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Abstract: Organic anion transporter 3 (OAT3) is mainly expressed at the basolateral membrane of
kidney proximal tubules, and is involved in the renal elimination of various kinds of important drugs,
potentially affecting drug efficacy or toxicity. Our laboratory previously reported that ubiquitin
modification of OAT3 triggers the endocytosis of OAT3 from the plasma membrane to intracellular
endosomes, followed by degradation. Oral anticancer drugs ixazomib, oprozomib, and delanzomib,
as proteasomal inhibitors, target the ubiquitin–proteasome system in clinics. Therefore, this study
investigated the effects of ixazomib, oprozomib, and delanzomib on the expression and transport
activity of OAT3 and elucidated the underlying mechanisms. We showed that all three drugs sig-
nificantly increased the accumulation of ubiquitinated OAT3, which was consistent with decreased
intracellular 20S proteasomal activity; stimulated OAT3-mediated transport of estrone sulfate and
p-aminohippuric acid; and increased OAT3 surface expression. The enhanced transport activity and
OAT3 expression following drug treatment resulted from an increase in maximum transport velocity
of OAT3 without altering the substrate binding affinity, and from a decreased OAT3 degradation.
Together, our study discovered a novel role of anticancer agents ixazomib, oprozomib, and delan-
zomib in upregulating OAT3 function, unveiled the proteasome as a promising target for OAT3
regulation, and provided implication of OAT3-mediated drug–drug interactions, which should be
warned against during combination therapies with proteasome inhibitor drugs.
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1. Introduction

Organic anion transporter 3 (OAT3), which is encoded by the SLC22A8 gene, is pri-
marily expressed at the basolateral membrane of kidney proximal tubules, and actively
translocates corresponding substrates from the blood into renal tubule epithelial cells.
Those substrates are then effluxed out of the apical membrane into urine by other trans-
porters [1–3]. OAT3 is involved in the renal elimination of various kinds of important
clinical drugs from the kidney, such as anticancer agents (e.g., methotrexate), antivirals (e.g.,
tenofovir, valacyclovir), antibiotics (e.g., benzylpenicillin, cefotaxime), antihypertensives
(e.g., furosemide, sitagliptin), H2 receptor antagonists (e.g., cimetidine, famotidine), and
nonsteroidal anti-inflammatory drugs (e.g., ketoprofen, ibuprofen) [4–6]. Therefore, the
renal OAT3 function is a critical determinant in drug clearance out of the body, and in the
pharmacokinetic and pharmacodynamic properties of drugs, which ultimately affect the
drugs’ efficacy and systemic or renal toxicity.

Combination therapies by coadministration of different drugs are often used for treat-
ment of a single or multiple diseases. If one drug is an inhibitor, substrate, or inducer of
OAT3, it will inhibit uncompetitively or competitively, or stimulate the renal transport and
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excretion of other clinical substrates, cause potential drug-drug interactions (DDIs), and
sequent intra- and interindividual variation in clinical response to drugs [6,7]. Transporter-
mediated clinical DDIs have attracted the attention of academic, industrial, and regulatory
agencies. OAT3-mediated DDIs abundantly exist between imipenem-cilastatin, piperacillin-
tazobactam, bezafibrate-mizoribine, puerarin-methotrexate, benzylpenicillin–acyclovir, etc.,
and markedly alter the pharmacokinetic parameters of affected drugs [8–12]. Through
inhibition of OAT1/3, probenecid, wedelolactone, and wogonin prevented the kidney accu-
mulation of aristolochic acid and related nephropathy, apigenin- or cilastatin-ameliorated
imipenem, or diclofenac-induced nephrotoxicity [13–17].

The transporter expression and function may be modulated by certain drugs, phy-
tomedicines, or xenobiotics, resulting in altered disposition of clinical substances, which
is an indirect manner of obtaining transporter-mediated DDIs, in contrast to direct inter-
action with the transporter-like inhibitors or substrates [4]. For example, administration
of 1α,25-dihydroxyvitamin D3, mercuric chloride, or methotrexate decreased OAT3 ex-
pression in crude or basolateral membranes of rat kidneys; while the renal expression
was increased in normal rats by ochratoxin A treatment, in diabetic rats by insulin or
atorvastatin plus insulin treatment, or in obese rats by prebiotic Lactobacillus paracasei HII01
or xylooligosaccharide treatment [18–25].

