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Vascular calcification (VC) is an urgent worldwide health issue with no available medical

treatment. It is an active cell-driven process by osteogenic differentiation of vascular

cells with complex mechanisms. The AMP-activated protein kinase (AMPK) serves as

the master sensor of cellular energy status. Accumulating evidence reveals the vital role

of AMPK in VC progression. AMPK is involved in VC in various ways, including inhibiting

runt-related transcription factor 2 signaling pathways, triggering autophagy, attenuating

endoplasmic reticulum stress and dynamic-related protein 1-mediated mitochondrial

fission, and activating endothelial nitric oxide synthase. AMPK activators, like metformin,

are associated with reduced calcification deposits in certain groups of patients, indicating

that AMPK is a potential therapeutic target for VC.

Keywords: AMP-activated protein kinase, autophagy, endoplasmic reticulum stress, runt-related transcription

factor 2, vascular calcification

INTRODUCTION

Vascular calcification (VC) is characterized by accumulating calcium deposits in the tunica intima
and tunica media of the vessel wall. The mineral deposition results in stiffness of conduit arteries
and impaired elasticity of vessels that preserve distal perfusion during the cardiac cycle (1).
The burden of VC, especially coronary artery calcification, is an independent risk factor for
cardiovascular events and long-term all-cause mortality (2), which constitutes a critical medical
problem with aggregating economic burden (3). However, due to the complexity of the underlying
mechanism of VC (4), invasive transcatheter procedures and surgeries are the only available options
for severe calcific vascular diseases (5), and there is no clinically approved medical therapy for VC,
so far.

VC was once deemed as a passive, unregulated, degenerative process in the past (6). However,
accumulating evidence suggests that VC is an active cell-driven process (6, 7). Vascular smooth
muscle cells (VSMCs) are the essential constituents of the vascular wall. Those contraction-related
proteins secreted by contractile type of VSMCs are critical for regulating blood pressure and
maintaining the extracellular matrix (ECM) of vessels (8). However, the contractile phenotype is
predisposed to osteoblastic phenotypic transition under certain local stimuli like inflammation
(9). This phenotypic transdifferentiation is a hallmark in the pathogenesis of VC, which is
characterized by the loss of contraction-related proteins and the accumulation of osteoblastic-
involved proteins, including runt-related transcription factor 2 (Runx2), alkaline phosphatase
(ALP), and osteopontin (9–11).

The AMP-activated protein kinase (AMPK) is an evolutionarily conserved serine/threonine-
protein kinase. It is a heterotrimeric complex consisting of a catalytic α subunit and two regulatory
β and γ subunits (12). The α subunit has two isoforms (α1 and α2), which are differentially
distributed in different cells (13). AMPK serves as a critical cellular energy sensor that is expressed
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ubiquitously in eukaryotic cells (14). Knowledge of AMPK
upstream inducers and downstream targets is expanding (15,
16). AMPK can be activated via canonical and non-canonical
mechanisms (16). The increase of AMP: ATP and ADP: ATP
ratio during cellular energy stress triggers AMPK through
canonical mechanisms (16). 5-aminoimidazole-4-carboxamide
ribonucleoside (AICAR), which can be converted into AMP
analogs that bind the γ subunit of AMPK, is wildly used
in laboratory research as a non-canonical AMPK activator.
Intracellular Ca2+ can activate AMPK by phosphorylating
Thr172 by calmodulin-dependent protein kinase CaMKKβ

(17, 18). Both canonical and non-canonical mechanisms are
involved in the Ca2+/CaMKKβ pathway. What is more,
multiple commercialized drugs, like metformin, simvastatin, and
resveratrol, can activate AMPK indirectly by inhibiting ATP
synthesis (15).

Besides the classical role of AMPK in metabolic regulation,
increasing evidence indicates that AMPK is a crucial player in
the pathogenesis of VC. Pharmacological activation of AMPK can
significantly inhibit VSMC calcification (19, 20). Treatment of
AMPK activator metformin was associated with lower coronary
and extremity artery calcification burden in diabetic patients
(21, 22). In this review, we will focus on the recent advances
concerning the role of AMPK in VC and interpret its potential
therapeutic utility.

