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ABSTRACT

We have analyzed publicly available K562 Hi-C data,
which enable genome-wide unbiased capturing of
chromatin interactions, using a Mixture Poisson
Regression Model and a power-law decay back-
ground to define a highly specific set of interacting
genomic regions. We integrated multiple ENCODE
Consortium resources with the Hi-C data, using
DNase-seq data and ChIP-seq data for 45 transcrip-
tion factors and 9 histone modifications. We classi-
fied 12 different sets (clusters) of interacting loci
that can be distinguished by their chromatin modi-
fications and which can be categorized into two
types of chromatin linkages. The different clusters
of loci display very different relationships with
transcription factor-binding sites. As expected,
many of the transcription factors show binding
patterns specific to clusters composed of interact-
ing loci that encompass promoters or enhancers.
However, cluster 9, which is distinguished by
marks of open chromatin but not by active enhancer
or promoter marks, was not bound by most tran-
scription factors but was highly enriched for three
transcription factors (GATA1, GATA2 and c-Jun) and
three chromatin modifiers (BRG1, INI1 and SIRT6).
To investigate the impact of chromatin organization
on gene regulation, we performed ribonucleicacid-
seq analyses before and after knockdown of GATA1
or GATA2. We found that knockdown of the GATA
factors not only alters the expression of genes
having a nearby bound GATA but also affects ex-
pression of genes in interacting loci. Our work, in

combination with previous studies linking regulation
by GATA factors with c-Jun and BRG1, provides
genome-wide evidence that Hi-C data identify sets
of biologically relevant interacting loci.

INTRODUCTION

Transcriptional regulation involves a process by which
different transcription factors bind to specific short deoxy-
ribonucleic acid (DNA) sequences termed cis-regulatory
elements (CREs), such as promoters, enhancers, silencers
and insulators, and thus control the transcription of dif-
ferent genes. The accessibility of these CREs is often
influenced by epigenetic modifications including histone
acetylation and methylation, which can be associated
with the activation or repression of genes. For example,
H3K27ac is found at both active enhancers and promoters
(1,2); H3K4 mono-, di- and tri-methylation is linked to
gene activation (1,3,4), H3K27me3 is a mark of repressed
regions (1,5–8), and H3K36me3 identifies transcribed
regions (4,9).

Chromatin Immunoprecipitation sequencing (ChIP-
seq) and DNase-seq are high throughput experimental
technologies that have been shown to be effective in
defining a detailed map of transcription factor-bind-
ing sites (TFBSs), histone modifications and open chro-
matin regions. Such techniques have been adopted by
the Encyclopedia of DNA Elements (ENCODE)
Consortium (http://encodeproject.org/ENCODE/) for
the identification of many different TFBSs in various
cell types, such as K562 (chronic myelogenous
leukemia), GM12878 (lymphoblastoid cell), HepG2 (liver
hepatocellular carcinoma) and HeLa (cervical cancer)
(10); see http://encodeproject.org/ENCODE/cellTypes.
html for a list of all ENCODE cell types. Many studies
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have shown that certain transcription factors, such as
MYC, the E2F family and YY1, usually bind to
promoter regions, whereas many other factors such as
GATA1, TCF7L2 (also called TCF4) and estrogen
receptor a preferentially bind to distal regions that could
be >20 kb away from a known transcription start site
(TSS) (11–18). Although some distal binding sites may
function as promoters for unannotated protein coding
and/or non-coding genes, it is clear that binding sites
can control gene regulation via specific three-dimensional
(3D) conformations of the chromatin that bring them into
close spatial contact with distant promoters (19–22).

The development of the chromosome conformation
capture technique (23) has greatly facilitated our under-
standing of the effects of chromatin conformation on
transcriptional regulation owing to greatly increased reso-
lution over traditional co-localization techniques such as
fluorescent in situ hybridization (24). Recently, by
coupling with next generation sequencing technologies,
Hi-C has, for the first time, enabled an unbiased
genome-wide capturing of chromatin interactions (25).
This study identified thousands of interacting loci in
both K562 and GM06990 cells and identified nuclear sub-
structures termed ‘fractal globules’. A recent review (24)
has proposed that there might be four types of genomic
interactions, including contacts associated with nuclear
lamina, nuclear pores and the nucleolus, as well as intra-
and inter-chromosomal contacts. Although these recent
studies provide great advances, there still remain many
computational and biological challenges in organizing
and deciphering Hi-C data. For example, the Hi-C data
were initially modeled as a simple probability matrix and
the identified interacting loci are thus at a 1Mb scale.
However, if the Hi-C data are modeled based on a statis-
tical distribution of the real data, the interactions can not
only be determined at finer scales but can also be
differentiated into different types of interacting events
(e.g. intra- versus inter-chromosomal interactions and
random versus proximate ligation events). Also, the
initial studies did not attempt to understand how