OAT3 expression and activity can be regulated through posttranslational modifica-
tions, including phosphorylation, ubiquitination, and SUMOylation [26–28]. As ubiqui-
tination of OAT3 is an initiating process that triggers the internalization of OAT3 from
the plasma membrane to intracellular endosomes, it is a critical molecular mechanism for
OAT3 regulation [29,30]. Our lab demonstrated that activation of protein kinase C (PKC)
could enhance OAT3 ubiquitination, and accelerate OAT3 internalization and subsequent
degradation [27]. The transport activity and quantity of OAT3 on the plasma membrane
were then reduced. Since proteasome inhibition can affect ubiquitination of targeted pro-
teins and degradation, modulation of proteasome activity could potentially interfere with
the physiological function of transporters. Proteasome inhibitors have shown to influ-
ence the copper transporter 1, Na+/H+ exchanger-3, ATP-binding cassette transporters A1
(ABCA1) and ABCG1, organic-anion-transporting polypeptide (OATP) 1B3, metal trans-
porter ZIP14, and OAT1 [31–36]. However, it is not clear whether OAT3 can be regulated by
controlling proteasome activity. Ixazomib, oprozomib, and delanzomib are oral proteasome
inhibitors that target the ubiquitin–proteasome system for multiple myeloma treatment. In
the present study, we investigated the influence of ixazomib, oprozomib, and delanzomib
on OAT3 expression and transport activity, and elucidated the underlying mechanisms.

2. Materials and Methods
2.1. Materials

COS-7 cells and HEK293 cells were purchased from ATCC (Manassas, VA, USA). [3H]-
labeled estrone sulfate (ES) and [3H]-labeled p-aminohippuric acid (PAH) were ordered
from PerkinElmer (Waltham, MA, USA). Mouse anti-Myc antibody (9E10) was purchased
from Roche (Indianapolis, IN, USA). Mouse anti-E-Cadherin antibody was from Abcam
(Cambridge, MA, USA). Streptavidin agarose resin, protein G agarose, and Sulfo-NHS-SS-
biotin were ordered from Thermo Scientific (Rockford, IL, USA). The 20S proteasome assay
kit was ordered from Cayman Chemical Company (Ann Arbor, MI, USA). Mouse anti-β-
actin antibody, normal mouse IgG, and mouse anti-ubiquitin antibody were obtained from
Santa Cruz Biotechnology (Dallas, TX, USA). Ixazomib, oprozomib, and delanzomib were
purchased from Selleck Chemicals (Houston, TX, USA). Probenecid, lactacystin, epoxomicin
and all other reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA).

2.2. Cell Culture

Parental COS-7 and parental HEK293 cells were cultured in Dulbecco’s modified
Eagle’s medium (DMEM) (Corning, Tewksbury, MA, USA) supplemented with 10% fe-
tal bovine serum (Gibco, Grand Island, NY, USA) at 37 ◦C in 5% CO2. Human OAT3-
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expressing (hOAT3) COS-7 cells and hOAT3-expressing HEK293 cells were established in
our group [37,38]. The hOAT3 cells were cultured in DMEM supplemented with 10% fetal
bovine serum and 0.2 mg/mL G418 sulfate (Gibco, Grand Island, NY, USA).

2.3. Transport Measurement

The transport activity was assayed using the method published by our lab [30]. Cells
per well were incubated in uptake solution of [3H]ES (250 nM) or [3H]PAH (20 µM) in
phosphate-buffered saline (PBS)/Ca2+/Mg2+ (PBS/CM) for 3 min. After discarding the
uptake solution, the cells were washed twice with cold PBS, then lysed in NaOH solution
(0.2 N) and neutralized by adding HCl solution (0.2 N). The amount of ES or PAH uptake
was assayed using a Beckman LS 6500 liquid scintillation counter.

2.4. 20S Proteasome Activity Assay

After incubation with ixazomib, oprozomib, delanzomib, or lactacystin for 6 h, hOAT3
cells were washed once with assay buffer (200 µL) and solubilized in lysis buffer (100 µL).
Then, the supernatant (90 µL) was removed to a black 96-well plate, and incubated with
SUC-LLVY-AMC solution (10 µL) for 1 h at 37 ◦C. Fluorescence intensity per well (excita-
tion = 360 nm, emission = 480 nm) was assayed using a Molecular Devices Spectramax M3
microplate reader.

2.5. Cell-Surface Biotinylation

Cell surface hOAT3 expression was assayed using the procedures introduced by our
group [39]. The hOAT3 cells were labeled with sulfo-NHS-SS-biotin solution (0.5 mg/mL
in PBS/CM) on ice, with slow shaking for two continuous 20 min. After discarding the
biotin solution, the cells were washed once with glycine solution (100 mM in PBS/CM)
and incubated with glycine solution for 20 min to completely quench the unbound sulfo-
NHS-SS-biotin. The cells were then lysed in lysis buffer consisted of 10 mM Tris-HCl,
pH 7.5, 150 mM NaCl, 1 mM EDTA, 0.1% SDS, 1% Triton X-100, and 1% proteinase inhibitor
cocktail. The cell lysates were centrifuged at 16,000× g at 4 ◦C, and the supernatant was
then mixed with streptavidin agarose resin (40 µL) to separate the cell surface proteins. The
hOAT3 at the cell surface was detected by immunoblotting using the anti-Myc antibody.

