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In myeloid dendritic cells (DC), deletion of the mechanistic target of rapamycin

complex 2 (TORC2) results in an augmented pro-inflammatory phenotype and T

cell stimulatory activity; however, the underlying mechanism has not been resolved.

Here, we demonstrate that mouse bone marrow-derived TORC2-deficient myeloid

DC (TORC2−/− DC) utilize an altered metabolic program, characterized by enhanced

baseline glycolytic function compared to wild-type WT control (Ctrl) DC, increased

dependence on glycolytic ATP production, elevated lipid content and higher viability

following stimulation with LPS. In addition, TORC2−/− DC display an increased

spare respiratory capacity (SRC) compared to WT Ctrl DC; this metabolic phenotype

corresponds with increased mitochondrial mass and mean mitochondrial DNA copy

number, and failure of TORC2−/− DC mitochondria to depolarize following LPS

stimulation. Our data suggest that the enhanced metabolic activity of TORC2−/− DC

may be due to compensatory TORC1 pathway activity, namely increased expression of

multiple genes upstream of Akt/TORC1 activity, including the integrin alpha IIb, protein

tyrosine kinase 2/focal adhesion kinase, IL-7R and Janus kinase 1(JAK1), and the

activation of downstream targets of TORC1, including p70S6K, eukaryotic translation

initiation factor 4E binding protein 1 (4EBP1) and CD36 (fatty acid translocase). These

enhanced TORC1 pathway activities may culminate in increased expression of the

nuclear receptor peroxisome proliferator-activated receptor γ (Pparγ) that regulates fatty

acid storage, and the transcription factor sterol regulatory element-binding transcription

factor 1 (Srebf1). Taken together, our data suggest that TORC2 may function to restrain

TORC1-driven metabolic activity and mitochondrial regulation in myeloid DC.
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INTRODUCTION

The mechanistic target of rapamycin (mTOR) is an
integrative serine/threonine kinase in the PI3K family.
In response to environmental cues, mTOR regulates cell
growth/proliferation, and metabolism (1, 2), and immune cell
function (3, 4). mTOR is known to function in two discrete
complexes: mTOR complex 1 (mTORC1) (5) and mTORC2
(6). Assembled mTORC1 phosphorylates and activates the
translational proteins ribosomal S6 kinase β-1 (S6K1) and
eukaryotic translation initiation factor 4E-binding protein 1 (4E-
BP1), and regulates cellular processes in a nutrient-dependent
fashion (7). Conversely, mTORC2 is known to phosphorylate
and activate Akt (protein kinase B), protein kinase C (PKC)
and serum and glucocorticoid-regulated kinase 1 (SGK1) and to
regulate actin cytoskeletal dynamics in fibroblasts (6).

The function of mTORC1 in dendritic cells (DC) has
been studied extensively using the immunosuppressive pro-
drug rapamycin (RAPA) (8–10). RAPA inhibition of mTORC1
in DC prevents their maturation, leading to decreased T
effector cell proliferation and increased regulatory T cell (Treg)
differentiation (8, 11, 12). While little had been known previously
about the function of RAPA-insensitive mTORC2 (referred to
subsequently as TORC2) specifically in DC, we have shown
recently that functional TORC2 deletion specifically in these
antigen-presenting cells (APC) leads to both an enhanced pro-
inflammatory DC phenotype and Th1/Th17 allogeneic T cell
polarization and proliferation (13). Additionally, intratumoral
delivery of TORC2-deficient DC delays melanoma progression in
a CD8+ T cell-dependent manner (14), whereas skin grafts from
donors lacking TORC2 in DC undergo enhanced CD8+ T cell-
mediated rejection (15). However, the mechanisms underlying
these enhanced DC functions remain undefined.

There has been growing interest in defining the distinct
roles that mTOR signaling plays in cell growth and metabolism
(1, 16–18) and in the roles that TORC1 and TORC2 play in
linking metabolic programming to cell activation, function and
survival, both in T cell subsets (19–24) and more recently,
in macrophages (25, 26), and DC (27–29). Like resting T
cells, quiescent DC have relatively low metabolic needs; upon
activation, however, bioenergetic demand increases to support
upregulated co-stimulatory molecule expression and cytokine
production (30, 31). Bone marrow (BM)-derived DC activated
through Toll-like receptors (TLRs) meet this enhanced anabolic
demand by increasing their dependence on aerobic glycolysis, as
opposed to mitochondrial oxidative phosphorylation; glycolytic
commitment is crucial for the survival of TLR-activated DC
and is dependent on the PI3K/TORC1 signaling axis driving
expression of hypoxia-inducible factor (Hif)-1α. Hif-1α induces
increased glucose transporter expression, thereby biasing the

Abbreviations: Ctrl, control; DC, dendritic cell; 2-DG, 2-deoxyglucose; 4E-BP1,

eukaryotic translation initiation factor 4E binding protein 1; ECAR, extracellular

acidification rate; MFI, mean fluorescence intensity; OCR, oxygen consumption

rate; Pparγ, peroxisome proliferator-activated receptor γ; SRC, spare respiratory

capacity; Srebf1, sterol regulatory element transcription factor 1; (m)TOR(C),

(mammalian) target of rapamycin (complex); TMRE, tetramethylrhodamine

ethyl ester.

cell toward glycolysis when NO production resulting from
inducible NO synthase (iNOS) expression competes with oxygen
for cytochrome oxidase at the mtiochondrial membrane (32).
Indeed, inhibiting glycolysis in TLR-activated DC results in
diminished co-stimulatory molecule expression and cytokine
production (33).