THE PROTECTIVE ROLE OF AMPK
AGAINST VC

AMPK-Runx2 Signaling Pathways
Runx2, also namedCore-binding factor alpha 3 subunit (CBFA1),
is a well-accepted activator of osteoblast differentiation-related
genes (23). The elevated expression of Runx2, together with other
osteoclastic-associated proteins, in calcified human vascular
tissues (11) and mice VC models (24, 25), cast light on its role
in vascular calcification.

The relationship between AMPK and Runx2 was first
reported in osteogenesis (26, 27). Jang et al. found that
metformin increased the expression of Runx2 via AMPK,
which resulted in the stimulation of osteoblast differentiation
(27). However, AMPK-Runx2 signaling pathway seemingly
exerts an opposite role in VSMCs differentiation. Previous
studies had demonstrated that Runx2 was expressed in VSMCs
rather than macrophages in the calcified lesions (19, 28),
and VSMC autonomous Runx2 was essential for vascular
osteogenesis (28). Vascular calcification was markedly inhibited
in VSMC-specific Runx2-deficiency mice fed with high-fat diet,
which was accompanied by decreased macrophage infiltration
and osteogenic differentiation (29). Cao et al. investigated
AMPK-Runx2 in VSMCs and reported that AMPK activation
downregulated the Runx2 expression in VSMCs (30). Our
previous work further investigated the underlying mechanisms.
We found that the activation of AMPKα1 could phosphorylate
PIAS1, the SUMO E3-ligase of Runx2, to enhance the instability
of Runx2. Moreover, deficiency of AMPKα1 in VSMC resulted in
the upregulated expression of Runx2 and promoted osteoblastic

differentiation of VSMCs. On the other hand, chronic metformin
treatment could prevent the VC process and down-regulate
Runx2 level in Apoe−/− mice through activating AMPKα1 (19).
One possible explanation for the opposite roles of AMPK-Runx2
in osteoblasts and VSMC differentiation might be the different
responses of Smurf1 (the ubiquitin E3-ligase of Runx2) upon
AMPK phosphorylation (19, 31).

Besides the direct effect of AMPK-Runx2 pathway on VSMC
transdifferentiation, a recent study indicated that AMPK could
also inhibit VC by regulating receptor activator of nuclear
factor kappa-B ligand (RANKL) (32). RANKL serves as a
chemoattractant that induces the infiltration of macrophage
and the transformation of macrophage into bone-resorbing
osteoclast-like cells, which further accelerate the process of VC
(29, 32, 33). Since RANKL is a known downstream factor of
Runx2 (34), it is reasonable to hypothesize that Runx2 mediates
the AMPK-RANKL pathway.

To sum up, the activation of AMPK could down-regulate
the expression and activity of Runx2 both in the translational
and post-translational levels, which results in the inhibition of
osteoblastic differentiation of VSMCs. Besides, AMPK-Runx2
signaling pathway may be involved in the infiltration and
transformation of macrophages by down-regulating the level
of RANKL.

AMPK and Autophagy Pathways
Autophagy is indispensable for human health by degrading
cellular components like dysfunctional proteins or organelles
in lysosomes. This catabolic process is up-regulated under
specific stimuli like nutrient deprivation (35), resulting in cellular
death and metabolic stress (15). Recent evidence suggests that
autophagy was also implicated in VC development (36–38).
Autophagy is enhanced in VC models, and the activation of
autophagy ameliorates the pathology of VC both in calcified
VSMCs (39) and rat VC models (40). One possible explanation
is autophagy could inhibit the apoptosis and osteoblastic
transformation of VSMCs (41).

