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Simple Summary: The leather industry has raised the blood lead and arsenic levels of cows in nearby
farms. Significant decreases in serum GST, GPX, and GSH activity were observed in the polluted
area. Milk linoleic acid (C18:2n6c) was significantly reduced in the polluted area. Heavy metal
exposure through leather industry imposes oxidative stress on cows, leading to modifications in the
unsaturated fatty acids of milk.

Abstract: This study investigated whether unsaturated fatty acids in milk and the oxidative status of
cows are affected by heavy metal exposure due to leather processing. The blood lead (Pb) concentra-
tions in cows from two farms in the polluted area were 16.27 ± 8.63 µg/L, respectively, which were
significantly (p < 0.05) higher than the blood Pb concentrations in cows from an unpolluted farm
(6.25 ± 3.04 µg/L). There were significantly (p < 0.05) lower levels of glutathione S-transferase (GST),
glutathione peroxidase (GPX), and glutathione (GSH) in the serum of cows from the polluted area
compared to the levels in cows from an unpolluted area. The linoleic acid (C18:2n6c) content in milk
from the polluted area was 15% lower than in the control area. There was a significant correlation
between linoleic acid in milk with the blood Pb and serum GSH levels. Heavy metals can alter fatty
acid synthesis through oxidative stress, which may be the mechanism by which heavy metals affect
fatty acid synthesis in milk.

Keywords: cow; milk fatty acid; heavy metals; oxidative stress

1. Introduction

There are about 3850 leather and leather-product processing plants in China [1].
Leather processing is an important source of heavy metal pollution. The industry-fodder-
animal pathway is considered to be a major source of animal exposure to metals [2]. In
our previous study, heavy metal concentrations in pasture soil, water, and silage in the
vicinity of a factory were found to be higher than in a control area, which led to high levels
of heavy metals in milk [3].

Heavy metals are transported to various organs in the body through blood circulation,
causing damage to tissues and organs [4]. One consequence of environmental pollution
is a high heavy metal load on animals, which can leave their health in a sub-optimal
condition. Lipid peroxidation is considered to be the initial reaction in heavy metal toxic-
ity [5]. Metal intoxication promoted the generation of reactive oxygen species (ROS), which
either triggered protective mechanisms or caused oxidative cellular damage, such as lipid
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peroxidation [6]. Many organisms have developed antioxidant defense systems that help
them to cope with ROS. The antioxidant defense system consists of both enzymatic and
non-enzymatic components [7].

To minimize the negative effects of ROS, animals have evolved effective antioxidant
defenses, which includes the enzymes catalase (CAT), glutathione peroxidase (GPX), glu-
tathione reductase (GR), and also the multifunctional enzyme glutathione S-transferase
(GST) [8–10]. For this reason, the evaluation of antioxidant responses and lipid peroxidation
levels has been extensively used to assess the effects of metal exposure in pigs [11], aquatic
organisms [12–15], humans [16], and rats [17].

Animal blood can be a good indicator of environmental heavy metal contamination [18,19].
Previous studies have reported high blood Pb levels in animals around industrial and
contaminated areas [20,21].

Fatty acids can be useful biomarkers in the determination of the role of the altered
synthesis of eicosanoids in the mechanisms of altered bone metabolism associated with
abnormal exposures to lead (Pb) and other heavy metals [22]. Several studies have shown
a relationship between elevated tissue Pb and both oxidative stress biomarkers and fatty
acid composition [23–26]. Lead exposure has been shown to alter theω-3 polyunsaturated
fatty acids (PUFAs) andω-6 PUFAs composition of milk in rats [27].

Milk is considered a “nearly complete food”, especially for infants, children, and
elderly people [28]. It is a good source of fatty acids [29,30]. Whether exposure to heavy
metals through leather processing can increase lipid peroxidation in cows and change the
unsaturated fatty acid composition in raw milk has not been reported. This study measured
the heavy metal concentrations in cow blood in an area affected by the leather industry. It
identified the adverse effects of heavy metal pollution on oxidative stress in serum and the
fatty acid profile in the milk of cows. The links between blood heavy metal levels, serum
oxidative stress biomarkers, and the milk fatty acid profile were determined.