epigenetic modifications correlate with the 3D chromatin
interactions nor did they investigate how the binding of
transcription factors might play a role in 3D genome or-
ganization. Although a recent study (26) correlated
CCCTC-binding factor (CTCF)-binding sites with Hi-C
data to investigate genome-wide CTCF-mediated inter-
actions, it was purely an in silico computational analysis
and did not comprehensively use other publically available
transcription factor binding data.
In our study, we have integrated the available K562

Hi-C data with multiple data sets from the ENCODE
Consortium, including ChIP-seq data for 45
Transcription Factors (TFs) and 9 histone modifications
and DNase-seq data for open chromatin to dissect the
underlying mechanisms of chromatin organization and its
impact on genome regulation. We identified 12 distinct
chromatin clusters that can be categorized into two differ-
ent types. Our integrated analysis suggests that transcrip-
tion factors and chromatin modifiers assemble to form
functional complexes that bring distant elements in
contact. To test this hypothesis, we used knockdown of
transcription factors and ribonucleicacid (RNA)-seq
analyses to provide genome-wide evidence that Hi-C data
can identify sets of biologically relevant interacting loci.

MATERIALS AND METHODS

Overview of the integrated data analysis flow

In this study, we have comprehensively performed data
modeling, analysis and integration to investigate the rela-
tionship of the spatial organization of the human genome
with the local chromatin status and how it affects gene
regulation (Figure 1). We began with analysis of K562
Hi-C data (25) using a Mixture Poisson Regression
Model (MPRM) (27,28) and a power-law decay back-
ground to obtain a set of interacting genomic regions
(composed of interacting loci with a pair of two ends)
with a high level of specificity. We then associated the
interacting partner loci with 9 histone modification

Figure 1. Flow chart of data processing. The sequential analytical steps of this study rely on several types of experimental input. The process is as
follows: (i) analyze Hi-C data using a MPRM and a power-law decay background; (ii) group interacting loci using hierarchical clustering based on
the loci’s epigenetic status as determined by ChIP-seq analysis of modified histones and regions of open chromatin; (iii) apply the Apriori algorithm
to identify transcription factor (TF) association networks using ChIP-seq analysis of transcription factors and (iv) validate the effect of TF-induced
DNA loops on gene regulation through comparison of gene expression profiling using RNA-seq before and after knockdown of a single transcription
factor.
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marks and open chromatin regions, followed by perform-
ing hierarchical clustering to classify the sets of partner
loci into different groups. Next, we examined the
distance between the TSS and the interacting loci in
each cluster and applied the Apriori data mining
algorithm (29) to identify which transcription factors
may be involved in mediating the different sets of chro-
matin interactions. We also correlated the different sets of
interacting loci with gene expression data such that each
cluster was placed into one of two types: Type I is
composed of active genes; Type II is composed of
repressed genes. Finally, we performed a functional valid-
ation of one of the identified clusters of interacting loci
using knockdown of transcription factors followed by
RNA-seq analyses.

Modeling of Hi-C data to identify interacting loci

K562 Hi-C data and gene expression data generated by
Lieberman-Aiden (2009) were downloaded from the Gene
Expression Omnibus (GEO) database. In Hi-C experi-
ments, the chromatin is treated with formaldehyde to
create protein–DNA and protein–protein interactions
and, subsequently, digested with HindIII. The digested
DNA (hereafter referred to as DNA segments) is ligated
in the presence of biotin-labeled nucleotides in a diluted
environment then treated with exonuclease to digest linear
DNAs but leave DNA loops protected. The chromatin is
sonicated; biotin-labeled hybrid DNA fragments (here-
after referred to as hybrid fragments to be distinguished
from DNA segments) are precipitated using avidin-
conjugated beads and subjected to paired-end sequencing;
see Lieberman-Aiden et al. (25) for details. Each hybrid
fragment identifies a potential interaction between two
loci based on where the two ends of each fragment are
mapped to the genome.
We have re-analyzed the K562 Hi-C data set, starting by