AMPK is an integral part of autophagy with complex
mechanisms. By phosphorylating tuberous sclerosis complex 2
(42), subunit raptor of the mechanistic target of rapamycin
(mTOR) (43) and Unc-51-like kinase 1 (ULK1) (44), AMPK
initiates autophagy directly (15). Meanwhile, by regulating the
expression of relevant downstream transcription factors like
FOXO3, AMPK can also initiate autophagy indirectly (45).
Recent studies had investigated the protective role of autophagy
in VC through AMPK activation. By activating AMPK with
melatonin (41) or ghrelin (36), the process of autophagy
was enhanced, which resulted in reduced VSMC osteoblastic
differentiation both in cell culture (41) and rat models of
VC (36). On the other hand, treatment of aldosterone or
advanced glycation end products (AGEs) facilitated VC by
inhibiting AMPK-dependent autophagy (46). Pretreatment of
AMPK activator AICAR could upregulate the autophagy level
and reverse the effect of AGEs on osteoblastic differentiation
of VSMCs (41, 47). AMPK/mTOR signaling pathway was the
possible involving mechanism (41, 47, 48).
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Taken together, AMPK activation was associated with the
enhancement of autophagy and, subsequently, inhibited VSMC
calcification. However, most of the studies mentioned above were
conducted in cultured VSMCs. More studies with direct evidence
are needed to verify these findings in vivo.

AMPK and Endoplasmic Reticulum Stress
The endoplasmic reticulum (ER) is an essential intracellular
organelle that acts as a protein synthesis factory. ER has
pivotal roles in coordinating energetic disturbance via regulating
metabolism and cell fate decisions (49). The disruption of
ER homeostasis is defined as ER stress (ERS), resulting
in the activation of PKR-like ER kinase (PERK), inositol-
requiring enzyme 1 (IRE1), and activating transcription factor
6 (ATF6), which causes an adaptive signaling pathway named
unfolded protein response (UPR) (50, 51). Prolonged ER stress
ultimately leads to the modulation of multiple cellular pathways,
including apoptosis, necroptosis, autophagy, and UPR-associated
morphological changes (49).

Increasing evidence reveals the tight connection between
AMPK activation and ERS in different disease models (52–54).
AMPK antagonists abolished deficiency-mediated inhibition of
ERS in VSMCs incubated with calcifying media (55). Biomarkers
of ERS were increased significantly in calcification lesions (56, 57)
and were associated with VSMC apoptosis (56). Compared with
Apoe−/− littermates, the ERS and prevalence of atherosclerosis
was significantly increased in Apoe−/−Prkaa2−/− mice (58, 59).
However, as the last stage of atherosclerosis, the role of AMPK in
ERS-mediated vascular calcification has not been fully elucidated.

Among all the effector molecules in response to ERS,
transcription factor 4 (ATF4) is proved to be of enormous
significance in VC. ATF4 was up-regulated in calcified aortas
and VSMCs, while inhibition of ERS alleviated calcification
(55). Previous studies found that PERK-eukaryotic initiation
factor 2α(eIF2α)-ATF4 signaling pathway was involved in ERS-
induced VSMCs apoptosis and osteoblast differentiation during
the process of VC (60, 61). Li et al. found that death-associated
protein kinase 3 (DAPK3) inactivated AMPK signaling and
promote the expression of ERS-related protein (including ATF4),
thus leading to osteogenic differentiation of VSMCs and VC (55).

In summary, the activation of AMPK inhibits ERS to
ameliorate VC. ERS downstream protein like ATF4 mediates
phenotypic transformation and apoptosis of VSMC that
promotes the VC process. More specific inhibitors like ATF4
inhibitors may be further validated in clinical application in VC.

AMPK-eNOS-NO Signaling Pathway
Endothelium-derived nitric oxide (NO) is a messenger molecule
that is crucial in the maintenance of vascular function (62,
63). Endogenous NO functions as a modulator of VSMC
proliferation and migration (64, 65), which can inhibit VC
by interfering with transforming growth factor-beta (TGF-β)
signaling (66). Endothelial nitric oxide synthase (eNOS) is the
primary enzyme for NO production in endothelial cells. Genetic
lack of eNOS was associated with raised atherosclerotic lesions
and valvular calcification in mice models (67, 68). A recent
study revealed that eNOS deficiency was also associated with
the exacerbation of aortic calcification (69). On the other hand,

exercise training prevented eNOS down-regulation and resulted
in fewer calcification deposits in rat VCmodels (70). However, in
contrast to previous findings that eNOS mainly play a protective
role in VC, Tziakas et al. found that erythrocyte-origin eNOS
might be harmful in the development of VC (71).

