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ABSTRACT

The objective of this study was to build models to predict complete pathologic response (pCR) after neoadju-
vant chemoradiotherapy (nCRT) in esophageal squamous cell carcinoma (ESCC) patients using radiomic fea-
tures. A total of 55 consecutive patients pathologically diagnosed as having ESCC were included in this study.
Patients were divided into a training cohort (44 patients) and a testing cohort (11 patients). The logistic regres-
sion analysis using likelihood ratio forward selection was performed to select the predictive clinical parameters
for pCR, and the least absolute shrinkage and selection operator (LASSO) with logistic regression to select
radiomic predictors in the training cohort. Model performance in the training and testing groups was evaluated
using the area under the receiver operating characteristic curves (AUC). The multivariate logistic regression ana-
lysis identified no clinical predictors for pCR. Thus, only radiomic features selected by LASSO were used to
build prediction models. Three logistic regression models for pCR prediction were developed in the training
cohort, and they were able to predict pCR well in both the training (AUC, 0.84–0.86) and the testing cohorts
(AUC, 0.71–0.79). There were no differences between these AUCs. We developed three predictive models for
pCR after nCRT using radiomic parameters and they demonstrated good model performance.

Keywords: esophageal squamous cell carcinoma; neoadjuvant chemoradiotherapy; complete pathologic
response; radiomics; LASSO

INTRODUCTION
Esophageal carcinoma (EC) is the one of the most common malig-
nancies, and it ranks sixth as a cause of cancer-related mortality glo-
bally [1]. Approximately 80% of the new cases occur in less
developed regions in the world, and 60% of these cases occur in
China [2]. Despite multimodality advances in treatment, it remains
a devastating disease, with a 5-year overall survival rate of 15–25%.

One of the main reasons for the poor prognosis of EC is that
patients are often diagnosed at an advanced stage. To reduce the
difficulty of operating and to improve outcomes, applying concur-
rent chemoradiotherapy before surgery is now the first-line option
for locoregional disease. Patients having a pathologic complete
response (pCR) after neoadjuvant chemoradiotherapy (nCRT)
appear to have superior overall survival [3, 4]. On the other hand,
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non-responders to nCRT may receive no benefit from this therapy
[5]. We urgently need to be able to identify the EC patients who
will benefit from nCRT so that the best treatment can be given to
each individual patient.

Radiomics is an emerging method that extracts quantitative fea-
tures from computed tomography (CT) images, magnetic resonance
(MR) images, positron emission tomography (PET) images, etc.
Radiomics could be applied to identify tumor phenotype character-
istics [6, 7], and to discover prognostic or predictive biomarkers for
cancers [8, 9].

As well, radiomics can be applied in prediction of treatment
response, e.g. pCR in EC after nCRT. Yip et al. studied the possibil-
ity of using CT-based texture features to predict tumor regression
grade (TRG, 1–3 vs 4–5, Mandard et al. [10]) in a cohort of 31 EC
patients [which included only 9 esophageal squamous cell carcin-
oma (ESCC)] patients after nCRT [11]. The pre- and post-
treatment standard deviation of the histogram was significantly asso-
ciated with TRG. However, those researchers only analyzed a small
number (n = 6) of histogram-based texture features. Zhen et al. ana-
lyzed 214 CT-based radiomic features to predict pCR in 49 ESCC
patients. Prediction models developed by support vector machine
(SVM) or artificial neural network (ANN) algorithms can discrimin-
ate non-responders from responders [12]. The area under the
receiver operating characteristic curve (AUC) is 0.818 in SVM and
0.927 in ANN algorithms. More studies have linked the radiomic
features from 18-F-deoxyglucose (18F-FDG) PET scans and pCR in
EC patients after nCRT. Combining clinical factors and 18F-FDG
PET–based radiomic features improved the prediction ability [13].
Roelof et al. developed a prediction model combining clinical
T-stage and restaging after nCRT, which can provide high discrim-
inatory accuracy in predicting pCR (AUC, 0.81) [14].

However, most radiomic studies [11, 14–18] included both
adenocarcinoma and squamous cell carcinoma patients. In contrast
to patients with adenocarcinoma, patients with ESCC may have a
higher pCR rate after nCRT [19, 20]. In pCR prediction analysis,
grouping these two histological types of EC together may have a
negative impact on the accuracy of the analytical results. Here, we
used quantitative features from radiomics as prognostic biomarkers
to build models to predict pCR for patients with ESCC after nCRT.
This model may help doctors to make the the best clinical decision
at the beginning of treatment.