2.6. Immunoprecipitation

The hOAT3 ubiquitination was investigated using the method published by our
group [39]. The hOAT3 cells were lysed in lysis buffer consisted of 50 mM Tris-HCl,
pH 8.0, 150 mM NaCl, 1% Triton X-100, 10% glycerol, 5 mM EDTA, 1 mM NaF, 20 mM
N-ethylmaleimide, and 1% of proteinase inhibitor cocktail. Cell lysates were precleared
with protein G agarose to decrease nonspecific binding at 4 ◦C for 2 h. Anti-Myc antibody
was mixed with protein G agarose (30 µL) and incubated at 4 ◦C for 2 h. The precleared
protein was then added to antibody-bound protein G agarose suspension and mixed with
end-over-end rotation at 4 ◦C overnight. Proteins coupled to protein G agarose were
released with urea buffer containing β-mecaptoethanol and detected by immunoblotting
using the anti-ubiquitin antibody.

2.7. Degradation Assay of OAT3

The hOAT3 degradation was investigated using the method utilized in our group [38].
The hOAT3 cells were first labeled with sulfo-NHS-SS-biotin, then the biotinylated cells
were treated with vehicle, ixazomib, oprozomib, or delanzomib at 37 ◦C for 0, 3, and 6 h.
Then the cells were collected, and the undegraded cell surface hOAT3 was isolated and
detected following the procedures in Section 2.5.

2.8. Electrophoresis and Immunoblotting

The electrophoresis and immunoblotting experiments were carried out using the
method published by our group [30]. Protein samples were loaded on 7.5% precast
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polyacrylamide gels and transferred onto polyvinylidene difluoride membranes. The
immunoblot membranes were blocked with 5% nonfat dry milk in PBS-0.05% tween 20 for
1 h, and incubated with primary antibodies at 4 ◦C overnight, followed by incubation of
horseradish peroxidase-conjugated secondary antibodies. The protein bands were visual-
ized using a SuperSignal West Dura Extended Duration Substrate kit (Thermo Scientific,
Rockford, IL, USA), and corresponding densities were analyzed using the FluorChem
8000 imaging system (Alpha Innotech Corp., San Leandro, CA, USA).

2.9. Data Analysis

One-way ANOVA or two-way ANOVA Tukey’s test was utilized for statistical analysis
among multiple groups by using GraphPad Prism software (GraphPad Software Inc.,
San Diego, CA, USA). Each experiment was repeated at least three times. A p value less
than 0.05 was statistically significant, and a p value more than 0.05 was not statistically
significant (ns).

3. Results
3.1. Effects of Ixazomib, Oprozomib, and Delanzomib on the Ubiquitination of OAT3

Ixazomib, oprozomib, and delanzomib, as proteasome inhibitors, target the ubiquitin-
proteasome system for cancer therapy. First, we investigated their effects on the intracellular
ubiquitination of OAT3 in OAT3-expressing COS-7 cells. OAT3-expressing cells were
treated with ixazomib, oprozomib, or delanzomib for 6 h, then harvested and lysed.
OAT3 was pulled down from cell lysate by anti-Myc antibody (Myc tag was fused onto
OAT3, enabling immunodetection), followed by immunoblotting (IB) using anti-ubiquitin
antibody to probe the ubiquitinated OAT3. The results (Figure 1) showed that incubating
cells with ixazomib, oprozomib, or delanzomib resulted in a significant accumulation
of ubiquitinated OAT3, which was not because of the difference in immunoprecipitated
OAT3, since there were similar quantities of OAT3 pulled down from all samples. Further
study showed that like lactacystin, a classical proteasome inhibitor, ixazomib, oprozomib,
and delanzomib inhibited the 20S proteasome activity by 50% (95% confidence interval
(CI): 46% to 54%), 87% (95% CI: 83% to 91%), and 61% (95% CI: 57% to 65%), respectively,
after 6 h of treatment (Figure 2). Therefore, the accumulation of ubiquitinated OAT3 was
attributed to the decreased proteasome activity, suggesting that ubiquitinated OAT3 can be
modulated by interfering the ubiquitin–proteasome system in the cell model that we used.Pharmaceutics 2020, 12, x FOR PEER REVIEW 5 of 17 
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Figure 1. Effect of proteasomal inhibitors ixazomib, oprozomib, or delanzomib on the accumulation
of ubiquitinated OAT3. Top panel: OAT3-expressing COS-7 cells were treated with ixazomib (30 nM),
oprozomib (200 nM), or delanzomib (30 nM) for 6 h. Treated cells were then lysed, and OAT3 was
immunoprecipitated with anti-Myc antibody or mouse IgG (as negative control, lane 5), followed
by IB with anti-Ub. Bottom panel: The same immunoblot from the top panel was reprobed with
anti-Myc antibody to determine the amount of OAT3 immunoprecipitated.
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expressing COS-7 cells were treated with lactacystin (10 µM), a classical proteasome inhibitor as
positive control, ixazomib (30 nM), oprozomib (200 nM), or delanzomib (30 nM) for 6 h. The 20S
proteasome activity of cells was then performed. The 20S proteasome activity was expressed as the
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3.2. Cis-Effect of Ixazomib, Oprozomib, or Delanzomib on OAT3-Mediated Uptake of Estrone Sulfate