AMPK is a well-defined regulator of eNOS. By
phosphorylating eNOS at Ser1177/1179, AMPK enhances the
activity of eNOS in a post-translation manner (72). Kanazawa
et al. found that metformin could induce the differentiation
and mineralization of osteoblasts via activating AMPK (73).
The elevated AMPK expression protects human coronary artery
endothelial cells from diabetic lipoapoptosis via increasing eNOS
synthesis (74). Daily injections of AMPK activator AICAR
attenuated high-fat diet-induced arterial stiffening in Klotho-
deficient mice, together with increased level of phosphorylated
eNOS (75). Besides endothelial cells, VSMCs are also known
origins of eNOS (66). Cao et al. explored the underlying
mechanism in rat aortic VSMCs with a β-glycerophosphate-
induced VC model and found that metformin-mediated
calcification protection was AMPK-eNOS-NO-dependent (30).
AMPK activation by metformin treatment was accompanied
by increased eNOS level and NO overproduction (30, 76).
Inhibition of either AMPK or eNOS abolished metformin-
mediated VC prevention, indicating an essential protective role
of the AMPK-eNOS-NO pathway in VC development (30). Due
to the limitation of in vitro study, further study is needed to verify
the protective role of AMPK-eNOS-NO in VC in animal models.

These findings suggest the activation of AMPK-eNOS-NO
signaling pathway is associated with the amelioration of VC.
Since endothelial cells rather than VSMCs are the primary source
of eNOS, it is more reasonable that AMPK acts on endothelial
cells’ eNOS signaling to prevent VC.

AMPK and Mitochondrial Dynamics
Mitochondria are continually undergoing fission and fusion,
termed as mitochondrial dynamics, under the control of
specific fission and fusion machinery (77, 78). A proper
balance in mitochondrial dynamics is critical for mitochondrial
morphology, biogenesis, degradation, and cellular apoptosis
(79, 80). Recruitment of dynamic-related protein 1 (DRP1)
from the cytosol is required in mitochondrial fission, which
causes constriction and eventual division of the mitochondria
(78, 81). Not until recently did scientists uncovered that
DRP1 promoted cardiovascular calcification via regulating
osteogenic differentiation (82). The inhibition of expression and
phosphorylation of DRP1 ameliorated the apoptosis of VSMC
and attenuated VC in rodent VC models (83, 84).

AMPK is genetically required for cells to process rapid
mitochondrial fission. By direct phosphorylating mitochondrial
fission factor (MFF, the dominant receptor of DRP1), AMPK
can acutely trigger mitochondrial fission (85, 86). Also, Drp1
is a known downstream factor of AMPK. In addition to
regulating the expression of Drp1, AMPK can phosphorylate
DRP1 at Ser-637, resulting in the inhibition of Drp1 activity
and its translocation to mitochondria (87, 88). Previous
studies had shown that AMPK activation could suppress
atherosclerosis and endothelial dysfunction by reducing
DRP1-mediated mitochondrial fission (88, 89). Activation of
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AMPK by metformin reduced DRP1 expression, mitochondrial
fragmentation, and plaque formation in diabetic mice models,
while AMPKα2 deficiency abolished the effect s of metformin on
atherosclerosis in Apoe−/−Prkaa2−/− mice. Another recently
published work described the protective role of the AMPK-
DRP1 pathway in the calcification of VSMCs (90). By activating
AMPK expression with melatonin, the expression of Drp1 was
decreased and subsequently inhibited mitochondrial fission,
which resulted in reduced apoptosis, Runx2 expression, and
calcium deposition (90).

In general, AMPK-mediated mitochondrial fission attenuates
VC by inhibiting the expression of DRP1. However, the role of
mitochondrial dynamics in VC has not been fully elucidated.
More studies are needed to prove the function of AMPK-
dependent DRP1-mediated mitochondrial fission in VC. DRP1
activators may also be applied as a target for VC treatment.

