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Background: Aneurysmal subarachnoid hemorrhage (SAH) is a devastating disease.

Anterior communicating artery (ACoA) aneurysm is the most frequent location of

intracranial aneurysms. The purpose of this study is to predict the clinical outcome

at discharge after rupture of ACoA aneurysms using the random forest machine

learning technique.

Methods: A total of 607 patients with ruptured ACoA aneurysms were included in this

study between December 2007 and January 2016. In addition to basic clinical variables,

12 aneurysm morphologic parameters were evaluated. A multivariate logistic regression

analysis was performed to determine the independent predictors of poor outcome. Of

the 607 patients, 485 patients were randomly selected for training and the remaining

for internal testing. The random forest model was developed using the training data set.

An additional 202 patients from February 2016 to December 2017 were collected for

externally validating the model. The prediction performance of the random forest model

was compared with two radiologists.

Results: Patients’ age (odds ratio [OR]= 1.04), ventilated breathing status (OR= 4.23),

World Federation of Neurosurgical Societies (WFNS) grade (OR= 2.13), and Fisher grade

(OR = 1.50) are significantly associated with poor outcome. None of the investigated

morphological parameters of ACoA aneurysm is an independent predictor of poor

outcome. The developed random forest model achieves sensitivities of 78.3% for internal

test and 73.8% for external test. The areas under receiver operating characteristic (ROC)

curve of the random forest model were 0.90 for the internal test and 0.84 for the external

test. Both sensitivities and areas under ROC curves of our model are superior to those

of two raters in both internal and external tests.

Conclusions: The random forest model presents good performance in predicting the

outcome after rupture of ACoA aneurysms, which may aid in clinical decision making.
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INTRODUCTION

Subarachnoid hemorrhage (SAH) is found in ∼5% of all strokes
(1). The primary cause of SAH is the rupture of an intracranial
aneurysm, which accounts for ∼85% of all cases (1). Anterior
communicating artery (ACoA) aneurysm is the most frequent
location of intracranial aneurysms (2);∼40% of aneurysmal SAH
are attributed to ACoA aneurysms (3). Aneurysmal SAH is a
devastating disease and has high mortality and morbidity. The
study of the International Subarachnoid Aneurysm Trial (4)
shows that 25.4% patients allocated to endovascular treatment
and 36.4% patients allocated to neurosurgery were dependent
or dead at 2 months. The diagnosis and acute management
of aneurysmal SAH represents a challenge to clinicians (1, 5).
Accurately determining the prognosis after aneurysmal SAH is
crucial for providing adequate information to patients’ family,
guiding treatment options, and detecting subgroups of patients
to be beneficial from certain treatments (6, 7).

Outcome after aneurysmal SAH is associated with many
factors (7, 8). Different clinical scales have been applied to
classify aneurysmal SAH, such as Federation of Neurological
Surgeons (9) and Fisher grade (10). It remains challenging to
accurately predict the outcome after aneurysmal SAH because
decision making is driven largely by the clinician’s experience
and instinct, which may result in significant variability among
different clinicians due to the complexity of aneurysmal SAH
patients. Machine learning can reduce this variability among
clinicians and is capable of finding complex relationships in big
data and rapidly analyzing many variables to predict patients’
outcomes of interest. It has been successfully applied in clinical
prognosis analysis (11, 12).

In this exploratory study, we aim to predict the outcome at
discharge after rupture of ACoA aneurysm using a random forest
machine learning technique.

METHODS

Study Design and Patients
This study was approved by the institutional ethics committee.
A total of 773 consecutive patients with ACoA aneurysms
were admitted to our hospital between December 2007 and
January 2016. These patients were screened from the electronic
medical record system by searching the keywords “aneurysm”
and “anterior communicating artery.” Patients with unruptured
aneurysms or with fusiform aneurysms were excluded from this
study. Those without outcome information were also excluded
from this study.