These previous studies concluded that TORC2 did not play
a role in regulating DC immunometabolism (34). However,
the investigations were conducted using adenosine triphosphate
(ATP)-competitive dual TORC inhibitors; therefore, the discrete
function of TORC2 in linking metabolic programming and
immune function in DC remains unclear. In addition, a
recent study of tissue-resident peritoneal macrophages (26)
demonstrated that TORC2 deficiency promoted their generation,
and that TORC2-deficient macrophages and peritoneal resident
macrophages had enhanced mitochondrial biomass, as well
as an altered metabolic profile, compared to monocyte-
derived macrophages.

In the present investigation, we have utilized DC generated
from mice in which Rictor (an essential component for TORC2
assembly) is deleted specifically in CD11c+ DC (35) to ascertain
whether the augmented inflammatory phenotype of TORC2−/−

DC is a consequence of altered cellular metabolism. We
demonstrate that TORC2−/− DC are biased toward glycolytic
metabolism, have an increased dependence on glycolysis to
generate ATP, elevated lipid content and higher viability
following TLR4 agonism with bacterial lipopolysaccharide (LPS).
In addition, TORC2−/− DC have augmented spare respiratory
capacity (SRC), mitochondrial mass and mean DNA copy
number, and mitochondria that fail to depolarize following
TLR agonism, as well as differential Golgi apparatus dispersal
compared to WT control (Ctrl) DC. We also show that TORC1
inhibition by rapamycin in TORC2−/− DC abolishes their
enhanced glycolytic activity and SRC. Finally, our data suggest
a possible pathway via which TORC2−/− DC display augmented
TORC1 metabolic activity and through which enhanced integrin
alpha IIb (Itga2b) and protein kinase 2 (Ptk2)/focal adhesion
kinase (FAK) expression leads to increased hematopoetic cell
signal transducer (Hcst; also known as PIK3AP) expression
upstream of TORC1 activity, increased NFκβ activation,
enhanced eukaryotic translation initiation factor 4E binding
protein 1 (4EBP1), and subsequent increased nuclear receptor
peroxisome proliferator-activated receptor gamma (Pparγ),
sterol regulatory element-binding transcription factor 1 (Srebf1)
and CD36 (fatty acid translocase) expression downstream of
TORC1 activity. Our findings suggest that TORC2 may restrain
TORC1-regulated metabolic function in myeloid DC.

MATERIALS AND METHODS

Mice
C57BL/6 (B6) CD11c-CreRictorf/f (herein referred to as
TORC2DC−/−) mice were generated (35) by crossing B6 mice in
which rictor is flanked by loxP restriction digest sites (generously
provided by Drs. Keunwook Lee and Mark Boothby, Vanderbilt
University School of Medicine) with B6 mice expressing Cre
recombinase on the CD11c promoter (CD11c-Cre; The Jackson
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Laboratory). The genetic background of crossedmice was verified
by polymerase chain reaction (PCR) genotyping; CD11c-Cre-
littermates were used as negative controls.

Generation and Stimulation of BM-Derived
DC
Femoral BM cells were harvested and cultured as described
(36) using mouse recombinant GM-CSF alone (1,000 U/mL;
R&D Systems, Minneapolis, MN; CAA26822). On d 6 of
culture, DC were purified using anti-CD11c immunomagnetic
beads (Miltenyi Biotec, Bergisch, Germany). Where indicated,
the TLR4 ligand LPS (100 ng/mL; Salmonella minnesota R595;
Alexis Biochemicals, San Diego, CA; ALX-581-008) was used to
stimulate the DC for 16–18 h.

Metabolism Assays
A Seahorse XFe96 Bioanalyzer (Agilent, Santa Clara, CA) was
utilized to measure metabolic flux in real-time. DC were plated
on Cell-Tak-coated Seahorse culture plates (100,000 cells/well)
in assay media consisting of minimal, unbuffered DMEM
supplemented with 1% v/v BSA and 25mM glucose, 1mM
pyruvate, and 2mM glutamine. Basal extracellular acidification
rate (ECAR) and oxygen consumption rate (OCR) were taken for
30min. Cells were stimulated with oligomycin (2µM), the potent
mitochondrial oxidative phosphorylation uncoupler carbonyl
cyanide 4 p-(trifluoromethoxy) phenylhydrazone (FCCP) that
disrupts ATP synthesis (1µM), 2-deoxyglucose (2-DG; 10mM),
and rotenone/antimycin A (rot/AA) (0.5µM) to obtain maximal
respiratory and control values. Where indicated, DC were
cultured with rapamycin (10 ng/mL; LC Laboratories, Woburn,
MA) for 18 h after CD11c+ immunomagnetic bead selection on
culture day 6. Where indicated, DC were stimulated with LPS
(100 ng/mL) added to the cultures for 18 h, as indicated above.

ATP concentrations were determined using an ATP
determination kit (ThermoFisher, Waltham, MA) as per
the manufacturer’s instructions. Where indicated, DC were
stimulated with LPS (100 ng/mL) for 1 h.