As OAT3 has multispecificity toward multiple substrates, we investigated whether
ixazomib, oprozomib, and delanzomib are inhibitors or inducers of OAT3 by performing a
cis-inhibition assay. Estrone sulfate (ES) is a prototypical OAT3 substrate, and probenecid
is a well-recognized competitive inhibitor of OAT3 [2,40]. We measured 3 min of uptake
of [3H]ES (250 nM) into OAT3-expressing cells with or without probenecid, ixazomib,
oprozomib, or delanzomib existing in the ES solution. The results (Figure 3) showed that
probenecid inhibited OAT3-mediated transport of [3H]ES by 40% (95% CI: 34% to 46%),
while ixazomib, oprozomib, and delanzomib did not have any effects, indicating that
ixazomib, oprozomib, and delanzomib are not inhibitors or inducers of OAT3. There-
fore, ixazomib, oprozomib, and delanzomib did not affect OAT3 function through direct
interaction with the transporter.Pharmaceutics 2020, 12, x FOR PEER REVIEW 6 of 17 
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Figure 3. Cis-effect of ixazomib, oprozomib, or delanzomib on OAT3-mediated uptake of [3H]ES.
The uptake of [3H]ES (250 nM) in the presence of ixazomib (1 µM), oprozomib (1 µM), delanzomib
(1 µM), or probenecid (5 µM) for 3 min was measured in OAT3-expressing COS-7 cells. Each data
point represented only carrier-mediated transport after subtraction of values from parental cells.
Uptake activity was expressed as the percentage of uptake measured in control cells from three
independent experiments. Values are means ± S.D. (n = 3). * p < 0.05; ns = not statistically significant.
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3.3. Effects of Ixazomib, Oprozomib, or Delanzomib on OAT3-Mediated Uptake of Estrone Sulfate
or P-Aminohippuric Acid

Since ixazomib, oprozomib, and delanzomib can increase OAT3 ubiquitination, we
further investigated their effect on the transport activity. OAT3-expressing cells were treated
with ixazomib, oprozomib, or delanzomib for 6 h, then OAT3-mediated uptake of ES was
measured. The results (Figure 4A–C) showed that ixazomib, oprozomib, and delanzomib
all induced a dose-dependent stimulation of ES uptake in OAT3-expressing COS-7 cells.
The OAT3 transport activity was stimulated by 72% (95% CI: 46% to 97%), 45% (95% CI:
33% to 56%), and 48% (95% CI: 31% to 64%) at 30 nM ixazomib, 200 nM oprozomib, and
30 nM delanzomib, respectively. Consistently, 6 h of treatment with classical proteasome
inhibitors lactacystin or epoxomicin stimulated the uptake of ES (Figure 4D). Besides, p-
aminohippuric acid (PAH) is another OAT3 substrate [41,42]. Like ES, our result (Figure 5)
showed that all three proteasome inhibitor drugs also significantly stimulated PAH uptake
in a substrate-independent manner. Similar stimulative effects also existed in OAT3-
expressing HEK293 cells, excluding cell-specific effects of proteasome inhibitors (Figure 6).
Further study showed that 10~40 nM ixazomib induced a dose-dependent inhibition of
proteasome activity (Figure 7A), and there was a strongly association between transport
activity and proteasomal activity (correlation coefficient was 0.98, Figure 7B). We selected
the concentration of 30 nM ixazomib, 200 nM oprozomib, and 30 nM delanzomib for the
following mechanisms study.
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Figure 4. Effect of ixazomib, oprozomib, delanzomib, or classical proteasome inhibitors on OAT3
activity. OAT3-expressing COS-7 cells were treated with ixazomib (A), oprozomib (B), delanzomib
(C), or classical proteasome inhibitors lactacystin or epoxomicin (D) at indicated concentrations for
6 h. The uptake of [3H]ES (250 nM) for 3 minu was then performed. Each data point represented
only carrier-mediated transport after subtraction of values from parental cells. Uptake activity was
expressed as the percentage of uptake measured in control cells from three independent experiments.
Values are means ± S.D. (n = 3). * p < 0.05; ns = not statistically significant.
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Figure 5. Effect of ixazomib, oprozomib, or delanzomib on OAT3-mediated transport of p-aminohippuric
acid. OAT3-expressing COS-7 cells were treated with ixazomib (30 nM), oprozomib (200 nM), or delan-
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Values are means ± S.D. (n = 3). * p < 0.05.
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Figure 6. Effect of ixazomib, oprozomib, or delanzomib on OAT3 activity in OAT3-expressing HEK293
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3.4. Kinetic Analysis of the Effects of Ixazomib, Oprozomib, or Delanzomib on OAT3-Mediated
Uptake of Estrone Sulfate