2. Materials and Methods
2.1. Study Area

The leather industry is the largest pillar industry in Wuji County, Shijiazhuang, China,
and the output of the local leather industry accounts for 10% of the national total [31].
The details of the study area are reported in Su et al. [3]. In brief, samples were obtained
from healthy cows, raised in three farms that operated a mid-level extensive agricultural
production system in Shijiazhuang, Hebei Province, China, with varying proximity to
industrial activities. Farms A and B were located in the vicinity of leather processing plants
(within 10 km of the source of pollution) in Wuji County. Farm C (control) was located far
from (>50 km) the leather processing plants and was considered to be a non-polluted area
that served as a control [3]. The three farms provided raw milk to the same dairy-processing
corporation. The cows were fed by house feeding. Silage was sourced from local areas
near the individual farms. The same fodder, except silage, was used for the cows at all
three farms. A total of 45 Holstein dairy cows (2.49 ± 0.66 parity, 15 cows per farm) were
selected. The mean days in milk (DIM) of the cows selected were 197.3 ± 15.9 days. The
mean milk yield for cows was 24.20 ± 3.14 kg.

2.2. Sampling

Blood and serum samples were obtained from cows at 5:30 a.m., which was before the
morning feed. Blood was sampled from the right jugular vein into vacutainer tubes and
stored at 4 ◦C for a later heavy metal analysis [32]. Serum samples were obtained according
to a previous method [33]. Briefly, blood samples (5 mL) were collected in pro-coagulation
tubes and then centrifuged at 3000× g at 4 ◦C for 15 min. Serum was separated and packed
in Eppendorf tubes that were stored at −80 ◦C.

Milk samples were collected from individual cows during the milking procedure at
06:00 and 17:00 and were mixed in the proportion of 6:4. After sampling, raw milk was
stored in 200 mL polyethylene plastic bottles at −20 ◦C. This study was approved by the
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ethics committee of the Chinese Academy of Agricultural Sciences (Ethics Approval No.
SL2016-023).

2.3. Measurement of Heavy Metals

Blood heavy metals were measured by inductively coupled plasma mass spectrometry
(ICP-MS) after digestion with HNO3 and H2O2. Briefly, 1 mL blood was added followed
by 5 mL of HNO3 (65%, Suprapur, Merck, Darmstadt, Germany) and 2 mL of H2O2 (30%,
Suprapur). The mixture was digested in a microwave-assisted reaction system (CEM MARs
6, Matthews, NC, USA) according to a previously reported program [32]. After cooling
to room temperature, the mixture was then diluted to 50 mL with ultrapure water. After
filtration through a membrane (0.22 µm), the solution was analyzed by inductively coupled
plasma mass spectrometry (7700 Series ICP-MS; Agilent Technologies, Santa Clara, CA,
USA). Standard calibrations (five points) were developed for each metal. The correlation
coefficients were >0.999 before determinations were made.

2.4. Oxidative Stress Analysis

The serum malondialdehyde (MDA), superoxide dismutase (SOD), GST, GSH, GPX.
GR, and CAT were determined using ELISA kits (Nanjing Jiancheng Bioengineering insti-
tute, China). Briefly, a 20 µL sample, 20 µL enzyme working fluid, and 200 µL substrate-
applied solution were added. The mixture was then incubated for 20 min at 37 ◦C. The SOD
levels were measured at 450 nm using a microplate reader. For GST, 50 µL samples were
mixed with 200 µL reagent I and then centrifuged at 3500 rpm for 10 min. After settling for
5 min, the light absorbance of the supernatant was measured at 405 nm with a microplate
reader.

For the GSX enzymatic reaction, 0.2 mL 1 mmol/L GSH in a non-enzyme tube was
placed in a water bath for 5 min at 37 ◦C, and then 0.1 mL reagent I was added. The mixture
was placed back into the water bath for 5 min at 37 ◦C. Then, 2 mL reagent II and 0.2 mL of
sample were added. The mixture was centrifuged at 3500 rpm for 10 min. Then, 0.2 mL
1 mmol/L GSH and 0.2 mL sample were placed into an enzyme tube, which was placed in
a water bath for 5 min at 37 ◦C. Then, 0.1 mL reagent I was added. The mixture was placed
back into the water bath for 5 min at 37 ◦C, and then, 2 mL reagent II was added. The
mixture was centrifuged at 3500 rpm for 10 min. For the color reaction, 1 mL supernatant,
1 mL reagent III, 0.25 mL reagent 4, and 0.05 mL reagent 5 were mixed. After sitting for
15 min, the OD value was measured at 412 nm.