Quantification of Mitochondrial (mt)DNA
Real-time quantitative PCR (q-PCR) was used to quantify
mtDNA copy number (37). Total DNA was isolated using
the DNeasy Blood & Tissue Kit (QIAGEN GmbH, Hilden,
Germany), according to the manufacturer’s instructions.
Mitochondrially-encoded nicotinamide adenine dinucleotide
NADH dehydrogenase 1 (mND1) and hexokinase gene 2
(HK2) DNA products were amplified as described below
under Quantitative PCR. To quantify mtDNA copy number,
the ratio of mt DNA(ND1) to nuclear DNA(HK2) was
calculated using the 11Ct method. Primers used for ND1
were forward: 5′-CTAGCAGAAACAAACCGGGC-3′ and
reverse: 5′-CCGGCTGCGTATTCTACGTT-3′; for HK2
forward: 5′-GCCAGCCTCTCCTGATTTTAGTGT-3′ and
reverse: 5′-GGGAACACAAAAGACCTCTTCTGG-3′.

Flow Cytometric Analysis
Mitochondrial mass and membrane potential were assessed
using MitoTracker R© Green FM (0.1µM; Cell Signaling

Technology, Danvers, MA) and tetramethylrhodamine ethyl
ester (TMRE; 0.05µM, ThermoFisher), respectively, according
to the manufacturers’ instructions. To assess viability, cells were
stained with 7-amino-actinomycin (7-AAD; (BioLegend, San
Diego, CA) in accordance with the manufacturer’s instructions.
Data were acquired with a Fortessa flow cytometer (BD
Biosciences, San Jose, CA) and analyzed using FlowJo (TreeStar,
Ashland, OR).

NanoString Analysis
Total RNA was extracted from bead-purified CD11c+ DC
generated from the BM of Ctrl or TORC2DC−/− mice using
an RNeasy Mini Kit (Qiagen, Hilden, Germany) as per the
manufacturer’s instructions. NanoString analysis was performed
using a Mouse Immunology Panel (NanoString Technologies,
Seattle, WA) as described (38).

Quantitative PCR
cDNA was amplified using Platinum Quantitative PCR
SuperMix-UDG (Invitrogen, Waltham, MA) in 10 µl volumes in
quadruplicate with gene-specific primers and probed on the ABI
Prism 7900HT Sequence Detection System (Applied Biosystems,
Foster City, CA) according to the manufacturer’s instructions.
Thermal cycling conditions were 50◦C for 2min then 95◦C for
2min, followed by 40 cycles of 95◦C for 15 s and 60◦C for 1min.
Data were analyzed using the 11Ct method with expression
normalized to the housekeeping gene GAPDH.

Western Blots
DC pellets were lysed in RIPA lysis buffer (Sigma-Aldrich)
with Protease/Phosphatase Inhibitor Cocktail (Cell Signaling
Technology). Proteins were then separated with SDS-PAGE
4–20% gel (20 µg protein/slot; Precast Gels, Genscript,
Piscataway, NJ) and transferred onto 8.5 × 6 cm PVDF
membranes (GE Healthcare, Freiburg, Germany) and blocked
with 5% w/v BSA (0.5 h). Membranes were incubated overnight
with primary Abs: rabbit anti-p-4E-BP1 (Thr37/46), rabbit
anti-p-p70S6K (Thr389/412), rabbit anti-Pparγ, rabbit anti-p-
NFκβ p65 (Cell Signaling Technology; 1:1000), rabbit anti-
CD36 (Abcam, Cambridge, MA, 1:1000) or mouse anti-β-
actin (Sigma-Aldrich; 1:1:2000). HRP-conjugated goat anti-
rabbit IgG (H±L) secondary Ab (Cell Signaling Technology;
1:5000) was used (1 h). Signals were detected by Western
HRP Substrate on ChemiDocTMMP Imaging System (Sigma-
Aldrich; Bio-Rad, Hercules). Densitometric quantification of
Western blot signals was performed using Image Lab software
(open source: http://www.bio-rad.com/en-us/product/image-
lab-software?ID=KRE6P5E8Z). All proteins were subsequently
normalized to β-actin.

Confocal Microscopy
Cell suspensions were fixed for 1 h in 2% v/v paraformaldehyde
then cytospun (ThermoFisher CytoSpin 4) onto charged slides
(Superfrost/Plus; ThermoFisher). The cells were permeabilized
with 1% Triton X-100 in PBS for 15min, blocked with 5% normal
goat serum for 30min then stained with primary antibody (Ab)
directed against Trans Golgi Network 38 (rabbit anti-TGN38,
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FIGURE 1 | TORC2−/− DC display augmented glycolytic activity, glycolysis-dependent ATP production and viability compared to wild-type (WT) control (Ctrl) DC.

Bone marrow-derived DC were generated from WT C57BL/6 Ctrl or TORC2DC−/− mice (TORC2−/− DC), with or without LPS stimulation, and analyzed using a

(Continued)
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FIGURE 1 | Seahorse XFe96 Bioanalyzer for metabolic flux in real-time over 125min. (A) Representative glycolysis stress test showing basal glycolysis (ECAR),

glycolytic capacity and glycolytic reserve; n = 4 independent experiments, with at least 2 mice per experiment; one-way ANOVA Tukey’s multiple comparisons test,

*p < 0.05, **p < 0.01, ***p < 0.001. (B) ATP production by non-stimulated WT Ctrl DC or TORC2−/− DC. (C) ATP production by WT Ctrl DC or TORC2−/− DC

stimulated with LPS for 1 h; one-way ANOVA Tukey’s multiple comparisons test, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. (D) Representative histogram of

7AAD viability dye staining. (E) Quantification of viability as percentage of live (7AAD−) cells; (B–E) n = 5 independent experiments, with at least 2 mice per

experiment; one-way ANOVA Tukey’s multiple comparisons test, **p < 0.01, ***p < 0.001, ****p < 0.0001. ATP, adenosine triphosphate; 2-DG, 2-deoxyglucose;

ECAR, extracellular acidification rate; NS, not significant.