To examine the mechanism of ixazomib-, oprozomib-, and delanzomib-induced stim-
ulation of OAT3 activity, we determined [3H]ES uptake at a series of concentrations
(0.3~10 µM). Eadie–Hofstee analyses of the derived data (Figure 8) showed that incubation
of ixazomib (Figure 8A), oprozomib (Figure 8B), or delanzomib (Figure 8C) resulted in an in-
creased maximum transport velocity Vmax (128 ± 3 pmol·mg−1·3 min−1 with untreated cells
and 176 ± 7 pmol·mg−1·3 min−1 in the presence of ixazomib; 130 ± 2 pmol·mg−1·3 min−1

with untreated cells and 223 ± 4 pmol·mg−1·3 min−1 in the presence of oprozomib;
128 ± 11 pmol·mg−1·3 min−1 with untreated cells and 175 ± 11 pmol·mg−1·3 min−1

in the presence of delanzomib), with no significant change of substrate-binding-affinity
Km for ES (4.2 ± 0.3 µM with untreated cells and 4.6 ± 0.4 µM in the presence of ixa-
zomib; 4.6 ± 0.1 µM with untreated cells and 6.0 ± 0.2 µM in the presence of oprozomib;
4.3 ± 0.9 µM with untreated cells and 4.9 ± 0.7 µM in the presence of delanzomib). These
results indicated that stimulated activity of ixazomib, oprozomib, and delanzomib resulted
from an increase of the transport rate of OAT3, and not from an enhanced affinity at the
substrate-binding site.
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Figure 7. Dose-effect of ixazomib on the 20S proteasome activity. (A) OAT3-expressing COS-7 cells
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analysis was performed between transport activity from Figure 4A and proteasomal activity from
Figure 7A after ixazomib treatment.

Pharmaceutics 2020, 12, x FOR PEER REVIEW 9 of 17 

 

 
Figure 8. Effect of ixazomib, oprozomib, or delanzomib on the kinetics of hOAT3-mediated estrone sulfate transport. 
OAT3-expressing COS-7 cells were treated with 30 nM ixazomib (A), 200 nM oprozomib (B), or 30 nM delanzomib (C) for 
6 hours, and initial uptake (3 min) of [3H]ES was measured at the concentration of 0.3~10 µM. The data represent uptake 
into hOAT3-expressing cells minus uptake into mock cells (parental COS-7 cells). Values are means ± S.D. (n = 3). V = 
velocity; S = substrate concentration. 

3.5. Effect of Ixazomib, Oprozomib, or Delanzomib on OAT3 Expression 
As ixazomib, oprozomib, and delanzomib did not alter the binding affinity of OAT3, 

the increase of transport activity may mainly result from the increased expression on the 
plasma membrane. OAT3-expressing cells were treated with ixazomib, oprozomib, or 
delanzomib for 6 h, and OAT3 expression on the plasma membrane and in the whole cell 
lysates were investigated. The result showed that treatment with ixazomib, oprozomib, 
or delanzomib all caused an increase of OAT3 expression on the cell membrane (Figure 
9A,B) and in the whole cell lysate (Figure 9C,D), which was not because of the overall 
interference in cellular proteins, as there were similar quantities of membrane fraction 
marker E-Cadherin (Figure 9A) and whole cellular fraction marker β-actin (Figure 9C) in 
all samples. 

