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Multiple sclerosis is a chronic inflammatory demyelinating disease of the central nervous system. Different trigger pathologies
have been suggested by the primary cytodegenerative “inside-out” and primary inflammation-driven “outside-in” hypotheses.
Recent data indicate that mitochondrial injury and subsequent energy failure are key factors in the induction of demyelination
and neurodegeneration. The brain weighs only a few percent of the body mass but accounts for approximately 20% of the total
basal oxygen consumption of mitochondria. Oxidative stress induces mitochondrial injury in patients with multiple sclerosis and
energy failure in the central nervous system of susceptible individuals.The interconnected mechanisms responsible for free radical
production in patients with multiple sclerosis are as follows: (i) inflammation-induced production of free radicals by activated
immune cells, (ii) liberation of iron from the myelin sheets during demyelination, and (iii) mitochondrial injury and thus energy
failure-related free radical production. In the present review, the different sources of oxidative stress and their relationships to
patients with multiple sclerosis considering tissue injury mechanisms and clinical aspects have been discussed.

1. Introduction

Multiple sclerosis is a chronic disease of the central nervous
system and is associated with the formation of focal myelin
loss and progressive neurodegeneration [1].

Clinically, 80% of patients with multiple sclerosis present
with relapsing-remitting multiple sclerosis (RRMS), which
refers to clearly defined episodes of neurological dysfunction
followed by (partial) recovery. After 15–25 years, RRMS is
transformed into secondary progressive multiple sclerosis
(SPMS) in a majority of the patients; SPMS is characterised
by progressive neurological symptoms. Patients withmultiple
sclerosis (10–15%) enter this neurodegenerative phase at
disease onset, which is referred to as primary progressive
multiple sclerosis (PPMS) [2–4].

Once patients enter the progressive phase, no currently
available drug provides a significant clinical effect. Neurolog-
ical decline in these patients is caused by chronic and diffuse
neurodegeneration. Neurodegeneration is closely associated
with inflammation, both morphologically and quantitatively,
in all phases of multiple sclerosis [5, 6]. Anti-inflammatory

drugs that fail to prevent disease progression are highly
effective in reducing neuroinflammatory attacks in patients
with RRMS. No animal models are available that mimic
this enigma of the progressive phase and three nonexclusive
hypotheses have been proposed as follows [7]:

(i) Inflammation in the relapsing-remitting and pro-
gressive phases is driven by the same mechanisms,
but during progressive MS the central nervous sys-
tem does not respond to currently available anti-
inflammatory drugs [5], which may be caused by the
closed blood-brain barrier present in progressive MS
[8, 9].

(ii) Microglia, which are under the control of intact
neurons, may become chronically active due to pri-
mary neurodegeneration, axonal degeneration, and
additional peripheral activation processes such as
systemic inflammation [10–13].

(iii) Multiple sclerosis may be caused by primarily cytode-
generative processes/infections, which are amplified
by inflammation [14–17].
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Although these models are fundamentally different, they
share a common feature; that is, the tissue injurymechanisms
are closely related to the production of reactive oxygen and
nitrogen species.

2. Sources of Oxidative Stress in
Multiple Sclerosis

The central role of oxidative stress has been frequently
suggested in the pathogenesis of multiple sclerosis [18] based
on the biochemical analysis of cerebrospinal fluid/blood sam-
ples, tissue homogenates [19–22], and animal models of mul-
tiple sclerosis [23, 24]. Oxidised DNA molecules, lipids, and
protein adducts are frequently found in active multiple scle-
rosis lesions [24, 25] and are associated spatially and quanti-
tatively with apoptotic oligodendrocytes and neurodegener-
ation in the brains of patients with multiple sclerosis [26].

3. Inflammation

Active inflammation and breakdown of the blood-brain
barrier can be detected in the brains of patients with multiple
sclerosis as gadolinium enhancingmagnetic resonance imag-
ing lesions [9, 27–29]. Although inflammatory infiltrates are
present in all the stages of multiple sclerosis [5], the qualita-
tive and quantitative composition is variable and dependent
on clinical parameters (age, disease duration) and their loca-
tionwithin the brain (meningeal, perivascular, and parenchy-
mal). The diverse aspects of inflammation in patients with
multiple sclerosis are discussed extensively [30]. Two waves
of inflammatory responses can be distinguished as follows:
(i)The initial/prephagocytic lesions contain fewCD8 positive
T-cells [17] and tissue injury is associated with the presence
of activated microglia that infiltrate the parenchyma [31]; (ii)
this is followed by the secondary recruitment of T-cells, B-
cells, and macrophages during myelin breakdown [30].