FIGURE 2 | TORC2−/− DC exhibit enhanced respiration and spare respiratory capacity (SRC). Bone marrow-derived DC were generated from WT control (Ctrl) or

TORC2DC−/− mice (TORC2−/− DC), then stimulated with LPS for 18 h, as indicated. The DC were analyzed using a Seahorse XFe96 Bioanalyzer for metabolic flux

in real-time over 125min with (1) oligomycin, (2) FCCP, and (3) Rot/AA injected at the times indicated to obtain control values. (A) Representative mitochondria stress

test of non-stimulated or LPS-stimulated WT Ctrl DC or TORC2−/− DC. (B) Quantification of basal respiration, maximal respiration and spare respiratory capacity

(SRC). SRC was calculated as the difference in OCR after addition of FCCP (2) and OCR before the addition of oligomycin (1); n = 5 independent experiments with at

least 2 mice per experiment; one-way ANOVA Tukey’s multiple comparisons test, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. FCCP, carbonyl cyanide 4

p-(trifluoromethoxy) phenylhydrazone; Rot/AA, rotenone/antimycin A.

Novus, Littleton, CO) (39), diluted 1:100 in PBS supplemented
with 0.5% BSA (PBB). Cells were washed x4 with PBS and stained
with secondary goat anti-rabbit Alexa 488 (ThermoFisher;
1:500), rhodamine Phalloidin (F-actin, ThermoFisher) and 0.1%
Hoechst’s dye (nuclei; ThermoFisher). Confocal images were
obtained by the Center for Biological Imaging, University of
Pittsburgh, on a Nikon A1 microscope using 100 x objective
and zoomed using 1.24 Nyquist. Maximum intensity projections
were 3-D constructed and analyzed using NIS Elements software
(Nikon, Tokyo, Japan).

Fluorescence Imaging and Quantitation of
Lipid Droplets
Cell suspensions were fixed in 2% paraformaldehyde for 20min at
room temperature, washed with PBS and permeabilized in 0.1%
saponin (Sigma-Aldrich, St. Louis, MO) for 10min. The cells
were then stained for 45min with HCS LipidTox Red neutral
lipid stain (Invitrogen), diluted 200-fold in PBS, according

to manufacturer’s instructions. Subsequently, nuclear staining
was performed using 4′, 6-diamidino-2-phenylindole (DAPI;
Sigma-Aldrich). Confocal images were obtained as described
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FIGURE 3 | TORC2−/− DC exhibit increased mitochondrial biomass and mitochondria that fail to depolarize following LPS stimulation. Bone marrow-derived DC

were generated from wild-type (WT) control (Ctrl) or TORC2DC−/− mice (TORC2−/− DC), then stimulated or not with LPS for 18 h, as indicated. (A) Representative

(Continued)
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FIGURE 3 | flow cytometry histograms of WT Ctrl and TORC2−/− DC stained with MitoTracker Green. ns, non-stimulated. (B) Quantification of mean fluorescence

intensity (MFI) of MitoTracker Green; n = 6 independent experiments with at least 2 mice per experiment; one-way ANOVA Tukey’s multiple comparisons test,

*p < 0.05, **p < 0.01. (C) Quantification of mitochondrial (mt)DNA copy number by measuring mtDNA relative to nuclear DNA using qPCR; (D) Representative flow

cytometry histograms of Ctrl DC and TORC2−/− DC stained with TMRE. (E) Quantification of MFI of TMRE; (B–E), n = 5–6 independent experiments with at least 2

mice per experiment; one-way ANOVA Tukey’s multiple comparisons test, *p < 0.05. NS, not significant; TMRE, tetramethylrhodamine ethyl ester.

above. Lipid droplets were counted manually, yielding each
time data from 60 cells using NIS Elements software (Nikon,
Tokyo, Japan).

Transmission Electron Microscopy
Cell suspensions were fixed in 2.5% v/v glutaraldehyde then
pelleted immediately in a 1.5mlmicrofuge tube at 300 x G. Pellets
were then post-fixed for 1 h in 1% OsO4, 1% K3Fe(CN)6 and
dehydrated through a graded series of 30–100% ethanol, 100%
propylene oxide, then infiltrated in a 1:1 mixture of propylene
oxide:Polybed 812 epoxy resin (Polysciences, Warrington, PA)
for 1 h. After several changes of 100% resin over 24 h, the pellet
was embedded in a final change of resin, cured at 37◦C overnight,
followed by additional hardening at 65◦C for 2 more days.
Ultrathin (70 nm) sections were collected on 200 mesh copper
grids, stained with 2% uranyl acetate in 50%methanol for 10min,
followed by 1% lead citrate for 7min. Sections were imaged using
a JEOL JEM 1400 transmission electron microscope (Peabody,
MA) at 80 kV fitted with a side mount AMT 2k digital camera
(Advanced Microscopy Techniques, Danvers, MA).

Statistical Analyses
Results are expressed as means ± 1SD. Significances
of differences between groups were determined using
Student’s ‘t’-test or one-way ANOVA Tukey’s multiple
comparisons test (GraphPad Prism) as indicated, with p < 0.05
considered significant.