Figure 8. Effect of ixazomib, oprozomib, or delanzomib on the kinetics of hOAT3-mediated estrone
sulfate transport. OAT3-expressing COS-7 cells were treated with 30 nM ixazomib (A), 200 nM
oprozomib (B), or 30 nM delanzomib (C) for 6 h, and initial uptake (3 min) of [3H]ES was measured
at the concentration of 0.3~10 µM. The data represent uptake into hOAT3-expressing cells minus
uptake into mock cells (parental COS-7 cells). Values are means ± S.D. (n = 3). V = velocity;
S = substrate concentration.
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3.5. Effect of Ixazomib, Oprozomib, or Delanzomib on OAT3 Expression

As ixazomib, oprozomib, and delanzomib did not alter the binding affinity of OAT3,
the increase of transport activity may mainly result from the increased expression on the
plasma membrane. OAT3-expressing cells were treated with ixazomib, oprozomib, or
delanzomib for 6 h, and OAT3 expression on the plasma membrane and in the whole cell
lysates were investigated. The result showed that treatment with ixazomib, oprozomib, or
delanzomib all caused an increase of OAT3 expression on the cell membrane (Figure 9A,B)
and in the whole cell lysate (Figure 9C,D), which was not because of the overall interference
in cellular proteins, as there were similar quantities of membrane fraction marker E-
Cadherin (Figure 9A) and whole cellular fraction marker β-actin (Figure 9C) in all samples.Pharmaceutics 2020, 12, x FOR PEER REVIEW 10 of 17 
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Figure 9. Effect of ixazomib, oprozomib, or delanzomib on OAT3 expression. (A) Top panel: OAT3-
expressing COS-7 cells were treated with ixazomib (30 nM), oprozomib (200 nM), or delanzomib
(30 nM) for 6 h. Cell-surface biotinylation was performed. Biotinylated (cell surface) proteins were
separated with using streptavidin agarose resin and analyzed by IB with an anti-Myc antibody.
Bottom panel: The same blot from the top panel was reprobed with an anti-E-Cadherin antibody.
E-Cadherin is an integral membrane protein marker. (B) Densitometry plot of results from (A),
top panel, as well as from other experiments. Values are means ± S.D. (n = 3). * p < 0.05. (C) Top
panel: OAT3-expressing COS-7 cells were treated with ixazomib (30 nM), oprozomib (200 nM), or
delanzomib (30 nM) for 6 h. Cells were then lysed, followed by IB with anti-Myc antibody. Bottom
panel: The same blot from the top panel was reprobed with an anti-β-actin antibody. β-actin is a
cellular protein marker. (D) Densitometry plot of results from (C), top panel, as well as from other
experiments. Values are means ± S.D. (n = 3). * p < 0.05.

3.6. Effect of Ixazomib, Oprozomib, and Delanzomib on OAT3 Degradation

The ubiquitin–proteasome pathway ultimately affects the degradation of targeted pro-
teins, therefore the degradation of cell-membrane OAT3 was investigated by biotinylation
and isolation of cell-surface proteins. OAT3-expressing cells were first labeled with sulfo-
NHS-SS-biotin on all membrane proteins at 4 ◦C, then biotinylated cells were incubated
with ixazomib, oprozomib, or delanzomib for 3 and 6 h at 37 ◦C. At the time points, those
cells were harvested and lysed, and cell-membrane proteins were enriched in streptavidin
agarose beads, followed by immunoblotting detection of OAT3 using anti-Myc antibody.
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The results (Figure 10) revealed that compared to control, the degradation of cell membrane
OAT3 was reduced markedly after 6 h incubation of the three drugs, and without effect
at 3 h, indicating that ixazomib, oprozomib, and delanzomib chronically enhanced the
stability of membrane OAT3.Pharmaceutics 2020, 12, x FOR PEER REVIEW 11 of 17 
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Figure 10. Effect of ixazomib, oprozomib, or delanzomib on OAT3 stability. (A) OAT3-expressing
COS-7 cells were biotinylated with membrane-impermeable biotinylation reagent sulfo-NHS-SS-
biotin. Labeled cells were then treated with ixazomib (30 nM), oprozomib (200 nM), or delanzomib
(30 nM) at 37 ◦C for 3 and 6 h, respectively. Treated cells were lysed, and cell-surface proteins were iso-
lated using streptavidin-agarose resin, followed by IB with anti-Myc antibody. (B) Densitometry plot
of results from (A), as well as from other experiments. The amount of undegraded cell-surface hOAT3
was expressed as % of total initial cell-surface hOAT3 pool. Values are means ± S.D. (n = 3). * p < 0.05;
ns = not statistically significant. Two-way ANOVA Tukey’s test was applied for statistical analysis.

4. Discussion

OAT3 function is predominantly dependent on the amount located on the plasma
membrane, which can be regulated by mitogen-activated protein kinase (MAPK), protein
kinase A (PKA), PKC signaling pathways [43–45]. Ubiquitination is a significant post-
translational mechanism for OAT3 regulation. Our previous study had demonstrated the
essential role of Nedd4-2 (a ubiquitin ligase) in the ubiquitination, surface expression, and
transport activity of OAT3 [27]. Serum- and glucocorticoid-inducible kinases 1 (sgk1), PKC,
janus tyrosine kinase 2 (JAK2) regulated OAT3 through Nedd4-2, which showed Nedd4-2
is molecular target for OAT3 regulation [27,37,38,46]. In this study, we further discovered
proteasome was a novel target for regulation of OAT3 and stimulating OAT3 function can
be achieved through inhibiting proteasomal activity.