Image Acquisition and Aneurysm
Morphologic Measurement
All patients underwent computed tomography angiography
(CTA) examinations. Matrix size of DICOM images was
512X512. Morphological parameters were measured from CTA
images after volume rendering reconstruction. Scanning was
performed on a 320-detector row CT scanner (Aquilion
ONE, Toshiba Medical Systems, Tochigi, Japan), a 64-channel
multidetector CT scanner (LightSpeed VCT 64, GE Medical

Systems, Milwaukee, WI, USA), or a 16-channel multidetector
CT scanner (LightSpeed pro 16, GEMedical Systems). Non-ionic
contrast agent, Iopromid with 300 mg/ml iodine, was injected
via an antecubital vein with a high pressure injector at 3.0 ml/s
(1.0–2.0 ml/kg) for the 16-channel multidetector CT; non-ionic
contrast agent, Iodixanol 320 or Iohexol 350, was injected via an
antecubial vein with a high pressure injector at 4.0 ml/s (0.8–
1.0 ml/kg) for the 64-channel multidetector CT or 320-detector
rows CT.

Twelve aneurysm morphologic parameters were evaluated,
including aneurysm projection, A1 segment configuration,
aneurysm size, vessel size, aneurysm height, perpendicular
height, neck size, aspect ratio, size ratio, aneurysm angles,
vessel angle, and flow angle. These parameters have been
defined elsewhere (13–15). For completeness and the reader’s
convenience, we provide detailed aneurysm sizes and angle
measurements in Supplementary Figure 1.

Data Collection
In addition to aneurysm morphologic parameters, the following
patients’ data were collected: patients’ sex and age, medical
history (including hypertension, current smoking, coronary
artery disease, and previous stroke), Glasgow coma score (GCS)
and World Federation of Neurosurgical Societies (WFNS) grade
before treatment, Fisher grade, treatment methods, and outcome
at discharge.

Outcome Assessment
Clinical outcome at discharge was evaluated using Glasgow
Outcome Scale (GOS) (16) by independent radiologists who
did not participate in the treatment. A GOS of one indicates
death, two represents persistent vegetative state, and three means
severe disability (conscious but disabled). Patients with moderate
disability (disabled but independent) and recovery were defined
as a GOS of 4 and 5, respectively. Poor outcome was defined as a
GOS of 1 or 2 or 3.

Random Forest
Random forest is an ensemble and supervised learning algorithm
(17, 18), which builds multiple decision trees and merges
them together to obtain a more stable and accurate prediction.
It can be used for solving both classification and regression
problems. Moreover, it is capable of measuring the relative
importance of each feature for prediction. It is a popular machine
learning technique because of its good accuracy, robustness,
and ease of use, and it has been widely applied in biomedical
science (19–23). We used a random forest machine learning
technique to predict the clinical outcome after rupture of ACoA
aneurysm in this study. Of the included 607 patients, 485 random
patients (80%) were selected for training and the remaining 122
patients for testing. Correlation-based feature selection method
was applied for feature selection using the training dataset.
Patients’ age, breathing status, pupillary reactivity, WFNS grade,
and Fisher grade were selected. The grid search method was
used for hyper-parameter optimization, and a 10-fold cross-
validation strategy was adopted during training. In the random
forest model, the number of trees in the forest was set to
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10, the maximum depth of the tree was determined to be
three, and the number of features to consider when looking
for the best split was set to four. The performance of the
random forest model was evaluated by the accuracy, sensitivity,
specificity, and area under receiver operating characteristic
(ROC) curve. Sensitivity is the percentage of patients with
poor outcome who are correctly predicted as such. Specificity
measures the proportion of patients with favorable outcomes who
are correctly predicted as such. In this study, the open source
data mining software Weka 3.8.1 was used for feature selection;
Python 2.7 was the coding language; the free machine learning
library scikit-learn 2.0 was applied for random forest model
development (24, 25).

Additional Independent Testing Data Set
To validate the developed random forest model, we further
retrospectively collected patients with ruptured ACoA aneurysm
in our hospital from February 2016 to December 2017. This data
set was not used for random forest modeling and only used for
additional independent model testing.