MATERIALS AND METHODS
Patients

A total of 55 consecutive patients pathologically diagnosed as having
ESCC were included in this retrospective study. The nCRT was
administrated to all patients between May 2012 to August 2016 at
the Cancer Hospital of Shantou University Medical College.
Informed consent was obtained from all individual participants
included in the study. All patients received a pre-treatment CT scan
for radiotherapy planning.

The patients’ clinical stage of ECSS was performed according to
the 7th edition of the American Joint Committee on Cancer
(AJCC) staging system with CT scan and endoscopic ultrasonog-
raphy. More information about the patients is listed in Table 1.

Neoadjuvant chemoradiotherapy
Patients were treated with 3D conformal radiotherapy (3D-CRT)
or intensity-modulated radiotherapy (IMRT) using 6 MV X-rays.
The gross tumor volume (GTV) was identified using both diagnos-
tic and radiotherapy planning CT images and barium esophagogra-
phy, and GTV included the primary tumor (GTVp) and grossly
involved regional lymph nodes (GTVn). The clinical target volume
(CTV) was defined as the GTVp with a margin of 1.0 cm laterally
and a 3.0 cm margin in the superior and inferior dimensions plus
GTVn with a 0.5 cm to 1.5 cm expansion. The PTV was determined
by adding 0.5 cm radially to the CTV. A total prescription dose of
40–64 Gy (median, 50 Gy) was delivered in 2 Gy per fraction
5 days a week.

A concurrent 3-weekly schedule of platinum-based nCRT was
administrated to all patients. Twenty-three patients received NP
(vinorelbine + cisplatin) chemotherapy, which consists of cisplatin
(75 mg/m2 on Day 1) plus vinorelbine (25 mg/m2 on Days 1 and
8). Twenty-five patients received the PF (cisplatin + fluorouracil)
regimen, which consists of cisplatin (75 mg/m2 on Day 1) and
fluorouracil (750 mg/m2/24 h on Days 1 to 4). For the TP (pacli-
taxel + cisplatin) regimen for 7 patients, paclitaxel was admini-
strated using 135–180 mg/m2 on Day 1 and cisplatin 75 mg/m2 on
Day 1. In cases of severe hematologic toxicity, dose adjustment was
implemented in the second chemotherapy cycle.

Surgery
All patients underwent clinical re-examination 4 weeks after nCRT,
including a barium esophagography test and thoracoabdominal CT.
A transthoracic esophagectomy with two-field or three-field lympha-
denectomy was performed 5–6 weeks after the neoadjuvant treat-
ment. A pCR patient was defined as a patient with no residual,
viable tumor cells in the surgical specimen.

CT image radiomic feature collection
For all patients, CT scans (CT scanner: Philips Brilliance CT Big
Bore Oncology Configuration, Cleveland, OH) were performed
in the supine position with intravenous contrast. A standard clin-
ical acquisition protocol (tube voltage, 120 kVp; rotation time,
0.75 seconds; pitch, 0.938; matrix, 512 × 512; field of view,
350 mm × 350 mm; pixel size, 1.46 mm; slice thickness, 5 mm;
reconstruction kernel, standard) was applied for each patient in
this cohort. No resample of the voxel size of the CT images was
used. The bit depth of patients’ CT images was 12 and the num-
ber of gray levels was 4096. The GTVs of ESCC were delineated
for the ESCC on the planning non-enhanced CT-scan by experi-
enced radiation oncologists, using a reference of barium radiog-
raphy of the esophagus or contrast-enhanced CT. A 3DSlicer
(version, 4.8.1, Stable Release) with its extension (radiomics)
was used for collecting the radiomic features from pre-treatment
CT [21]. Any pixel with an attenuation of less than −50 HU was
excluded to remove the intra-luminal air from GTVs. In image
pre-processing, Laplacian of Gaussian or wavelet filters were
used. Five values of Laplacian of Gaussian spatial band-pass filter
(0, no filtration; 1.0, fine textures; 1.5 and 2.0, medium textures;
2.5, coarse textures) for image smoothing and a fixed number of
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Table 1. Patient characteristics and the correlation between clinical factors and complete pathologic response after
neoadjuvant chemoradiotherapy

Training group Multivariate logistic
regression

Testing group Differences between training
and testing groups

Variables n (%) median (range) P-value n (%) median (range) P-value

Total patients 44 (80) 11 (20)

pCR NA 0.478a

Yes 19 (43) 4 (36)

No 25 (57) 7 (64)