COS-7 and HEK293 cells lacking in endogenous OATs were commonly utilized as
heterologous expression systems for OATs. Both cell lines were broadly selected for study
the regulation and mechanisms of the cloned OATs and other drug transporters in kidney
with several advantages [13,47–49]. Expression of exogenous OAT3 will allow us to study
the transport characteristics of OAT3 without being disturbed by other OATs. They are
originated from the kidney and have the proteasome activity and signaling pathways
involved in OAT3 regulation. COS-7 cells and HEK293 cells used in our studies will
provide the research basis for the upcoming work focusing on validating whether primary
epithelia possess the similar mechanisms.

Ixazomib is an FDA-approved anticancer drug, while oprozomib and delanzomib
are in phases of clinical trials. All of them are administered orally, and preferentially
bind reversibly (ixazomib and delanzomib) or irreversibly (oprozomib) and inhibit the
chymotrypsin-like activity of the 20S proteasome in various tissues and organs. There were
reports that ixazomib inhibited the proteasome activity in the whole blood and tumor; opro-
zomib could inhibit the proteasome activity in the blood, peripheral blood mononuclear
cells, liver, kidney, and adrenal glands; and delanzomib inhibited the proteasome activity
in blood mononuclear cells, kidney, and spleen [50–55]. Ixazomib prevented antibody-
mediated rejection in kidney transplantation and treated patients with metastatic kidney
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cancer [56,57]. Delanzomib can ameliorate lupus nephritis in mice [55]. These results sug-
gested that proteasomal inhibitors can be used to treat kidney diseases, through proteasome
inhibition-mediated reduction in aberrant cytokines and antibodies, or downregulation of
nuclear factor kappa B-dependent gene expression and resulted tumor growth [58,59].

Ixazomib, oprozomib, or delanzomib treatment substantially increased the accumula-
tion of ubiquitinated OAT3 (Figure 1), which was consistent with decreased 20S proteaso-
mal activity in cell lysate in OAT3-expressing cells (Figure 2), stimulated OAT3-mediated
transport of estrone sulfate and p-aminohippuric acid (Figures 4–6), and increased OAT3
membrane expression (Figure 9). The enhanced transport activity of OAT3 following drug
pretreatment resulted from an increase in maximum transport velocity without altering the
binding affinity of the transporter (Figure 8). Ubiquitinated OAT3 exhibited the molecular
mass above 180 kDa, ~100 kDa more than OAT3 (~80 kDa). As ubiquitin is an 8-kDa
polypeptide, OAT3 may be modified by poly- or multiubiquitination (Figure 1).

The OAT3 function was chronically stimulated with 6 h of treatment with ixazomib,
oprozomib, or delanzomib. As the alteration of trafficking processes, including internal-
ization or recycling of OATs, can be reflected in function change during acute regulation
(such as 0.5 h), we can exclude the reduced internalization and increased recycling that
are the underlying mechanisms for those drugs [27–30,39]. With further exploring, the
degradation of OAT3 was decelerated by ixazomib, oprozomib, or delanzomib (Figure 10).
Our results showed they inhibited the 20S proteasome activity (Figure 2), and there was
a negative association between proteasomal activity and transport activity at 10–40 nM
ixazomib (Figure 7B). Together, ixazomib-, oprozomib-, and delanzomib-upregulated
OAT3 function was mainly through suppression of proteasome activity and decelerated
degradation of OAT3.

The concentrations of ixazomib (10–40 nM), oprozomib (50–400 nM), and delanzomib
(10–50 nM) used in our study are in the clinically therapeutic range. After once-weekly
oral dosing of 2.23 mg/m2 for 3 weeks in combination therapy with lenalidomide and
dexamethasone, the mean maximum plasma concentration (Cmax) of ixazomib in multi-
ple myeloma patients at day 1 and day 15 was 22.3 ng/mL (61.7 nM) and 31.4 ng/mL
(87.0 nM), respectively [60]. For oprozomib, after 2 consecutive days weekly oral dosing at
210 mg/day for 4 weeks plus pomalidomide and dexamethasone in relapsed/refractory
multiple myeloma patients, the mean Cmax of oprozomib at day 1 and day 8 was 744 ng/mL
(1.4 µM) and 1030 ng/mL (1.9 µM), respectively [61]. Until now, there were only reports
about intravenous pharmacokinetic data of delanzomib in human. After 2 days weekly
intravenous dosing 0.4–1.8 mg/m2 for 2 weeks in patients with solid tumors and multiple
myeloma, the mean Cmax of delanzomib on day 1 was 88.4–557.3 ng/mL (0.2–1.3 µM) [54].
Ixazomib and delanzomib have a long terminal plasma half-life of 3.6–11.3 days and
62.0 ± 43.5 h, respectively [54,62]. Though oprozomib has a short plasma half-life of about
1 h resulting from rapid systemic clearance, the recovery of proteasome activity in tissues
needed a longer time of 24~72 h due to irreversible binding [63,64]. Therefore, the inductive
effects of ixazomib, oprozomib, and delanzomib on drug elimination and DDIs potentially
exist, though they are administered once or twice weekly. The in vitro regulation and
related mechanisms in cell models were reported in this study, and further in vivo study
in Sprague Dawley rats by oral ixazomib will be performed to further explore the roles
of ixazomib in proteasome activity, OTA3 ubiquitination, drug uptake in kidney slices,
membrane and total expression in kidney, and renal clearance of drugs by kidney in our lab.