separating the ligation events into two categories, proxim-
ate (defined as a ligation between two ends that are spatially
adjacent to each other) and random ligation. Because the
probability of a ligation event between two proximate
regions is much higher than that between two random
regions, the higher the number of hybrid fragments
derived from the same two regions the higher the confi-
dence that these two regions are spatially close. A MPRM
(Figure 2A; Supplementary Figure S1A and B; see also
SupplementaryMethods) canbeused to determine a thresh-
old number of hybrid fragments beyond which themajority
of the data corresponds to proximate ligation events. A
previous study has shown that the background contact
probability of two loci follows a power-law distribution
within a certain distance interval (25). It is necessary to
remove background ligations formed between two
digested DNA segments that are within a short distance of
each other in the genome (Supplementary Figure S1C; see
also Supplementary Methods). In addition to random
ligation, self loops can form when the two ends of a single
digestedDNAsegment ligate to eachother. Because the two
free ends of one digested segment are also spatially close, self
ligation events are not excluded from the set of identified
proximate ligations. However, the length of a single DNA

segment is limited because of the cutting site density of the
endonuclease, and self-ligation can only produce hybrid
fragments with two tags in a certain orientation. These
features were used to remove self-ligation events from the
proximate ligation set (Supplementary Methods). After
removing the self-ligation and random ligation interactions,
we identified 96 137 interacting loci (with a false discovery
rate of 5.76%) from the starting total of 23 337 840.
Although this may initially appear to be a severe filtering
of the data, we note thatmostDNA fragments sequenced in
genomic approaches are background noise (e.g. the
sequenced tags under peaks represent <20% of most
ChIP-seq data set). Therefore, proper biological interpret-
ations of Hi-C data require stringent filtering.

Epigenetic and transcription factor data analysis

K562 open chromatin and DNA methylation data, as
well as ChIP-seq data for histone modifications and
TFBSs, were downloaded from the University of
California at Santa Cruz (UCSC) genome browser
database (Supplementary File S1). Nucleosome-depleted
sites (open chromatin), sites of H3K4 mono-, di- and tri-
methylation, H3K9 trimethylation, H3K27
trimethylation, H3K27 acetylation, H3K36 tri-
methylation, H4K20 mono-methylation, H3K9 acetyl-
ation and TFBSs were identified using the web Bin-
based Enrichment Level Threshold (wBELT) (for broad
regions) or Bi-Asymmetric-Laplace Model (BALM)
program (sharp peaks) (30,31). All data used in our
analyses were highly reproducible, having >90% overlap
when the top 40% of the sites from one replicate was
compared with the set of all sites from the second replicate
(ENCODE overlap rules).

RNA-seq analyses

K562 cells (3� 106) were resuspended in 100ml of
Nucleofector solution V (Lonza) and transfected with
240 pmol of SMARTpool small interfering RNA
(siRNA) targeting endogenous human GATA-1 or
GATA-2 (Dharmacon/Thermo Fisher Scientific).
siGenome nontargeting siRNA pool (Dharmacon/
Thermo Fisher Scientific) was used as a control. Cells
were transfected with the Nucleofector II (Lonza) using
the T-016 program and were harvested 48-h
post-transfection. The knockdown efficiency was
quantitated by real-time polymerase chain reaction
analysis of messenger RNA levels. The RNA libraries
(two independent knockdowns for GATA1, two inde-
pendent knockdowns for GATA2 and two control
samples) were prepared in accordance with the Illumina
RNA sample preparation protocol, using barcoded
RNA-Seq adapters. Samples were sequenced using an
Illumina Hi-Seq Genome Analyzer. All sequenced tags
from each sample were aligned to the hg18 reference
genome using the Burrows-Wheeler Aligner (BWA)
aligner tool (32), and only uniquely mapped tags were
used for the further analysis. To measure the differential
gene expression between the GATA1 or GATA2
knockdown samples and the control samples, we applied
the Cuffdiff program that uses the Cufflinks transcript
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quantification engine to calculate gene and transcript ex-
pression levels in more than one condition and tests for
significant expression differences (33). We then annotated
the transcripts with UCSC RefSeq HG18. The expression
value for each transcript was measured by a FRKM value

(Fragments per kilobase of transcript per million mapped
tags). After obtaining the FRKM values for each tran-
script in each sample, we performed a correlation
analysis between the two biological replicates to measure
the data reproducibility (Supplementary Figure S2).