Clinical Outcome Assessment by
Radiologists
Clinical outcome assessments for both internal and external tests
were independently performed by two radiologists who were
blind to the clinical outcome at discharge. The assessments relied
on the identical baseline data in the two testing data sets. The
performance of the assessments from the two raters was evaluated
by accuracy, sensitivity, specificity, and area under ROC curve.

Statistical Analyses
Continuous variables were described as the mean±standard
deviation and categorical variables as the frequency (percentage).
Univariate analysis was performed to assess the relationship
between these variables and patients’ prognostic outcome at
discharge. A P < 0.05 is considered statistically significant.
We used patients’ clinical variables and neurological findings
at admission to predict clinical outcome at discharge. All
statistically significant variables (P < 0.05) except treatment
method in the univariate analysis were entered the multivariate
regression analysis. A forward step-wise multivariate logistic
regression analysis was conducted to determine the independent
predictors of poor outcome. Assessment agreement between
two raters was evaluated using Cohen’s kappa statistic. All
statistical analyses were performed by using IBM SPSS
Version 22.0 (IBM SPSS, Armonk, New York, USA).

RESULTS

Patient Characteristics
A total of 607 consecutive patients after rupture of ACoA
aneurysm were enrolled in this study between December 2007
and January 2016 at our institution. Of the included patients,
the mean age was 55.7 ± 12.0 years; 287 (47.3%) patients were
men; 116 (19.1%) patients had a poor outcome at discharge,

including 41 of 230 (17.8%) patients receiving surgical treatment,
30 of 291 (10.3%) patients receiving endovascular treatment,
and 45 of 86 (52.3%) patients under conservative treatment
(Table 1). Compared with patients with surgical treatment, those
who underwent endovascular treatment were more likely to have
a good outcome (P = .013).

In the additional independent testing data set, there were
104 male patients and 98 female patients; their mean age
was 56.8 ± 12.0 years. Of these patients, 160 (79.2%) had a
favorable outcome, and 42 (20.8%) had a poor outcome; 54
patients received surgical treatment, 109 patients underwent
endovascular treatment, and 29 patients received conservative
treatment. More detailed characteristics of these patients are
illustrated in Supplementary Table 1.

Predictors of Poor Outcome in Univariate
and Multivariate Analyses
Table 1 shows the univariate analyses of the association between
clinical variables and poor outcome. Table 2 demonstrates the
independent predictors of poor outcome determined by using
a multiple logistic regression analysis. In univariate analysis,
older age (P < 0.001), ventilated breathing status (P < 0.001),
unreactive pupillary response (P < 0.001), lower GCS, higher
WFNS grade (P < 0.001), higher Fisher grade (P < 0.001), and
treatment methods (P < 0.001) were associated poor outcome.
Two aneurysm morphologic parameters, including aneurysm
height and aspect ratio, were significant larger in the patients with
poor outcome than those with favorable outcome in univariate
analyses; however, none of them showed significant difference
in multivariate analysis. The multivariate analysis revealed four
independent predictors of poor outcome: age (odds ratio [OR],
1.04; P= 0.001), ventilated breathing status (OR, 4.23; P= 0.01),
WFNS grade (OR, 2.13; P < 0.001), and Fisher grade (OR, 1.50;
P = 0.001).

Comparison of Performance Between
Random Forest Model and Two Raters
The performance of the random forest model and two raters
in predicting clinical outcome are listed on Table 3. For the
random forest model, 18 of the 23 poor cases were correctly
predicted as poor, and 82 of 99 favorable cases were predicted as
favorable in the internal test, and corresponding sensitivity and
specificity were 78.3% (18/23) and 82.8% (82/99), respectively;
in the external test, the prediction sensitivity was 73.8% and
specificity was 83.1%. Figure 1 represents the ROC curves for
the random forest model. The areas under the ROC curves
were 0.90 for the internal test and 0.84 for the external test,
which indicate that the prediction performance of the developed
random forest model is good. The Cohen’s kappa coefficient is
0.94, which indicates that the amount of agreement between the
two radiologists is high. The specificities of the random forest
model in the internal and external tests are inferior to those of
the two raters; however, the sensitivities of the random forest
model are higher than those of two raters in both internal and
external tests, especially in the internal test (78.3% vs. 52.2 and
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TABLE 1 | Baseline characteristics.