Ixazomib, oprozomib, or delanzomib are all indicated in combination with dexamethasone,
a synthetic glucocorticoid for the treatment of patients with multiple myeloma [61,65,66]. Our
previous study showed dexamethasone stimulates OAT3 transport activity and membrane
expression through the serum- and glucocorticoid-inducible kinases 1 signaling pathway,
suggesting the stimulatory effect on OAT3 may be further magnified using ixazomib,
oprozomib, and delanzomib in combination with dexamethasone [37].

Ixazomib is a low-affinity substrate of P-glycoprotein (P-gp); is not a substrate of
breast cancer resistance protein (BCRP), multidrug resistance protein 2 (MRP2), or hep-
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atic OATPs; and is not an inhibitor of P-gp, BCRP, MRP2, OATP1B1, OATP1B3, organic
cation transporter 2 (OCT2), OAT1, OAT3, multidrug and toxin extruder 1 (MATE1), or
MATE2-K. Therefore, the manufacturer claimed that ixazomib is not expected to cause
transporter-mediated drug–drug interactions [67]. Consistent with this, our study found
that ixazomib is not an inhibitor of OAT3 (Figure 3). However, although ixazomib did
not cause DDIs through direct interaction (inhibiting or competing) with the transporters,
our study showed that ixazomib can upregulate OAT3 activity through induced mem-
brane expression, which may affect the disposition of other drugs in an indirect manner of
transporter-mediated DDIs. Besides, potential DDIs may be occurred by direct OATs in-
duction. There were reports that ursolic acid and ciprofloxacin stimulated OAT1-mediated
p-aminohippuric acid uptake, and 1,5-dicaffeoylquinic acid and 18β-glycyrrhetinic acid
stimulated hOAT4-mediated estrone sulfate uptake [68,69].

Proteasome inhibition drugs are now well utilized for cancer treatment. In contrast,
impaired proteasome function and related elevation of toxic intracellular protein or aggre-
gates are involved in neurodegenerative disorders (e.g., Parkinson’s disease, Alzheimer’s
disease) and cardiac dysfunctions, and enhancement of proteasome activity may also be a
promising therapeutic strategy for those diseases [70–72]. PD169316, pyrazolones and chlor-
promazine as small molecules, were found to be proteasome activators [70,73,74]. It would
be interesting to study whether proteasomal activators can regulate the OAT3 function.

Our findings that oral proteasome inhibitors ixazomib, oprozomib, and delanzomib
can increase OAT3 transport activity have important physiological implications. First, it can
accelerate the drugs clearance from body, resulting in reduced plasma concentration and
therapeutic efficacy of drugs. We can also use this mechanism for noninvasive detoxification
in the event of drug overdoses. Second, it may enhance the entering and distribution
of drugs in proximal tubular cells, leading to potential nephrotoxicity. Those points
should attract the attention of physicians and pharmacists for rational use of medicines
and irrational drug combinations, and avoiding potential drug–drug interactions. Third,
bilateral ureteral obstruction (BUO), a common clinical disease, impaired renal elimination
of drugs partly resulted from reduced cell-surface expression of OAT3 [75]. Proteasome
inhibition may provide a potential strategy to reverse BUO or other kidney-disease-induced
downregulation of OAT3. Last, it also can promote renal clearance of toxins, metabolites,
signaling molecules, nutrients, and other substances as OAT3 substrates, and maintain
homeostasis within the body.

5. Conclusions

Our studies showed for the first time that anticancer drugs ixazomib, oprozomib, and
delanzomib had a critical role in upregulating OAT3 transport activity and expression,
suggesting their potential impact on the OAT3-mediated drug disposition and clinical
drug–drug interactions during combination therapies of proteasome inhibitor drugs and
other types of drugs (Figure 11).
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