Macrophage/microglia-derived reactive oxygen and
nitrogen species trigger axonal injury [23]. The enzymes
involved in the production of free radicals as well as their
regulatory and catalytic subunits are upregulated in active
multiple sclerosis lesion areas [32–35], where oxidative stress
adducts are found most frequently [26, 36]. Experimental
autoimmune encephalomyelitis (EAE) is an animal model
that mimics certain phenomena observed in patients with
multiple sclerosis [37]. The gene of Gp91phox encodes the
catalytic component of NADPH oxidase [38]. Mice deficient
in Gp91phox develop a milder form of EAE [39].

In physiological conditions, neurons, astrocytes, and
oligodendrocytes express molecules that bind to recep-
tors that are expressed on microglia. Signalling via these
molecules, such as the fractalkine receptor ligand CX3CL1
[10], the membrane glycoprotein CD200 [40], the integrin
associated protein myelin CD47 [41], and sialic acid alpha-
2,8-linked polysialic acids [42], inhibits microglial activation
[43]. Axonal degeneration can thus activate microglia that
are distant from the initial site of neuronal injury due to
the decreased expression of these molecules [13], which
may trigger the microglia-mediated removal of debris and

delivery of neurotrophic factors. Similar to other neurode-
generative diseases, such “preactivated” microglia can be
more easily converted into a cytotoxic form when exposed
to a proinflammatory cytokine milieu (e.g., via systemic
inflammations) [44]. In addition to the randomly distributed
plaques, the preactivation of microglia in EAE using Walle-
rian degeneration determined the location of demyelinating
lesions that appeared in the ipsilateral thalamus after cortical
cryoinjury and in the ipsilateral optic nerve, contralateral
optic tract, and superior colliculus after unilateral eye ball
enucleation [45]. Accordingly, cortical thickness in patients
with multiple sclerosis is associated with the connected
thalamic nucleus’s neuronal cell density and the myelin
content of the anatomical connection [12].

In patients with long disease durations (median > 372
months), the level of inflammatory infiltrates is similar to
those found in age-matched controls [5]. Although there is a
close association between oxidative stress and inflammation
in active lesions and patients with RRMS, it is also pro-
nounced in progressiveMS [26, 46], which raises the question
whether additional reactive oxygen and nitrogen species are
present in patients with progressive MS.

4. Iron

In the human brain, iron is primarily stored by ferritin [47]
in the myelin sheets [48, 49]. It accumulates physiologically
with age, reaching a plateau at 40–50 years, depending on
the anatomical structure that is analysed [50]. Experimental
spinal cord injury revealed that iron can amplify oxidative
damage in lesions of the central nervous system [51]. Myelin
breakdown and subsequent phagocytosis of myelin debris
occur at active multiple sclerosis lesions [17, 30]. It has been
suggested that iron liberated into the extracellular space
during the course of myelin breakdown amplifies the first
wave of oxidative stress in multiple sclerosis lesions [52].
Finally, iron is taken up by macrophages and microglia.
However, these cells degenerate [52, 53] and thus release their
iron content into the extracellular space, which initiates an
additional wave of oxidative stress [54, 55].

Clinically, the duration of the relapsing-remitting phase
can vary between individuals [3]; however, the coerciveness
of the progressive phase and the rate of neurological decline
are highly consistent irrespective of the preceding disease
course or its severity. This led to the assumption that
neurodegenerative mechanisms in patients with progressive
MS depend on the patients’ age [4, 56]. Iron accumulates
in the human brain in an age-dependent manner and iron-
mediated amplification of oxidative stress may contribute
to the age-related pathology of progressive MS [1, 57]. Iron
accumulation is scarce in rodent models of multiple sclerosis
and barely reflects the extent of oxidative injury observed in
patients with multiple sclerosis [37].