Variables Good outcome

(n = 491)

Poor outcome

(n = 116)

OR

95% CI

P-value

Demographic

Men 237 (48.3%) 50 (43.1%) 0.81 (0.54–1.22) 0.317

Age (yr) 54.7 ± 11.6 59.8 ± 12.9 1.04 (1.02–1.06) < 0.001

Medical history

Hypertension 239 (48.7%) 68 (58.6%) 1.49 (0.99–2.25) 0.055

Current smoking 152 (31.0%) 39 (33.6%) 1.13 (0.74–1.74) 0.579

Coronary artery disease 4 (0.8%) 2 (1.7%) 2.14 (0.39–11.81) 0.384

Previous stroke 12 (2.4%) 8 (6.9%) 2.98 (1.18–7.41) 0.021

Clinical examination

Breathing status < 0.001

Spontaneous 485 (98.8%) 85 (73.3%) 1.0 (Referent)

Ventilated 6 (1.2%) 31 (26.7%) 29.48 (11.94–72.80)

Pupillary reactivity < 0.001

Reactive (at least unilaterally) 480 (97.8%) 77 (66.4%) 1.0 (Referent)

Unreactive 11 (2.2) 39 (33.6%) 22.10 (10.86–45.00)

Neurological examination

GCS 14.4 ± 1.6 10.2 ± 4.4 0.66 (0.61–0.71) < 0.001

WFNS grade 1.4 ± 0.9 3.3 ± 1.7 2.46 (2.11–2.87) < 0.001

Radiological findings

Fisher grade 3.0 ± 1.2 3.7 ± 0.8 2.30 (1.67–3.17) < 0.001

Multiple aneurysm 78 (15.9%) 18(15.5%) 1.18 (0.78–1.78) 0.436

Aneurysm size (mm) 5.3 ± 2.6 5.7 ± 2.5 1.07 (0.99–1.16) 0.111

Vessel size (mm) 1.9 ± 0.5 2.0 ± 0.5 1.33 (0.89–2.00) 0.166

Aneurysm height (mm) 4.2 ± 2.2 4.8 ± 2.3 1.12 (1.02–1.23) 0.013

Perpendicular height (mm) 3.4 ± 1.7 4.0 ± 2.0 1.20 (1.08–1.34) 0.001

Neck size (mm) 3.0 ± 1.2 3.2 ± 1.2 1.09 (0.92–1.30) 0.313

Aspect ratio 1.2 ± 0.6 1.4 ± 0.8 1.51 (1.13–2.02) 0.006

Size ratio 2.4 ± 2.1 2.7 ± 1.9 1.05 (0.96–1.15) 0.289

Aneurysm angle 70.0 ± 18.4 69.6 ± 18.6 1.00 (0.99–1.01) 0.834

Vessel angle 59.7 ± 27.2 60.4 ± 26.5 1.00 (0.99–1.01) 0.787

Flow angle 134.5 ± 28.3 136.2 ± 25.8 1.00 (1.00–1.01) 0.568

Aneurysm projectiona 0.150

Anterior 345 (70.3%) 74 (63.8%) 1.0 (Referent)

Posterior 117 (23.8%) 35 (30.2%) 1.40 (0.89–2.20)

A1 segment configurationa 0.077

Symmetric 155 (31.6%) 34 (29.3%) 1.0 (Referent)

Dominant 198 (40.3%) 38 (32.8%) 0.88 (0.53–1.45)

Complete 109 (22.2%) 37 (31.9%) 1.55 (0.91–2.62)

Treatment methods < 0.001

Endovascular treatment 261 (53.2%) 30 (25.9%) 1.0 (Referent)

Surgical treatment 189 (38.5%) 41 (35.3%) 1.89 (1.14–3.13)

Conservative treatment 41 (8.4%) 45 (38.8%) 9.55 (5.42–16.84)

SAH, subarachnoid Hemorrhage; GCS, Glasgow coma score; WFNS, World Federation Neurosurgical Societies.
a36 missing values.