RESULTS

TORC2−/− DC Display Augmented
Glycolytic Capacity, Glycolysis-Dependent
ATP Production and Viability Compared to
Ctrl DC
To investigate the impact of TORC2 deletion on DC metabolic
function, we assessed glycolysis via extracellular flux, as measured
by basal extracellular acidification rate (ECAR). Glycolysis was
elevated significantly in TORC2−/− compared with WT control
(Ctrl) DC and in both Ctrl DC and TORC2−/− DC following
LPS stimulation (Figure 1A). Interestingly, glycolytic capacity
was also increased significantly in non-stimulated TORC2−/−

DC compared to Ctrl DC, and in LPS-stimulated TORC2−/−

DC compared to Ctrl DC. Glycolytic reserve was higher
in TORC2−/− DC, both without and with LPS stimulation.
While there was no significant difference in ATP production
between Ctrl and TORC2−/− DC following inhibition of
OXPHOS with oligomycin, Ctrl and TORC2−/− DC displayed
significantly decreased ATP production when glycolysis was
inhibited with 2-DG (Figure 1B; non-stimulated; Figure 1C

+ LPS 1 h). TORC2−/− DC stimulated with LPS also had
significantly higher viability than Ctrl DC stimulated with LPS
(representative histogram Figure 1D; quantified in Figure 1E);
however, the immediate glycolytic response to LPS stimulation
did not different significantly between Ctrl DC and TORC2−/−

DC (representative ECAR Supplementary Figure 1A; quantified
in Supplementary Figure 1B).

TORC2−/− DC Exhibit Increased Spare
Respiratory Capacity (SRC), Mitochondrial
Biomass, Mean Mitochondrial DNA Copy
Number and Mitochondria That Fail to
Depolarize Following LPS Stimulation
SRC, calculated as the difference in oxygen consumption
rate (OCR) measured via extracellular flux after addition of
oligomycin and prior to addition of FCCP, was elevated
significantly in non-stimulated TORC2−/− DC compared to
Ctrl DC, without or with LPS stimulation (representative
OCR Figure 2A; quantified in Figure 2B). We next assessed
how TORC2 deletion in DC might influence mitochondrial
phenotype. Mitochondrial mass, as determined by fluorescent
mitochondrial labeling (MitoTracker Green), was significantly
greater in non-stimulated TORC2−/− DC compared with
non-stimulated Ctrl DC (representative histograms Figure 3A;
quantified in Figure 3B) and decreased significantly in both
cell populations following LPS stimulation (Figure 3B). Non-
stimulated TORC2−/− DC had a greater mean mt DNA
copy number (although not statistically significant; Figure 3C)
compared with Ctrl DC; mtDNA copy number decreased
significantly in both Ctrl and TORC2−/− DC following LPS
stimulation (Figure 3C). It has been reported that macrophages
stimulated with LPS undergo mitochondrial depolarization (40).
However, TORC2−/− DC mitochondria failed to depolarize
significantly following LPS stimulation (as opposed to Ctrl
DC that did), as assessed via uptake of cationic TMRE
fluorescent dye (representative histograms Figure 3D; quantified
in Figure 3E).

TORC2−/− DC Display More Compact
Golgi Stacks With Less Perinuclear
Localization Compared With Ctrl DC
It has previously been posited that the critical role of aerobic
glycolysis in activated DC is to produce tricaboxylic acid cycle
intermediates necessary for lipogenesis and subsequent Golgi
apparatus and endoplasmic reticulum expansion to support
de novo protein synthesis (30). As we observed enhanced
glycolytic activity in TORC2−/− DC, we next determined
whether TORC2 deficiency in DC impacted the localization,
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FIGURE 4 | TORC2−/− DC display more compact Golgi stacks with less perinuclear localization compared to wild-type (WT) control (Ctrl) DC. DC were generated

from WT Ctrl or TORC2DC−/− mice (TORC2−/− DC) and prepared for confocal microscopy and transmission electron microscopy (TEM). (A) Representative

maximum intensity projection of DC immuno-stained for Golgi (green), F-actin (red), and nuclei (blue), with arrows marking perinuclear Golgi (top panel); representative

TEM of DC with arrows marking Golgi, and N marking the cell nucleus (bottom panel). (B) Quantification of total mean fluorescence intensity (MFI) in 3-dimensional

images of Golgi stain per cell; each point represents values from one high power field (HPF); n = 4 mice per group; 4–5 HPFs per mouse. Student’s “t”-test, NS, not

significant.
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FIGURE 5 | Inhibition of TORC1 activity in TORC2−/− DC leads to loss of their enhanced spare respiratory capacity (SRC) and glycolytic capacity. DC were

generated from wild-type (WT) control (Ctrl) or TORC2DC−/− mice (TORC2−/− DC), then cultured with or without low concentration rapamycin (Rapa) (10 ng/mL) for

(Continued)
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FIGURE 5 | 18 h. DC were analyzed using a Seahorse XFe96 Bioanalyzer for metabolic flux in real-time over 125min with (1) oligomycin, (2) FCCP, (3) Rot/AA injected

at the times indicated to obtain control values. (A) Representative mitochondria stress test showing oxygen consumption rate (OCR). (B) Quantification of basal OCR,

maximal OCR and spare respiratory capacity (SRC). SRC was calculated as the difference in OCR after addition of FCCP (2) and OCR before the addition of

oligomycin (1); n = 5 independent experiments with at least 2 mice per experiment; one-way ANOVA Tukey’s multiple comparisons test, **p < 0.01, ***p < 0.001,

****p < 0.0001. (C) Representative glycolysis stress test showing responses of Ctrl or TORC2−/− DC cultured with or without rapamycin and stimulated or not with