Gender 0.504 0.449a

Male 35 8

Female 9 3

Age (years) 56 (32–68) 0.984 57 (49–66) 0.368b

Tumor length (cm) 7 (3.5–16) 0.910 7.5 (4–11) 0.585b

Tumor location 0.817 0.285a

Upper 10 4

Middle or lower 34 7

T-stage 0.176 0.577a

T3 19 5

T4a 25 6

N-stage 0.792 0.888c

N0 6 1

N1 33 9

N2 5 1

Chemotherapy regimen 0.528 0.782c

PF 19 6

NP 19 4

TP 6 1

Technique 0.515 0.473a

3D-CRT 23 5

IMRT 21 6

Radiation dose (Gy) 0.251 0.685a

<50 36 9

≥50 8 2

pCR = pathologic complete response, NA = not available; PF = cisplatin + fluorouracil, NP = vinorelbine + cisplatin, TP = paclitaxel + cisplatin, 3D-CRT = 3D con-
formal radiotherapy, IMRT = intensity-modulated radiotherapy.

aChi-squared test, bindependent t test, cFisher’s test
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three fixed number (32, 64 or 128) of discrete bins for image
resampling were applied. In the wavelet filter, the Coiflet 1
mother wavelet was used and a high-pass filter or low-pass filter
were applied in the x, y and z directions. In all, 624 wavelet fea-
tures (Supplemental Table 1) and 406 non-wavelet features
(Supplemental Table 2) in each bin size (=32, 64 or 128) were
collected. Among 406 non-wavelet features, there were 16 shape
features, 19 × 5 (19 classes of first-order feature with 5 values of
Laplacian of Gaussian spatial band-pass filter) first order features,
27 × 5 Gray Level Co-occurrence Matrix (GLCM) features,
16 × 5 Gray Level Size Zone Matrix (GLSZM) features, and
16 × 5 Gray Level Run Length Matrix (GLRLM) features. These
radiomic features have previously been described [21].

Statistical analysis
The 55 patients were divided into two groups (a training group of
44 patients, and a testing group of 11 patients). We performed
multivariate logistic regression analysis using likelihood ratio for-
ward selection in the training group to select the most predictable
clinical factors for pCR. All the radiomic features were normalized
using Z-score normalization. Three groups of radiomic data were
analyzed separately: Group 1, non-wavelet features with bin size =
32 and all the wavelet radiomic features; Group 2, non-wavelet fea-
tures with bin size = 64 and all the wavelet radiomic features;
Group 3, non-wavelet features with bin size = 128 and all the wave-
let radiomic features. The least absolute shrinkage and selection
operator (LASSO) with logistic regression was applied to select
optimal predictors in the training group. LASSO with 10-fold cross-
validation was performed using the glmnet [22, 23] package in R
software (version 3.3.1, http://www.r-project.org/). Models based
only on clinical predictors or the combination of clinical and radio-
mic signatures were built using logistic regression for pCR
prediction.

Multivariable logistic regression formula:

( ) = ( + )− − −P S 1 e ,bS c 1

where P is the probability of the event occurring; S = β0 + β1x1 +
β1x1 +… + βmxm, where x1, x2 . . . xm are different input para-
meters, β0 is the constant for S, and β1 ... βm are the logistic regres-
sion coefficients of the corresponding input parameters. In this
paper, S is the function for radiomic signature, b is the coefficient
for S, and c is the constant in logistic regression.

Model performance was evaluated by the AUC using pROC
[24] package in R software in both the training and testing groups.
The AUCs were compared using the method suggested by Delong
et al. [25] through pROC. The Chi-squared test or Fisher’s test was
used to determine whether there was a significant difference in the
categorical variables between these groups. A P-value of < 0.05 was
considered statistically significant.

RESULTS
The pCR rate of this study was 42% (23/55), 43% (19/44) and
36% (4/11) in the whole, training and testing cohorts after nCRT,
respectively. No clinical differences were found between the training

and testing groups (Table 1). No clinical factors were identified as
predictable factors for pCR by logistic regression analysis in either
the training or testing groups (Table 1). Three groups of radiomic
features were analyzed by LASSO separately to build three radiomic
signatures, and the results are presented in Table 2.

Three logistic regression models for pCR prediction were devel-
oped based on these three signatures separately (Table 3). The
AUCs of Model 1, Model 2 and Model 3 in the training dataset
were 0.84 to 0.86 and in the testing group were 0.71 to 0.79
(Table 3). The receiver operating characteristic curves (ROCs) are
shown in Fig. 1. There were no differences between these AUCs in
the training group (Model 1 vs Model 2, P = 0.451; Model 1 vs
Model 3, P = 0.483; Model 2 vs Model 3, P = 1.000) or in the test-
ing group (Model 1 vs Model 2, P = 0.480; Model 1 vs Model 3,
P = 0.401; Model 2 vs Model 3, P = 0.480).