For the CAT enzymatic reaction, reagent I and reagent II were preheated at 37 ◦C.
Then, 0.1 mL serum, 1 mL reagent I, and 0.1 mL reagent II were mixed and then reacted
for 60 s at 37 ◦C. Then, 1 mL reagent II and 0.1 mL reagent III were added and mixed well.
Light absorbance was measured at 405 nm with a diameter of 0.5 cm.

For the GSH enzymatic reaction, 0.5 mL sample and 0.2 mL reagent I were mixed and
then centrifuged at 3500 rpm for 10 min. Then, 100 µL of the supernatant was mixed with
100 µL reagent II and 25 µL reagent III. After sitting for 5 min, the light absorbance was
measured at 405 nm using a microplate reader.

For the MDA enzymatic reaction, 0.1 mL serum and 0.1 mL reagent I were mixed
and shaken, and then 3 mL reagent II and 1 mL reagent III were added. The tube was
mixed by vortexing and then placed in a water bath for 40 min at 90 ◦C. Then, the tube was
centrifuged at 3500 rpm for 10 min. The light absorbance of the supernatant was measured
at 532 nm, with a diameter of 1 cm.

For the GR enzymatic reaction, 50 µL serum and 2.4 mL working solution were mixed
and shaken. Light absorbance was measured at 340 nm. The light absorbance was measured
again at 340 nm after the tube was placed in a water bath for 2 min at 37 ◦C.

For the metallothionein (MT) enzymatic reaction, 50 µL of the diluted standard was
placed into a reaction well together with 50 µL of serum. Then 50 µL of the antibody was
added immediately. The membrane plate was covered, gently shaken, and incubated at
37 ◦C for 1 h. The liquid in the holes was shaken off, and each hole was filled with washing
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liquid. The plate was shaken for 30 s to remove the washing liquid and patted dry with
absorbent paper. This operation was repeated three times. Then, 80 µL of the affinity
chain enzyme horseradish peroxidase (HRP) was added to each well. The plate was gently
shaken and incubated at 37 ◦C for 30 min. The liquid in the hole was shaken off, and each
hole was filled with washing liquid. The plate was shaken for 30 s to remove the washing
liquid and patted dry with absorbent paper. This operation was repeated three times. Then,
50 µL substrate A and 50 µL substrate B were added to each well. The plate was gently
shaken and incubated at 37 ◦C for 10 min, avoiding light. The enzyme label plate was then
removed, 50 µL termination solution was immediately added, and the optical density (OD)
was determined at 450 nm.

2.5. Determination of Fatty Acids

Fatty acids were determined by the method developed by Wang et al. (2011) [34].
Briefly, the milk sample was fully mixed after thawing in a cold water bath. A 2 mL milk
sample was added to a 4 mL n-hexane/isopropanol mixed solution, after blending with
2 mL sodium sulfate solution. The mixture was centrifuged at 5300 rpm for 20 min at
room temperature. The supernatant was placed in a 20 mL hydrolysis tube and dried in
a nitrogen flow. Then, a 2 mL mixed solution of sodium hydroxide and methanol was
added. The mixture was placed in a water bath for 15 min at 50 ◦C. After cooling, 2 mL
of a hydrochloric acid/methanol solution was added, and the mixture was placed in a
water bath for 1.5 h at 80 ◦C. Then, 3 mL pure water and 6 mL n-hexane were added
after cooling to room temperature. The mixture was allowed to stand or centrifuged for
stratification. The upper liquid reached a constant volume of 10 mL and was dried by
anhydrous sodium sulfate. Final measurements were made by gas chromatography-mass
spectrometry (GC-MS) using an external standard to ensure a quantitative method. The
gas chromatographic conditions were as follows: chromatographic column: HP-88 (100 m
× 0.25 mm × 0.25 µm); column temperature: 120 ◦C for 10 min, then increased to 230 ◦C at
3.2 ◦C/min and maintained for 35 min; inlet temperature of 250 ◦C; detector temperature
of 300 ◦C; carrier gas was nitrogen; constant pressure of 190 kPa; split ratio of 1:50; and
sample size of 2 µL.