LPS for 18 h; (D) Quantification of basal glycolysis (ECAR), glycolytic capacity and glycolytic reserve; n = 4 independent experiments with at least 2 mice per

experiment; one-way ANOVA Tukey’s multiple comparisons test, *p < 0.05; **p < 0.01; ***p < 0.001, ****p < 0.0001. 2-DG, 2 deoxyglucose; ECAR, extracellular

acidification rate; FCCP, carbonyl cyanide 4 p-(trifluoromethoxy) phenylhydrazone; NS, not significant; Rot/AA, rotenone/antimycin A.

structure, and quantity of Golgi apparatus. To determine if
TORC2 deficiency in DC impacted the localization, structure and
quantity of Golgi apparatus, we first immunostained DC with
anti-TGN38 Ab and assessed the location of the Golgi relative
to cell nuclei and plasma membrane. In Ctrl DC, the Golgi
complex was perinuclear, whereas in TORC2−/− DC the Golgi
showed less intense staining and were dispersed throughout the
cell (Figure 4A, top panel). We next used TEM to assess the
structure of the Golgi. In Ctrl DC, the Golgi cisternae appeared
more dilated, and more Golgi were observed perinuclearly; in
contrast, the Golgi in TORC2−/− DC appeared more compact,
with less Golgi visible perinuclearly (Figure 4A, bottom panel).
Finally, we quantified the MFI of TGN38 staining from 3-
D stacks of confocal images to assess the total Golgi content
of the DC. We observed no significant differences in total
Golgi content as determined by TGN38 staining in Ctrl DC
compared with TORC2−/− DC, but localization was clearly
affected (Figure 4B).

Inhibition of TORC1 Activity in TORC2−/−

DC Leads to Loss of Their Enhanced SRC
and Glycolytic Capacity
While the exact mechanisms remain unclear, it has been reported
that TORC1 and TORC2 may exert some regulatory influence
on each other, Akt and insulin-dependent PI3K signaling (41).
Therefore, to elucidate whether TORC2 in DC had TORC1-
independent or TORC1-dependent metabolic regulation, we
incubated both Ctrl DC and TORC2−/− DC with RAPA
(10 ng/mL) for 18 h, then analyzed their SRC and glycolytic
capacity via extracellular flux, as in Figures 1, 2. Inhibition
of TORC1 in TORC2−/− DC abolished the increase in SRC
(representative OCR Figure 5A; quantified in Figure 5B) and
glycolytic activity (representative ECAR Figure 5C; quantified
in Figure 5D) in non-stimulated cells compared with Ctrl DC.
Inhibition of TORC1 in both LPS-stimulated Ctrl DC and
TORC2−/− DC reduced their glycolytic activity significantly
(Figures 5C,D).

TORC2−/− DC Exhibit a Distinct Gene
Expression Profile From Ctrl DC
To provide insight into possible mechanisms by which
TORC2−/− DC exhibit enhanced TORC1-dependent metabolic
activity, we performed gene expression analysis to identify any
differences in expression of genes between TORC2−/− DC and
Ctrl DC, as represented in the heat map in Figure 6A. Five genes
with enhanced expression in TORC2−/− DC (Ptk2, IL-7R, Jak1,
Itga2b, and the PI3K component Hcst; Figure 6B) were identified

as upstream mediators of augmented Akt/TORC1 activity. We
then performed qPCR to determine the relative expression of
the downstream targets of TORC1,- the transcription factor
Srebf1, the nuclear receptor Pparγ (that regulates fatty acid
storage and glucose metabolism) and the transcription factor
Yin Yang 1 (Yy1) that impact cell metabolism (17, 18, 42) in
TORC2−/− and Ctrl DC. Both Srebf1 and Pparγ were expressed
at significantly higher levels in TORC2−/− DC compared to Ctrl
DC (Figure 6C), suggesting a role for these transcription factors
in the altered metabolic profile of TORC2−/− DC.

TORC2−/− DC Exhibit Enhanced Lipid
Content
To ascertain the lipid content of TORC2−/− DC, we stained lipid
droplets (LDs) with HCS LipidTox Red neutral lipid stain. We
found a significant increase in LDs in TORC2−/− DC compared
to Ctrl DC (Figures 7A,B).

TORC2−/− DC Display More Activated
NFκβ Downstream of TORC1 Signaling
To investigate NFκβ activation and the activation status of the
TORC1 pathway, we performed Western blots to determine the
expression of p-NFκβ (Ser536), p-p70S6K (Thr 389/Thr 412),
downstream targets of TORC1 in both Ctrl DC and TORC2−/−

DC. As shown in Figures 8A,B, normalized p-NFκβ (Ser536),
p-p70S6K (Thr 389/Thr 412), p-4EBP1(Thr37/Thr46), CD36,
and Pparγ were augmented significantly in TORC2−/− DC
compared with Ctrl DC, with or without LPS stimulation. In
the presence of rapamycin, a selective inhibitor of TORC1, the
augmented TORC1 signaling activity observed in TORC2−/−

DC was reversed. Taken together, these findings suggest that
TORC1 function is elevated in TORC2−/− DC.