78.3% vs. 66.7% in the internal test; 73.8% vs. 66.7 and 73.8 vs.
66.7% in the external test), and the areas under the ROC curves
of the random forest model are also superior to those of two
raters in both internal and external tests (0.90 vs. 0.73 and 0.90
vs. 0.75 in the internal test; 0.84 vs. 0.78 and 0.84 vs. 0.78 in the
external test).

DISCUSSION

In this article, we find that age, ventilated breathing status,
WFNS grade, and Fisher grade are the independent predictors
of poor outcome at discharge after rupture of ACoA aneurysms.
A random forest machine learning model is developed for the
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TABLE 2 | Results of multivariate logistic regression analysis.

Variable β coefficient† OR 95% CI P-value

Age 0.04 ± 0.01 1.04 1.02–1.06 0.001

Breathing status 0.01

Spontaneous 1.0 (Referent)

Ventilated 1.44 ± 0.56 4.23 1.41–12.65

WFNS grade 0.76 ± 0.10 2.13 1.76–2.58 <0.001

Fisher grade 0.41 ± 0.16 1.50 1.10–2.05 0.001

OR, odds ratio; CI, confidence interval; WFNS, World Federation of

Neurosurgical Societies.
†
Values are means ± standard errors.

TABLE 3 | Comparison of performance between random forest model and two

raters.

Actual outcome Predicted outcome Area under

ROC*

curvePoor Favorable %Correct

1. Random forest model

(a) Internal test 0.90

Poor (n = 23) 18 5 78.3%

Favorable (n = 99) 17 82 82.8%

(b) External test 0.84

Poor (n = 42) 31 11 73.8%

Favorable (n = 160) 27 133 83.1%

2. Rater #1

(a) Internal test 0.73

Poor (n = 23) 12 11 52.2%

Favorable (n = 99) 6 93 93.9%

(b) External test 0.78

Poor (n = 42) 28 14 66.7%

Favorable (n = 160) 17 143 89.4%

3. Rater #2

(a) Internal test 0.75

Poor (n = 23) 13 10 56.5%

Favorable (n = 99) 6 93 93.9%

(b) External test 0.78

Poor (n = 42) 28 14 66.7%

Favorable (n = 160) 18 142 88.8%

*ROC, receiver operating characteristic.

prediction of outcome after rupture of ACoA aneurysms, and this
model presents good prediction performance with areas under
the ROC curves of 0.90 for the internal test and 0.84 for the
external test.

Although a few studies (26, 27) show that the clinical outcome
at 3 months is comparable between the patients in the clipping
and coiling groups, endovascular coiling is recommended for
patients suitable to both endovascular coiling and neurosurgical
clipping, especially for posterior circulation aneurysms (28). The
study of the International Subarachnoid Aneurysm Trial (4)
reports that 26.1% of patients in the endovascular treatment
group were dead or dependent at 2 months compared with 36.9%

of the patients in the clipping group. A meta-analysis assesses
evidence regarding safety and efficiency of endovascular clipping
compared with coiling from 27 studies and finds that coiling
yields a better clinical outcome (29). As to the clinical outcome
after rupture of ACoA aneurysms instead of all aneurysms,
a corresponding report is rare. In our institution, we mainly
follow the recommendations (28) for surgical and endovascular
methods of treatment of ruptured cerebral aneurysms from the
American Heart Association and American Stroke Association,
and find that a higher percentage of patients after rupture of
ACoA aneurysms had poor outcome at discharge in clipping
group than in coiling group (17.8 vs. 10.3%).

