1 Video. Video showing an OHC isolated from the apical turn of an adult mouse being
drawn into the suction pipette.
(MOV)

S1 Table. A complete set of transcription factors expressed in IHCs and OHCs.
(XLS)
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