DISCUSSION

We and others have reported previously (13, 43) that murine
myeloid DC lacking functional TORC2 display an augmented
pro-inflammatory phenotype and enhance Th1/Th17 and CD8+

effector T cell responses in vivo (13–15). Similar observations
have been reported for mouse macrophages (44). We now
demonstrate that TORC2−/− DC have an altered metabolic
profile, whereby they exhibit enhanced glycolytic activity and
spare respiratory capacity, dependence on glycolysis for ATP
production, enhanced mitochondrial mass and lipid production,
and increased viability following TLR4 stimulation. These
changes may contribute to/support the enhanced stimulatory
function reported for TORC2−/− DC (13–15, 43).
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FIGURE 6 | TORC2−/− DC exhibit a distinct gene expression profile from wild-type (WT) control (Ctrl) DC. (A) Expression of 378 genes comprised in the NanoString

Mouse Immunology Panel, shown as a heat map. Red indicates increased gene expression and green indicates decreased gene expression compared to Ctrl DC;

n = 2 mice in each group. (B) Selection highlighting 5 genes of interest,- upstream mediators of augmented Akt/TORC1 activity from the panel in (A), that were

upregulated in TORC2−/− compared with Ctrl DC. (C) Expression of Srebf1, Pparγ, and Yy1 mRNA determined by RT-PCR in WT Ctrl DC and TORC2−/− DC and

normalized to the housekeeping gene GAPDH, with Ctrl DC as the referent control; n = 5 mice per group, Student’s “t”-test, *p < 0.05; NS, not significant.

Earlier studies have shown that while quiescent, immature
DC have relatively low metabolic needs, these needs increase
upon cell activation and maturation due to bioenergetic pressure

to upregulate co-stimulatory molecule and pro-inflammatory
cytokine production (29). The metabolic process that permits
DC to meet these enhanced metabolic demands occurs via a
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FIGURE 7 | TORC2−/− DC display more lipid droplets (LDs) compared to

wild-type (WT) control (Ctrl) DC. DC were generated from WT Ctrl or

TORC2DC−/− mice (TORC2−/− DC) and prepared for confocal microscopy.

(A) LDs were stained with HCS LipidTox Red (red). (B) Quantification of the

number of LDs per cell. Results of a representative experiment out of two

performed is shown. Sixty cells were analyzed for each condition in each

experiment; Student’s “t”-test, *p < 0.05.

“switch” from oxidative phosphorylation to aerobic glycolysis.
There is evidence (33) that this initial “switch” toward increased
glycolytic metabolism is not dependent on TOR signaling.
However, TORC1 (but not TORC2) has been described as
essential for DC glycolytic commitment (32). We found
that in this study, immature (non-stimulated) myeloid DC
lacking functional TORC2 (Rictor) had significantly increased
glycolytic function compared to immature Ctrl DC, and that
the increase in glycolytic capacity and reserve was also observed
following stimulation of the DC with the TLR4 agonist LPS.
These findings, together with our previous observation (13)

of enhanced co-stimulatory CD86, together with decreased co-
inhibitory programmed death ligand-1 (PD-L1) expression on
TORC2−/− DC compared with Ctrl DC, are consistent with an
intermediate maturity phenotype and supported by the increased
dependence of non-stimulated TORC2−/− DC on glycolysis for
ATP production that we observed.

In addition to its importance for nascent protein production,
glycolytic commitment by mature DC is critical for their survival
(32). Indeed, in conjunction with increased glycolytic activity,
TORC2−/− DC exhibited enhanced viability following exposure
to LPS that can induce programmed cell death in DC (45). Thus,
the enhanced pro-inflammatory function of TORC2−/− DC that
we have documented (13–15) in vitro and in vivo may also be
attributed, in part, to theirmore robust viability.While T cells can
trigger DC apoptosis through Fas and perforin as a mechanism
to self-limit T cell activation (46, 47), such enhanced viability of
activated TORC2−/− DC may augment/extend their capacity to
interact with and stimulate responder T cells.

In addition to augmented glycolytic activity, TORC2−/−

DC also displayed increased SRC, in conjunction with
enhanced mitochondrial biomass, increased meanmitochondrial
DNA, and mitochondrial failure to depolarize following LPS
stimulation. Mitochondrial SRC has been described as the extra
capacity of mitochondria to produce energy under increased cell
stress and is correlated with prolonged cell survival and function
(48). Given the enhanced viability of stimulated TORC2−/−

DC, an increase in SRC compared with LPS-stimulated Ctrl
DC corroborates our findings. As CD8+ memory T cells have
enhanced SRC due to increased mitochondrial biomass (48),
the increased mitochondrial content of TORC2−/− DC that we
observed compared with Ctrl DC is consistent with our other
findings. Failure of the mitochondrial membrane of TORC2−/−

DC to depolarize significantly following LPS stimulation
was however surprising, as LPS has been shown to collapse
mitochondrial membrane potential (19m) in macrophages
(40). On the other hand, there is evidence that, in macrophages,
that disproportionately utilize ATP generated via glycolysis as
protection against cell death (as we observed in TORC2−/− DC),
high19m is maintained via reverse functioning of F(o)F(1)-ATP
synthase and adenine nucleotide translocase (40).

Enhanced glycolytic activity has been described as a means
by which activated DC augment lipogenesis for increased
production and transport of co-stimulatory molecules and
cytokines (33). Indeed, we observed enhanced lipid production
in the TORC2−/− DC. We also assessed whether, in TORC2−/−

DC, there might be alterations in the localization, dilation
and amount of Golgi apparatus that, in conjunction with the
endoplasmic reticulum (ER), is critical for protein processing and
transport. Surprisingly, given the enhanced glycolytic activity of
TORC2−/− DC, we did not observe any significant increase in
the overall Golgi content of these cells. However, we did find
that the Golgi of TORC2−/− DC were less dilated than those in
Ctrl DC, with less perinuclear localization. Recent studies (49)
have favored a cisternal progenitor model of protein transport,
whereby proteins are transported along tightly-compacted Golgi
subcompartments that undergo fission and fusion events that
allow stable protein transport to the membrane. Thus, the tightly
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FIGURE 8 | TORC2−/− DC exhibit a protein expression pattern distinct from wild type (WT) control (Ctrl) DC. (A) Representative Western blots of p-NFκβ, p-P70S6K,

p-4E-BP1, CD36 and Ppar-γ expression by unstimulated and LPS-stimulated (18 h) WT Ctrl or TORC2−/− DC, in the presence or absence of rapamycin (Rapa).