2.6. Data Analysis

The data were analyzed with SPSS (IBM, Endicott, NY, USA) version 20. Results were
expressed as a mean ± standard deviation (SD). The data were compared using a non-
parametric Kruskal-Wallis test. Differences were considered to be statistically significant at
p < 0.05. To explore the relationships, a Spearman’s correlation analysis was conducted.

3. Results and Discussion
3.1. Heavy Metal Residues in Blood

Animal blood can be a good indicator of environmental heavy metal contamination [18,19].
Blood is the tissue used most frequently to estimate exposure to heavy metals and its
association with health outcomes [32,35]. The mean arsenic (As), Pb, and chromium
(Cr) concentrations in the blood of cows grazing close to leather processing plants were
higher than the levels in cows from the control area, which might be due to the ingestion
of contaminated forage. Animal feed is the main source of heavy metals [2,36]. In our
previous study, the heavy metals in silage and the total mixed ration (TMR) of farms near a
leather processing area were found to be higher than those in the control group [3].

The blood As levels of cows from farms in the polluted area were 1.61 ± 0.28 µg/L,
which were significantly (p < 0.05) higher than the levels in cows from an unpolluted area
(1.25 ± 0.18 µg/L). The blood Pb levels of cows from farms in the polluted area were
16.27 ± 8.63 µg/L, which were significantly (p < 0.05) higher than the levels in cows from an
unpolluted area (6.25 ± 3.04 µg/L). The blood Cr levels in cows from farms in the polluted
area were 2.54 ± 1.51 µg/L, which was higher than the levels in cows from an unpolluted
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area (1.55 ± 0.56 µg/L) (Table 1). There was no significant difference in the cadmium (Cd)
levels between the control and polluted areas.

Table 1. Blood heavy metal levels in cows from polluted and unpolluted areas.

Metals
(µg/L)

Unpolluted (n = 15) Polluted (n = 15)
p

Mean ± SD Range Mean ± SD Range

As 1.25 ± 0.18 1.04–1.66 1.61±0.28 1.19−2.18 0.000 **
Pb 6.25 ± 3.04 2.76–12.08 16.27±8.63 6.48−46.43 0.000 **
Cr 1.55 ± 0.56 1.08–2.98 2.54±1.51 1.16−9.11 0.014 *
Cd 0.125 ± 0.043 0.07–0.21 0.119±0.057 0.06−0.26 0.702

Significance levels: * p < 0.05, ** p < 0.01.

Heavy metals in the blood of cows reared in the polluted area increased. The blood
Pb concentration in cows reared in irrigated areas with wastewater was 15 ± 4 µg/L [37].
The blood Pb concentration in cattle living near trunk roads was 193.3 ± 95.35 µg/L [38].
The blood Pb concentration in cattle from a Pb-polluted mining area in Spain was 56.5–
805.1 µg/L [39]. These levels were higher than those detected in the present study. The
blood Pb concentrations recorded in the present study were higher than those in blood
(ND–34.0 µg/L) [40] and plasma (0.659 ± 0.146 µg/L) [41] reported in Spain. The As
contents were within the range reported previously for cows reared in areas irrigated with
wastewater [37] and in Galicia, Spain [40]. The blood Cd concentrations in this study were
within the range (ND–1.65 µg/L) of cows reared in Galicia, Spain [40].

3.2. Effect of Heavy Metal Exposure on Oxidative Stress in Serum

The distribution of metals in blood, and oxidative stress levels in the serum of cows
were investigated using a principal component analysis (PCA). The PCA results (Figure 1)
showed a clear separation between the control (C), and polluted areas (farms A and B).
This could be attributed to the differences in heavy metal stress in the cows in the different
areas.
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Heavy metals, especially Pb, are environmental toxicants that can induce oxidative
stress by stimulating the excess generation of ROS, which has been reported to be an
important mechanism underlying Pb toxicity [42]. The ability of Pb to cause oxidative
stress in blood has been suggested to be the underlying molecular mechanism of some Pb-
related pathologies. Metal intoxication can accelerate the production of cellular ROS, which
is expected to instigate a response from the antioxidant system [43]. Cellular ROS can result
in damage to the normal oxidative metabolism [5]. The evaluation of lipid peroxidation
levels has been used as a measure of oxidative stress induced by pollutants, including
metals, as previously reported in Japanese quail following chronic Pb exposure [42], the
brown mussel Perna perna following exposure to heavy metals [44], Channa punctatus in a
heavy metal polluted canal [13], and wild ungulates in a Pb polluted mining area [45]. The
response to oxidative stress involves key antioxidant and ancillary enzymes, such as GST,
GPX, and glutathione (GSH).