In the human brain, the highest iron content is mea-
sured in the deep grey matter nuclei, particularly in the
basal ganglia [50, 52, 58]. However, lesion incidence and
destructiveness are similar in the deep grey matter nuclei and
the white matter of patients with multiple sclerosis [46, 59].
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Figure 1: Oxidative stress-related mechanisms of tissue injury in multiple sclerosis. The temporal sequence and interconnection of cytotoxic
events inMSmay be different in individual lesions, stages of the disease, and different patients.Therefore, Figure 1 does not describe a timeline
from events depicted in (a) to that in (d). (a) Microglia are activated by an unknown trigger pathology, the breakdown of the blood-brain
barrier, and local and systemic inflammatory stimuli. Microglia activation itself may further impair the blood-brain barrier permeability.
Microglia release nitric monoxide and superoxide molecules into the extracellular space. Nitric monoxide is uncharged and therefore
penetrates lipid layers. Contrary to nitric monoxide, superoxide is unable to diffuse across biological membranes. It is rapidly converted
into hydrogen peroxide, which, in contrast to superoxide, is able to diffuse into the extracellular environment. Additional amplification
mechanisms involve microglia preactivation via axonal degeneration (d). (b) Iron is physiologically stored within the myelin sheets and
liberated into the extracellular space upon demyelination. Extracellular iron amplifies oxidative stress as it travels between the ferrous and
ferric states, inducing the production of highly reactive hydroxyl radicals. Iron is absorbed by microglia, which show histological signs of cell
death under the high iron load and thus may release iron and initiate a second wave of oxidative stress. (c) Mitochondrial DNA (mtDNA) is
vulnerable to free radical-mediated damage resulting in mtDNA deletions, which are found in neurons and axons of patients with multiple
sclerosis. Mitochondria carrying such mutations are amplified by the clonal expansion in neurons. The mitochondrial respiratory chain
is inhibited by covalent modifications caused by free radicals both competitively and irreversibly. A combination of these factors leads to
energy failure via decreased ATP production. An important source of free radicals is the mitochondrial respiratory chain itself, particularly
at low oxygen tension and reperfusion and in demyelinated axons. The exogenous factors, such as free radicals and cyanate delivered by
smoking, inhibit mitochondrial function and cause demyelination in experimental conditions. Energy deficiency lowers Na+/K+-ATPase
activity, resulting in the reverse operation of the Na+/Ca2+ exchanger (NCX) and thus increases Ca2+ levels. This event further activates the
neurodegenerative and cell death pathways.

Histologically, the deep grey matter of patients with multiple
sclerosis reveals a diffuse neurodegeneration pattern [60],
quantitatively related to the patients’ motor dysfunction prior
to death [46]. The deep grey matter lesions of patients with
multiple sclerosis show high levels of oxidative stress in
neurons and oligodendrocytes.The level of oxidative stress in
these lesions is positively associated with local iron load from
both a topographical and a quantitative point of view [46, 52].
Similar to white matter lesions, two waves of iron liberation
(Figure 1) have been suggested [46]. Inducible nitric oxide
synthase (iNOS) is not expressed in the human central

nervous system in baseline conditions [61, 62]. It is remark-
able that the level of iNOS is elevated in the deep grey matter
nuclei compared to the cortex orwhitematter in both patients
with multiple sclerosis and controls [46]. Nitric monoxide is
a competitive inhibitor of the respiratory chain [63, 64]. In
high concentrations, in hypoxic conditions, or in the presence
of superoxide, nitric monoxide promotes excitotoxicity and
apoptosis [65, 66]. Low iNOS expression is cytoprotective in
normoxic conditions and in the absence of superoxide [67].
In iron laden microglia cells, iNOS expression is upregulated
[68, 69].These findings suggest that iNOS upregulation could
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be an adapting mechanism in response to iron accumulation
in the central nervous system and particularly in the deep
grey matter [70]. Nitric monoxide mediated inhibition of
the respiratory enzymes may also explain the clinical and
pathological observation of early atrophy of deep grey matter
in patients with Alzheimer’s disease [71, 72] and that the deep
grey matter nuclei are selectively vulnerable to hypoxemia
or energy failure, in conditions such as carbon monoxide
poisoning [73] and mitochondriopathies [74].