DISCUSSION
Early identification of pCR prior to nCRT might avoid unnecessary
chemoradiation-associated morbidity. However, there is still no
powerful tool that can yield sufficient ability to predict pCR after
nCRT [26, 27]. For example, using only 18F-FDG PET to predict
pCR after nCRT in EC is not recommended [26]; not is applying
the combination of 18F-FDG PET and endoscopic biopsy [27].
Radiomics may become a better method for predicting pCR. In pre-
vious studies that used radiomic data to predict pCR, the AUCs
were between 0.71 and 0.93 [12, 14–18]. In the study that also ana-
lyzed CT-based radiomic features [12], the AUCs were the highest
among these studies (0.818 in SVM and 0.927 in ANN modeling).
However, modeling overfitting has likely occurred as a result of the
small sample size (49 patients) and large number of predictors (214
radiomic features) included in the modeling. Although the number
of patients in the present study was small (n = 55) as well, and
more radiomic features (n = 1030) were analyzed in our study, the
LASSO analysis was applied to handle overfitting in logistic regres-
sion and the AUCs were 0.84 to 0.86 in the training cohort and
0.71 to 0.79 in the testing cohort. Certainly, validating our models
in an independent cohort is necessary before any clinical practice
can be adopted, because of the small sample size and retrospective
nature of our study.

In CT images, different scales of smoothing using Laplacian of
Gaussian spatial band-pass filters are important; they can reduce
image noise and highlight different anatomical spatial scales (from
fine to medium to coarse texture) within the tumor [28, 29]. We
applied five scales of smoothing (1 to 2.5, in steps of 0.5) to obtain
the best radiomic features for pCR prediction, but only radiomic
features with sigma = 2.5 were selected by LASSO. Therefore, the
smoothing procedure using Laplacian of Gaussian spatial band-pass
filters with suitable scales might be important in unenhanced CT
images. Hatt et al. [30] found that significant texture details were
lost when using a quantization of <32 bins. Based on the experience
of PET-CT [30], we chose three different bins (32, 64 or 128) to
resample the CT images. We found a similar prediction ability for
the three radiomic signatures with the different bins. This finding is
in line with previous findings claiming that ≥32 discrete values for
the bin are recommended in order to properly quantify tumor
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heterogeneity [31], and that textural features computed with resam-
pling values >64 may not provide additional prognostic information
compared with the tumor volume [30]. However, although the fea-
tures selected in all three models with similar performance appear
to have been stable, the radiomic predictors differed between the
three models. This suggests that we may need to use different bin
sizes to resample the CT images and compare the performance of
the different models for the different bin sizes. In these three mod-
els in our study, Model 1 had the highest AUC value (although the
AUCs were not significantly different between the three models) in
both the training and the testing cohorts, and it had the least num-
ber of predictors. Thus, when readers try to apply our models to
their patients’ imaging, Model 1 might be the first choice.

Female sex, age, poor differentiation grade, tumor length, and
low cT-stage were identified as the predictors for pCR after nCRT
[20, 32, 33]. In our study, clinical factors were not found to be sig-
nificantly related to pCR after nCRT, and this may be due to the
relatively small number of ESCC patients. Although only radiomic
features were selected, three radiomic signatures that we built could
well predict the pCR in our cohort (AUCs, 0.71 to 0.80). Tumor
volume is considered as a risk predictor for pCR [13, 30, 34].
However, the tumor volume failed to predict pCR (P = 0.157,
AUC = 0.61, 95% CI, 0.46 to 0.76) in any of the patients in our
cohort. The SurfaceVolumeRatio (bin = 32) (surface area to vol-
ume ratio, a lower value indicates a more compact shape; P = 0.04,
AUC 0.66, 95% CI 0.52 to 0.81, for all patients) might provide

Table 2. Coefficients and features of three radiomic signatures for pCR

Coefficients Features

Radiomic signature 1 (Sig 1)

−0.283 (β0) constant

−0.122 (β1) bin32_original_shape_SurfaceVolumeRatio (x1)

−0.139 (β2) bin32_log.sigma.2.5.mm.3D_firstorder_90Percentile (x2)

0.160 (β3) bin32_wavelet.LLH_GLRLM_ZoneEntropy (x3)

0.181 (β4) bin32_wavelet.HHH_GLRLM_RunEntropy (x4)

0.012 (β5) bin32_wavelet.LLL_GLRLM_RunVariance (x5)

Radiomic signature 2 (Sig 2)

−0.288 (β0) constant

−0.014 (β1) bin64_log.sigma.2.5.mm.3D_firstorder_90Percentile (x1)