ENDOGENOUS AMPK ACTIVATOR AND VC

As mentioned above, the expression and activity of AMPK
are under strict and delicate regulation, which is tightly
associated with ATP metabolism. ATP is metabolized by
ENPP1 into AMP and pyrophosphate, which was then further

hydrolyzed by CD73 to build adenosine and phosphate
(91). Phosphate, calcium, pyrophosphate (PPi), and adenosine
are important inducers that activate AMPK canonically.
These endogenous AMPK activators can also influence the
process of VC. High phosphate level is considered the main
determinants of VC in patients with chronic kidney disease
(92). Hyperphosphatemic triggers diverse signaling pathways
(including Runx2) that enhance the sensitivity of VSMCs to
calcification (93), and reduces levels of calcification inhibitors
(94). On the other hand, PPi is a well-accept endogenous
inhibitor of biomineralization (95). The presence of PPi
inhibits the calcification of rat aortas in vitro (96). Humans
lacking ectonucleotide pyrophosphorylase1 (extracellular PPi
synthesizer) develop severe VC at an early age (97). What is
more, recent studies demonstrate that adenosine might serve as
an endogenous inhibitor of VC through regulating the expression
of tissue non-specific alkaline phosphatase (TNAP) (98, 99).

APPLICATIONS OF AMPK IN VC CLINICAL
SETTINGS

Accumulating evidence shows that VC is an active cell-driven
process (6, 7), which poses a potential for therapeutic targeting

FIGURE 1 | Mechanisms of AMPK in vascular calcification. AMPK plays an essential role in calcification through multiple mechanisms, including inhibiting runt-related

transcription factor 2 (Runx2) signaling pathways, triggering autophagy, attenuating endoplasmic reticulum stress, and dynamic-related protein 1(DRP1)-mediated

mitochondrial fission, and activating endothelial nitric oxide synthase. By preventing the osteogenic differentiation of vascular smooth muscle cells, AMPK can prevent

vascular calcification development. AMPK, AMP-activated protein kinase; DRP1, dynamic-related protein 1; eNOS, endothelial nitric oxide synthase; ERS,

endoplasmic reticulum stress; VSMC, vascular smooth muscle cell.
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(41). Considering the protective effects of AMPK in VC, it is
reasonable to speculate that AMPK activators can prevent VC.
Multiple communalized drugs can activate AMPK indirectly,
either by inhibiting ATP synthesis (like metformin, statins)
(16, 100), or by inhibiting tetrahydrofolate-utilizing enzymes
that catalyze ZMP to purine nucleotides (like pemetrexed,
methotrexate) (16, 101). Since pemetrexed and methotrexate
function as immune suppressors, we mainly discuss drugs,
including metformin and statins in current review.

Metformin, the first-line oral anti-diabetic drug, can activate
AMPK in a dose- and time-dependent manner both in vivo
and in vitro (73, 102, 103), which might be implicated in
VC treatment and diabetic complications prevention (104).
Metformin prescription resulted in a significant reduction of
circulating osteoprotegerin, a biomarker of VC, in diabetic
patients (105). The VC progression in the coronary artery
and peripheral artery was inhibited by metformin usage (22,
106). Our group had reaffirmed that metformin prescription
was associated with lower coronary artery calcification levels
among patients with type 2 diabetic mellitus (T2DM) (21).
The association was independent of age, gender, duration of
T2DM and renal function (21). Another group investigated
metformin usage in prediabetic patients, which demonstrated
its consistent VC protective effect in male prediabetic subjects
(107).We believe that metformin’s protective effect on VC, which
was seemingly independent of serum glucose, is at least partly
achieved through AMPK activation (21).

DISCUSSION AND PERSPECTIVES

VC is an urgent worldwide health issue with no available
medical treatment. Accumulating evidence shows that AMPK

plays a vital and protective role in developing VC via distinct
signaling pathways, including the Runx2, autophagy, ERS, eNOS
activation, and DRP1 (Figure 1).

Activation of AMPK by medicines is a potential therapeutic
approach for vascular calcification. However, there are still
many unanswered questions in the field. Agents that precisely
targeting AMPK or the subunits of AMPK are yet to be
developed. While metformin is mainly prescribed for diabetes
patients, it will be interesting to determine metformin’s
effect on VC in otherwise non-diabetic subjects. Whether
AMPK activation could prevent or reverse the pathological
process of VC needs to be explored. For conditions like
chronic kidney disease prone to develop severe VC, whether
AMPK activation is protective against VC is unknown. More
clinical studies, especially prospective randomized clinical trials,
are required to confirm the therapeutic target of AMPK
for VC.
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