Table 2 presents a summary of the analysis procedure used to determine the levels of
GST, GPX, SOD, GR, CAT, MT, MDA in the serum of cows. There were significantly (p < 0.05)
lower GST, GPX, and GSH levels in the serum of cows from polluted areas compared to the
levels in cows from the unpolluted area. The GST activity was significantly (p < 0.05) lower
(52.09 ± 21.16 U/mL) in the serum of cows from the polluted area compared to cows from
the unpolluted area (68.81 ± 16.66 U/mL). The GPX activity (435.29 ± 19.14 U/L) in the
polluted area was markedly lower than in the control area (501.04 ± 58.62 U/mL). The GSH
activity was significantly different in cows from the polluted area (13.18 ± 7.99 µmol/L)
compared to cows from the unpolluted area (33.18 ± 19.91 µmol/L), with a difference
of 60.3%. The CAT and MT activity were lower in the polluted area compared to the
unpolluted area (p > 0.05). There was no significant difference in the GR, SOD, and MDA
activity between the polluted and unpolluted areas.

Table 2. Antioxidant enzymes and lipid peroxidation in the serum of cows from polluted and
unpolluted areas.

Parameters Unpolluted (n = 15) Polluted (n = 30)

SOD U/mL 66.90 ± 8.25 69.10 ± 7.99
GST U/mL 68.81 ± 16.66 a 52.09 ± 21.16 b

GPX U/L 501.04 ± 58.62 a 435.29 ± 19.14 b

GR ng/mL 267.96 ± 114.50 292.83 ± 134.76
CAT ng/mL 23.98 ± 6.93 21.67 ± 5.66
GSH µmol/L 33.18 ± 19.91 a 13.18 ± 7.99 b

MT ng/mL 1458.19 ± 520.18 1195.85 ± 426.03
MDA nmol/mL 28.11 ± 19.11 20.23 ± 20.47

Note: In the same row, different letters indicate a significant difference at p < 0.05, which is also the case in the
tables below.

As a protective agent, GSH plays an important role in detoxification processes and is
the first line of defense against heavy metal toxicity [11]. In the present study, the increased
lipid peroxidation as a result of heavy metal exposure was accompanied by a depletion
of serum GSH in cows from the leather processing area. This GSH depletion led to the
production of free radicals [11]. In the present study, significantly lower levels of GSH
were observed in the blood of cows reared near leather processing plants. This could
be due to GSH being a sulfhydryl-rich antioxidant, which gives GST a strong electron
donating property. It donates electrons to the ROS/free radicals and is readily oxidized to
glutathione disulfide (GSSG). This rapid utilization of both GST and GSH led to a decline
in ROS levels [46,47].

Glutathione S-transferase activity will counteract oxidative cellular damage [48]. The
decrease in GST activity in cow blood in the present study agreed with the findings in the
liver and kidney tissue of Channa punctatus from a heavy metal polluted canal [13] and in
the liver of Notophterus notopterus from the Mahanadi River, India, which were related to
the heavy metal concentrations [14].
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High levels of ROS in animal tissues are a result of their enhanced rate of generation
and/or a decline in the process of cellular antioxidant defense (free radicals in biology and
medicine). The first lines of antioxidant defense are enzymes [14]. Glutathione peroxidase
removes H2O2 and organic peroxides by coupling their reduction to the oxidation of GSH.
Mohanty et al. [14] observed a significant reduction in GPX activity in the liver of Notopterus
notopterus from the Mahanadi River as a function of the heavy metal concentration. In our
study, the serum GPX of cows reared in polluted areas was significantly lower than in the
serum GPX of cows from the control area.