−0.054 (β2) bin64_wavelet.LHH_GLSZM_LowGrayLevelZoneEmphasis (x2)

0.068 (β3) bin64_wavelet.LLH_GLSZM_ZoneEntropy (x3)

0.210 (β4) bin64_wavelet.HLH_GLRLM_RunVariance (x4)

0.131 (β5) bin64_wavelet.HHH_GLRLM_LongRunEmphasis (x5)

0.015 (β6) bin64_wavelet.HHH_GLRLM_RunEntropy (x6)

Radiomic signature 3 (Sig 3)

−0.312 (β0) constant

−0.028 (β1) bin128_log.sigma.2.5.mm.3D_firstorder_90Percentile (x1)

−0.143 (β2) bin128_log.sigma.2.5.mm.3D_GLRLM_ShortRunLowGrayLevelEmphasis (x2)

0.247 (β3) bin128_wavelet.HLH_GLRLM_RunVariance (x3)

0.116 (β4) bin128_wavelet.HHH_GLRLM_LongRunEmphasis (x4)

−0.011 (β5) bin128_wavelet.HHL_GLCM_ClusterProminence (x5)

−0.024 (β6) bin128_wavelet.HHL_GLSZM_ZonePercentage (x6)

pCR = pathologic complete response, Filter “Wavelet”, H = high-pass filter (applied in the x, y and z directions, respectively), L = low-pass filter (applied in the x, y
and z directions, respectively), pCR = pathologic complete response, GLCM = Gray Level Cooccurrence Matrix, GLSZM = Gray Level Size Zone Matrix, GLRLM =
Gray Level Run Length Matrix.
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more information about pCR than tumor volume. Hatt et al. found
an added value of texture features over tumor volume alone for out-
come prediction for tumors above 10 cm3 only [30]. However, the
radiomic signatures provided better prediction performance in the
case of only one patient with a tumor >10 cm3 in our cohort. Soufi
et al. [35] tested wavelet radiomic features from different mother
wavelets in survival prediction of non–small cell lung carcinoma
patients; they found Symlet and Biorthogonal mother wavelets
yielded the best performance. The radiomic tool that we used in
this study only provides a wavelet radiomic feature from the Coiflet
1 mother wavelet. Thus, the wavelet radiomic features in our study
might be not the optimal ones.

In the studies using texture features to predict pCR for EC
[11, 14–18], both adenocarcinoma and squamous cell carcinoma
patients were included, and the malignancy of the majority of
these patients was adenocarcinoma. The AUCs in these ‘mixed’
studies were between 0.71 and 0.89. Compared with these

‘mixed’ studies, the AUCs in our study and that of Hou et al.
[12], which both included only ESCC patients, seem to be high-
er (0.84–0.97). Hence, it might improve the model performance
by dividing the patients according to histological types for differ-
ent analyses in predicting pCR. The rationale behind this might
be the differences in the pCR rate (49% in ESCC and 23% in
adenocarcinoma) [19] and the genomic characterization [36].
Thus, including only one type of EC for analysis maybe more
appropriate, and we developed this study to explore the radiomic
predictors for ESCC.

CONCLUSION
We developed three CT-based radiomic models for predicting the
pCR in ESCC patients after nCRT. These predictive models
demonstrated good model performance in predicting pCR and
might help physicians identify candidates for nCRT.

Table 3. Coefficients, 95% confidence intervals and area under the receiver operating characteristic curves of three logistic
regression models for pCR

Model b constant (c) OR 95% CI P-value MSE AUC in training group AUC in testing group

Model 1 0.852 0.86 (95% CI, 0.74 to 0.98) 0.79 (95% CI, 0.48 to 1.00)

Sig 1 4.519 91.696 9.461–1900.114 0.001 0.996

Model 2 0.891 0.84 (95% CI, 0.72 to 0.95) 0.75 (95% CI, 0.42 to 1.00)

Sig 2 4.538 93.483 8.571–2237.566 0.001 0.933

Model 3 0.665 0.84 (95% CI, 0.72 to 0.96) 0.71 (95% CI, 0.38 to 1.00)

Sig 3 3.626 37.552 5.357–488.782 0.001 1.214

pCR = pathologic complete response, b is the coefficient of corresponding radiomic signatures, OR = odds ratio, CI = confidence interval, MSE = mean squared error
between training and testing cohort, AUC = the area under the receiver operating characteristic curve.
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Figure 1. Comparison of receiver operator characteristic (ROC) curves obtained applying models (Model 1, 2 or 3) in
training (Fig. 1a) and testing (Fig. 1b) groups.
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