(B) Blots were quantified using Image-Lab software and normalized to β-actin (n = 3–4 independent experiments with at least 2 mice per experiment; *p < 0.05,

**p < 0.01, ***p < 0.001, ****p < 0.0001). One-way ANOVA test Tukey’s multiple comparisons test. NS, not significant.
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FIGURE 9 | Proposed mechanism by which TORC2 may restrain TORC1 activity in DC via the transcriptional suppression of upstream TORC1 activators. Based on

our observations, TORC2 activity may lead to transcriptional suppression of integrin (ItgA2 and FAK) and cytokine receptor (IL-7R) and JAK1 signaling in conjunction

with PIK3AP upstream of Akt/mTORC1 activity, and ultimately the metabolic regulators SREBP1 and Pparγ downstream of TORC1 activity (upregulated genes labeled

in red). Itga2b, integrin alpha II b; FAK, focal adhesion kinase (Ptk2, protein kinase 2), Hcst, hematopoietic cell signal transducer; Pparγ, peroxisome

proliferator-activated receptor gamma; Sregf1, sterol regulatory element transcription factor 1.

compacted Golgi cisternae and diffuse TGN localization may
reflect enhanced protein transport in these cells.

Given the mitochondrial dysregulation observed in
TORC2−/− DC, we investigated possible underlying
mechanisms. Cells maintain mitochondrial homeostasis by
controling both the number and quality of mitochondria via
mitophagy (50). Interestingly, TORC1 is an important regulator
of the nuclear transcription of genes necessary for mitochondrial
biogenesis through peroxisome-proliferator-activated receptor
coactivator-1α (PGC-1α) and yin-yang 1(YY1) (17). In addition,
TORC1 regulates mitochondrial activity via phosphorylation
of the mitochondrial membrane protein Bcl-XL (51). TORC1
has also been reported to positively regulate glucose uptake
(52) and mitophagy (53). As there is possible interplay between
TORC1 and TORC2 through their interactions with Akt and the
tuberosclerosis complexes 1/2 (TSC1/2), we assessed whether
the mitochondrial dysregulation observed in TORC2−/− DC
could be attributed to compensatory augmented TORC1 activity.
Indeed, as we show, inhibition of TORC1 with rapamycin
abolished the enhanced glycolytic function and SRC of
TORC2−/− DC, suggesting that compensatory effects mediated
through TORC1 might represent the key mechanism accounting
for the enhanced mitochondrial activity and glycolytic function
of TORC2−/− DC.

In this study, we performed gene expression analysis
that identified five genes of interest (upstream mediators

of augmented Akt/TORC1 activity) that were differentially
expressed between Ctrl DC and TORC2−/− DC. These genes
identified a signaling pathway in which the integrin subunit
Itga2b, Ptk2 (also known as focal adhesion kinase; FAK) and
Hcst (PIK3AP) are upregulated in TORC2−/− DC. Integrin
clustering has been shown to mediate intracellular signaling
via the catalytic kinase Ptk2 (54), that leads ultimately to
activation of the PI3K/Akt/TORC1 signaling pathway (55).
Another possible mechanism for upregulation of TORC1 activity
in TORC2−/− DC based on these gene expression data,
is upregulation of the IL-7R and Janus kinase 1 (JAK1),
as IL-7R/JAK1 signaling can activate the PI3K signaling
pathway (56).

We identified upregulation of two genes downstream of
TORC1 signaling in TORC2−/− DC that are known to regulate
metabolic function: Pparγ and Srebf1. Activation of these
transcription factors downstream of TORC1 leads to expression
of lipogenic genes (57). It has been demonstrated (33) that
glycolysis in DC drives lipogenesis and subsequent Golgi/ER
expansion upon DC activation and more recently (42), that
Pparγ signaling can also promote glycolysis in hematopoietic
stem cells. Interestingly, loss of TORC2 function in yeast results
in enhanced lipogenesis (58). Taken together, our data suggest
that TORC2 may play a role in transcriptional control of
TORC1-regulated metabolic processes, as outlined schematically
in Figure 9.
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Our findings suggest a novel role for mTORC2 in the negative
regulation of DC metabolism. Its absence equips these APC
to function with enhanced pro-inflammatory/T cell stimulatory
activity, as we (13–15) and others have described (43). Myeloid
DC lacking functional TORC2 are more glycolytically active and
have increased dependence on glycolysis for ATP production.
TORC2−/− DC also have abnormalities in mitochondrial
regulation, characterized by enhanced mitochondrial biomass
and mitochondria that fail to depolarize following DC activation.
The metabolic phenotype of TORC2−/− DC is lost upon
inhibition of TORC1, suggesting a significant compensatory
effect of the mTORC1 pathway in TORC2−/− DC. In addition,
we have identified several genes upstream of TORC1, and the
transcription factors Pparγ and Srebf1 downstream of TORC1,
that are upregulated in TORC2−/− DC. The data strongly suggest
that TORC2 may function to restrain TORC1-driven anabolic
metabolism in myeloid DC.
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