5. Hypoxia and Energy Failure

5.1. Mitochondrial Injury. The role of themitochondria in the
pathogenesis ofmultiple sclerosis was suggested by the obser-
vation that patients with Leber’s hereditary optic neuropathy,
a disease caused by mitochondrial DNA mutations, have an
increased risk of developing multiple sclerosis-like Harding’s
disease [75]. In patients with multiple sclerosis, mitochon-
drial dysfunction has been described extensively in the cortex
and white matter [1, 76]. Hypoxia-like lesions (pattern III
multiple sclerosis lesions) [77] display various mitochondrial
respiratory chain defects in axons, oligodendrocytes, and
astrocytes [78]. Mitochondrial gene expression of 26 nuclear-
encoded subunits of the oxidative phosphorylation chain and
activity of complexes I and III are decreased in cortical neu-
rons.The distribution of these “respiratory deficient” neurons
is unknown, but they are not restricted to the areas of myelin
loss [79, 80], suggesting a diffuse process. Reactive oxygen
and nitrogen species are produced by activated microglia
and macrophages through oxidative burst that releases these
molecules into the extracellular space [81]. Nitric monoxide
can diffuse across membranes and competes with oxygen
for the binding site of mitochondrial cytochrome c oxidase;
thus, it decreases respiratory chain function [82]. Reactive
oxygen and nitrogen species induce covalent modifications
and thusmutations in themitochondrial DNA,which ismore
vulnerable than nuclear DNA [74, 83]. Mitochondrial DNA
defects are present in patients withmultiple sclerosis [80, 84].
Mitochondrial DNA mutations induced by reactive species
inhibit the efficiency of oxidative phosphorylation and fur-
ther increase the production of reactive oxygen species, thus
leading to a vicious circle [85]. In normal conditions, 1-2%
of the electrons escape from mitochondrial oxidative phos-
phorylation [86] and react with molecular oxygen producing
superoxides in themitochondrialmatrix, in the compartment
that containsmitochondrial DNA [87]. Hypoxia increases the
production of reactive oxygen intermediates by deregulating
the mitochondrial electron transport chain [88, 89]. Simi-
larly, mitochondrial superoxide production increases when
adenosine triphosphate (ATP) production is decreased (e.g.,
at a high membrane potential and pH gradient, low levels
of coenzyme Q, and high nicotinamide adenine dinucleotide
(NAD)/NAD+ ratio) [90, 91].These conditions are present in
demyelinated axons with an impaired conduction of saltatory
axon potential transmission [18].

The detoxification of reactive oxygen species reversed
mitochondrial and axonal injury in experimental settings
[23], where the nitration of mitochondrial proteins precedes

tissue injury and is present in the intact axons of animals
with EAE [92]. In patients with multiple sclerosis, the pro-
portion of mutant to wild-type mitochondrial DNA copies
(heteroplasmy) in metabolically active postmitotic neurons
increases with disease progression and increases age, via
the clonal expansion of defective mitochondrial DNA [93].
Damaged mitochondria are normally removed from the
cells by autophagy, which involves the formation of double-
membrane structures called autophagosomes that fuse with
lysosomes to degrade their content [94]. The autophago-
some formation is inhibited by mTOR-dependent signalling
pathways [94]. mTOR signalling is inhibited when nutrients
are scarce, growth factor-related signalling is reduced, and
ATP concentrations are low. In these situations, mTOR sig-
nalling is suppressed and biogenesis of the autophagosomes
increases [95]. The reason why mitochondria with mutated
mitochondrial DNA undergo clonal expansion and whether
this process is related to changes in mTOR signalling in
multiple sclerosis remains unknown [1].

Mitochondrial dysfunction and consequently ATP defi-
ciency in multiple sclerosis lesions lead to the failure of
sodium removal from the axoplasm into the extracellular
space during action potential conduction [56]. In this condi-
tion, accumulated sodium is replaced by calcium ions by the
reverse operation of the sodium-calcium exchanger (NCX).
Calcium subsequently activates calpains, which initiate the
proteolytic degeneration of cytoskeletal proteins [16, 96,
97]. In addition, aberrantly expressed voltage-gated calcium
channels and glutamate receptors have been described in
multiple sclerosis lesions, and their presence might amplify
calcium toxicity [98, 99]. The ionic imbalance may be ampli-
fied by alterations in individual sodium channel subunits in
multiple sclerosis lesions [100, 101].

5.2. Real/Virtual Hypoxia. The central nervous system is
highly dependent on the continuous blood flow and mito-
chondrial metabolism that produces ATP [102]. This depen-
dence is well illustrated by the large number of neurological
disorders due to genetic alterations in mitochondrial and
nuclear genes encodingmitochondrial proteins [74] andCNS
injury in conditions of hypoxia or hypoglycaemia [73]. The
hypoxic features of multiple sclerosis lesions including the
expression of HIF-1-alpha, other hypoxia-related proteins,
and elevated concentrations of lactate within lesions have
been reported [103–110]. In patients with multiple sclero-
sis, diverse factors related to local oxygen supply/demand
contribute to the endpoint of neurodegeneration. Brain
inflammation reduces the oxygen supply due to oedematous
tissue swelling [111, 112] and increases oxygen consumption
by the presence of inflammatory infiltrates [113] and by the
formation of a diffusion barrier to oxygen. The neurological
deficits in animals with EAE are correlated with spinal cord
white and grey matter hypoxia quantitatively, temporally,
and spatially [113]. Similar findings are suggested in humans
with multiple sclerosis. Brownell and Hughes determined the
location of 1594macroscopically visible plaques and reported
“the peculiarity that these are situated on the boundary zones
between major cerebral arteries, which have penetrated in
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this periventricular region to their further point of supply”
[114]. These border zones between the major cerebral arteries
(the so-called watersheds) have a decreased oxygen tension,
and magnetic resonance imaging of 1249 patients with multi-
ple sclerosis revealed high levels of lesion load in these water-
shed zones [115], which is consistent with previous findings
[116]. A meta-analysis of voxel-based morphometric studies
in patients with multiple sclerosis revealed that the cortex
located within watershed areas is more severely affected
by atrophy than other cortical regions [117]. However, the
relative contribution of axonal degeneration and subcortical
lesion frequency on primary neurodegeneration compared to
other factors such as meningeal inflammation and cortical
lesion formation in these cortical areas remains unknown.