3.3. Changes in the Fatty Acid Content in Raw Milk from Polluted Areas

Cow milk is an important source of dietary lipids and contains an abundance of
bioactive fatty acids. The fatty acid content was observed to be significantly lower in the
milk of cows from polluted areas compared to the control area (Table 3). In particular,
the proportional content of linoleic acid (c18:2n6c) decreased. This was an important
observation because C18:2n6c has a beneficial effect on human health, improving the
sensitivity to insulin, and thus reducing the incidence of type 2 diabetes [49].

Table 3. The fatty acid content in raw milk from polluted and unpolluted areas.

Fatty Acids (%) Unpolluted (n = 15) Polluted (n = 30)

C6:0 1.96 ± 0.22 1.91 ± 0.55
C8:0 1.4 ± 0.19 1.32 ± 0.52
C10:0 8.5 ± 1.52 a 7.28 ± 2.19 b

C12:0 4.11 ± 0.71 a 3.26 ± 0.81 b

C13:0 0.04 ± 0.06 0.05 ± 0.05
C14:0 12.25 ± 1.26 a 11.19 ± 1.39 b

C15:0 1.23 ± 0.14 a 1.10 ± 0.18 b

C16:0 32.01 ± 2.74 a 35.72 ± 4.54 b

C17:0 0.82 ± 0.22 0.75 ± 0.091
C18:0 11.13 ± 1.6 10.69 ± 2.08
C20:0 0.09 ± 0.08 0.10 ± 0.07
C23:0 0.19 ± 0.11 0.18 ± 0.07

Total saturated fatty acids 75.98 ± 8.66 75.72 ± 9.41
C14:1 1.30 ± 0.22 1.21 ± 0.31
C15:1 0.25 ± 0.17 0.21 ± 0.10
C16:1 1.58 ± 0.41 1.64 ± 0.66
C17:1 0.16 ± 0.12 0.15 ± 0.09

C18:1n9t 0.45 ± 0.24 0.45 ± 0.29
C18:1n9c 20.97 ± 2.48 21.03 ± 1.63

C20:1 0.22 ± 0.20 0.15 ± 0.11
The monoene fatty acids 24.93 ± 7.02 24.83 ± 7.20

C18:2n6t 0.29 ± 0.11 0.23 ± 0.11
C18:2n6c 2.77 ± 0.51 a 2.35 ± 0.49 b

C18:3n6 0.19 ± 0.19 0.19 ± 0.15
C18:3n3 0.35 ± 0.22 0.29 ± 0.13
C20:3n3 0.23 ± 0.19 0.25 ± 0.19

Total poly unsaturated fatty
acids 3.83 ± 1.05 3.31 ± 0.89

Note: Superscript lower-case letters (a, b) different in the same row indicate significant differences (p < 0.05).

There was a significant correlation between the C18:2n6c content in raw milk and both
the blood Pb level in cows (n = 45, r = −0.536, p < 0.01) and serum GSH (n = 45, r = 0.381,
p < 0.01) (Figure 2).
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Lipids are particularly susceptible to free radical damage and the biomarkers of lipid
peroxidation are considered to be the best indicators of oxidative stress [50]. Polyunsat-
urated fatty acids are susceptible to degradation by oxygen, heat, and light, and their
presence increases the potential for lipid peroxidation [51]. The decrease in the C18:2n6c
content in polluted areas may be secondary to the impact of lipid peroxidation caused by
heavy metals [23,52].Heavy metals alter fatty acid synthesis through oxidative stress [23],
which may be the process by which heavy metals affect fatty acid synthesis in milk [27].

Lipids, in particular those that are polyunsaturated, are prone to oxidation. The
decrease in the C18:2n6c content of milk may be related to the oxidation of unsaturated
fatty acids.

It was found that the percentage of C18:2n6c in milk was related to the heavy metal
concentration in blood. It was also related to antioxidant indexes. Heavy metals can alter
unsaturated fatty acid synthesis through oxidative stress, which may be the mechanism by
which heavy metals affect fatty acid synthesis in milk.

4. Conclusions

The leather industry has had a substantial impact on the blood Pb and As levels
of cows on nearby farms. Significant decreases in serum GST, GPX, and GSH activity
were observed in the polluted area. Linoleic acid (C18:2n6c) was significantly altered in
the polluted area. Heavy metal exposure imposes oxidative stress on cows, leading to
modifications in the unsaturated fatty acids of milk.
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