Many factors are associated with clinical outcome after
aneurysmal SAH. Fisher grade (10) is by far the best known
system of classifying the amount of SAH on CT scans and is
proven to be a valid prognostic factor (4, 30). Increasing age
is shown to be an independent predictor of poor outcome in
aneurysmal SAH patients (7). GCS indicates patients’ clinical
status and is commonly used for assessment of impairment of
consciousness level in response to defined stimuli. The WFNS
grading system uses GCS and the presence of focal neurological
deficits to evaluate the severity of SAH. A previous study proved
that poor WFNS grade at presentation and advanced age are
predictive of poor clinical outcome after endovascular coiling
treatment (31). Although aneurysm morphological parameters
are significantly related to aneurysm rupture (14, 32, 33), we
find that none of the investigated aneurysm morphological
parameters are independent risk factors of clinical outcome after
rupture of ACoA aneurysm.When an aneurysm ruptures, it often
causes bleeding in the brain. Bleeding is irrelevant with respect to
aneurysm morphology once an aneurysm ruptures and may lead
to serious health problems, such as SAH, hemorrhagic stroke,
hydrocephalus, vasospasm, coma, and short-term or permanent
brain damage (34). The prognosis of patients with a ruptured
aneurysm depends on the patient’s age, general health status, and
neurological conditions. As discussed previously, Fisher grade
and GCS are valuable score systems to evaluate one’s neurological
conditions (10, 31). Therefore, it is not surprising that none of the
investigated aneurysmmorphological variables is an independent
predictor of clinical outcome after rupture of ACoA aneurysm.

A few models have been developed to predict the outcome
after rupture of aneurysms. de Toledo et al. (6) construct a model
using only two attributes (WFNS and Fisher’s scale) with a C4.5
algorithm from a cohort of 634 patients; an accuracy of 73% was
achieved for poor outcome prediction in their external validation.
Recently, Hostettler et al. (35) perform decision tree analysis in
aneurysmal SAH for prediction of short-term clinical outcome
from a cohort of 548 patients; it is found that the prediction
accuracies for good and poor outcomes were 66.7 and 75.4% in
two testing data sets, respectively. Both the above two studies deal
with intracranial aneurysms at different locations. We develop a
random forest model to predict clinical outcome after rupture. It
is noted that our study only focuses on ACoA aneurysms from a
cohort of 809 patients, and aneurysmmorphological information
is also considered. Our model achieves good performance with
accuracies of 78.3 and 73.8% for predicting poor outcome in
internal and external tests, respectively. We also compare the
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FIGURE 1 | Receiver operating characteristic (ROC) curves for internal and external independent tests.

prediction performance between our model and two raters.
Although the specificity of the random forest model is lower
than that of the raters, the sensitivity of the model is significantly
superior to that of the raters (i.e., our machine learning model
is especially useful in predicting poor outcome). Therefore, our
machine learningmodel can be used to detect those who will have
a poor outcome. Rupture of aneurysms is an acute neurological
disease and determining its prognosis is crucial for both patients’
relatives and clinicians. Selecting those who will have a poor
outcome from a machine learning model is useful for clinicians
to establish proper treatment and management strategies.

LIMITATIONS

There are several limitations in this study. First, this is a single-
center study, and only the Chinese population is involved,
which may limit generalization to other centers. Second, we only
investigate patients’ short-term outcome, and their long-term
clinical outcome is not evaluated. Moreover, as a retrospective
study, clinical outcome evaluation may be biased, which may
influence the application of the random forest model to the
external validation data set. Finally, the random forest model
has not been externally validated using data sets from other
institutions. Nevertheless, we focus on ACoA aneurysms and the
number of ruptured ACoA aneurysms is large; the developed
random forest model presents good performance in the outcome
prediction, which might aid in clinical decision making.

CONCLUSIONS

In summary, we investigate the risk factors of clinical
outcome after rupture of ACoA aneurysms in this study.
It is shown that poor outcomes are significantly associated
with patients’ age, breathing status, WFNS grade, and
Fisher grade. The aneurysm morphological parameters
are not independent predictors. A random forest machine
learning model is developed for the outcome prediction.
The developed model is further validated using internal and
external testing data sets, and good prediction performance
is achieved.
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