Smoking can trigger multiple sclerosis, propagate disease
progression, and transiently worsen the motor functions in
patients with multiple sclerosis [118–120]. Cigarette smoke
contains over 4500 potentially toxic components includ-
ing reactive oxygen species, nitric monoxide, and cyanate
[121, 122]. Cyanate inhibits the mitochondrial respiratory
chain [123] and causes demyelination [124–126]. The exoge-
nous inhibition of mitochondrial function via hypoxia and
increased blood levels of cyanate and free radicals due to
cigarette smoke inhalation may explain this environmental
risk factor in the pathogenesis of multiple sclerosis; however,
further experiments are warranted for confirmation.

6. Clinical Consequences

Energy failure, due to mitochondrial injury and oxidative
stress, is a key player in the pathogenesis of multiple
sclerosis. Early clinical research argued over the “relief by
flush” therapy [127, 128]. Drugs such as histamine and amyl
nitrite, which increase perfusion and thus may counteract
energy failure, provided only temporary beneficial effects
[129]. Similarly, hyperbaric oxygen has highly significant
transient effects in the treatment of patients with multiple
sclerosis but failed to show any lasting results (e.g., 100%
oxygen at 2 atmospheres for 90min once daily, for a total
of 20 exposures) [130, 131]. The failure of hyperbaric oxygen
therapy in patients with multiple sclerosis may be related
to oxidative stress, which can increase in such conditions,
similar to reperfusion injury [132] and the temporal timing
of oxygen delivery in oxygen-sensitive periods [113]. A
novel approach targets histotoxic “virtual” hypoxia by
counteractingmitochondrial injury [76].These drugs may be
beneficial for patients with progressive MS because they may
be able to cross the relatively intact blood-brain barrier [133].
The potential targets for boosting mitochondrial functions
are substances that would particularly enhance the operation
of peroxisome proliferator-activated receptor gamma
coactivator 1 alpha (PGC1-alpha) [134, 135]. PGC1-alpha is a
transcriptional cofactor, which binds and activates nuclear
transcription factors that are involved in mitochondrial
function. In addition, PGC1-alpha expression is reduced
in the cortical neurons of patients with multiple sclerosis
[136]. Cyclophilin D and p66ShcA are both involved in the
formation of mitochondrial permeability transition pores

and subsequent cell death signalling. Cyclophilin D and
p66ShcA inactivation significantly reduced axonal damage
in EAE [137, 138]. The gene delivery of superoxide dismutase
2, a mitochondrial scavenger of superoxides, ameliorates the
axonal pathology in EAE [139]. Similar protective properties
were reported for MitoQ, an antioxidant accumulating in
the mitochondria [113, 140]. The anti-inflammatory drugs
may penetrate the relatively intact blood-brain barrier and
inhibit proinflammatory mediators that are released by T-
and B-lymphocytes or microglia [1, 5, 8].

A conclusion, which genetic, experimental, and patholog-
ical investigations clearly suggest, is that there is no evidence
for a single cause and thus therapeutic target of multiple
sclerosis. Instead, multiple amplification steps orchestrate the
clinically observed phenotype in susceptible individuals [141],
which is well reflected in clinical trials. Drugs that target gen-
eral or various inflammatory pathways such as blood-brain
barrier permeability and immune suppression/modulation
or combine additional cytoprotective properties have proven
highly effective in the treatment of patients with multiple
sclerosis [142–147]. It is important to note that the phar-
macodynamics of such drugs may be highly specific (e.g.,
natalizumab blocks the VLA alpha-4 subunit); however,
they interfere with the biological pathways that have very
broad/unspecific effects on the organism (e.g., natalizumab
prevents leucocytes from entering the central nervous sys-
tem). The treatment strategies interfering with more specific
downstream pathways proved not only less effective but also
potentially dangerous [148–151].The testing of new treatment
regimes, particularly in clinical trials, may therefore benefit
from combined approaches targeting different cell death
pathways. Such approaches may involve anti-inflammatory
therapy [1], protection against oxidative stress [152], mito-
chondrial injury [76], and hypoxic energy failure [113].
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