Figure 2. Hi-C analysis and genomic interactions in K562 cells. (A) Hi-C data analysis. Several steps were taken to select real interactions from the
initial set of hybrid fragments. First, self-ligation was filtered based on its special properties (Supplementary Methods). Second, a MPRM was used
to eliminate random loops. Next, the proximate ligation threshold was determined (Supplementary Figure 1C), and those interactions that pass the
threshold were further filtered by a power-law decay background model. (B) Circos plot of the identified genome-wide inter-chromosomal inter-
actions. The outer layer ring represents the human genome, with each chromosome labelled a different color. Each link between two genomic loci
denotes one chromosomal interaction. (C) Circos plot of intra-chromosomal interactions for two representative chromosomes showing that thou-
sands of interactions form within a relatively short distance on individual chromosomes; in fact, intra-chromosomal interactions (with the majority of
the two loci being within 1 million bp) represent 95% of all interactions.
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RESULTS

Identifying interacting loci

Using the aforementioned MPRM and the power-law
decay background (Supplementary Figure S1), 96 137
interacting loci with a FDR of 5.76% were selected from
a total number of 23 337 840 hybrid fragments from K562
cells (Supplementary File S2); see the Hi-C data analysis
section of Supplementary Methods for a more extensive
description of the data modeling and analysis. Consistent
with the previous study (25), most of the 96 137 interactions
are intra-chromosomal (95%) and within 1 million bp
distance (75%); see Supplementary Figure S3A. Circos
plots illustrating the genome-wide inter-chromosomal
interactions and two examples of intra-chromosomal
interactions for two individual chromosomes are shown
in Figure 2B and C. To demonstrate the applicability
of the Hi-C analysis procedure, we also re-analyzed
the Hi-C data from GM06990 cells. We identified 83 785
chromatin interactions, among which 82 683 are
intra-chromosomal and only 1102 are inter-chromosomal.
Similar to the analysis of K562 cells, >86% of the inter-
actions in GM06990 cells are within 1 million bp distance,
which indicates that the predominance of regional
interactions is not a unique property of K562 cells
(Supplementary Figure S3B).
K562 cells are derived from the bonemarrow of a patient

who had chronic myelogenous leukemia and are
characterized by the presence of the Philadelphia
Chromosome, a specific chromosomal abnormality that is
the result of a reciprocal translocation between chromo-
some 9 and 22, creating a fusion gene in which the ‘c-abl
oncogene 1 (ABL1)’ gene on chromosome 9 (region q34) is
juxtaposed to a part of the ‘breakpoint cluster region’ gene
on chromosome 22 (region q11). Because 9q34 and 22q11
are fused in K562 cells, interactions between these two
regions would be labeled as inter-chromosomal, although
they are actually intra-chromosomal in the K562 genome.
In fact, 780 of the 4806 inter-chromosomal interactions in
K562 cells are between 9q34 and 22q11, suggesting that a
portion of the inter-chromosomal interactions identified in
cancer cells may be intra-chromosomal for that particular
genome. In addition to the t(9;22)(q34;q11) translocation, a
previous study (34) described at least four other chromo-
somal translocations in K562 cells, namely, der(10)t(3;10)
(p21.3;q23), der(18)t(1;18)(p32;q21), der(21)t(1;21)(q23;
p11) and der(12)t(12;21)(p12;q21). Interestingly, there are
only two interactions between 3p21.3 and 10q23, and no
interactions were found between the other two pairs of
chromosomal fusions. These analyses suggest that the
9;22 translocation may have different properties than the
other translocations. In fact, the region corresponding to
the 9;22 translocation is highly amplified. To investigate a
possible correlation between looping and amplification, we
first identified all amplified regions in K562 cells using
Sole-search, an integrated ChIP-seq peak-calling program
that not only identifies binding sites but also performs an
analysis of amplified and deleted regions of the input
genome (35,36). We identified 102 amplified regions in
K562 cells, with 6166 long-range interactions found
within the amplicons. Overlapping these regions with the

set of interacting loci in K562 cells, we found that only 41 of
the amplified regions contained mapped interacting loci
(Supplementary Table S1). Thus, not all amplified regions
are involved in long-range interactions. There was no rela-
tionship between the fold amplification and the number of
loops. For example, the top highest-amplified regions of
K562 cells (> 16.5 fold) had no long-range interactions,
whereas the 94th ranked amplicon (3.79 fold) had 1053
long-range interactions. Interestingly, the amplified
regions encompassing the breast cancer (BRC) and ABL1
genes had 1037 and 1060 long-range interactions, respect-
ively, comprising >34% of all interactions associated with
amplified genomic regions of K562 cells (see
Supplementary Figure S4 for an illustration of the
number of loops in the amplified regions of chr 22). To
further investigate potential issues in our analyses owing
to the existence of genomic rearrangement in K562 cells,
we searched for interactions around other previously
identified fusion sites in K562 cells. Twenty-five fusion
sites detected by FusionMap software (Amgen Inc.) were
tested, and none of these sites has interactions within a
20-kb distance.

Clustering interacting loci

To determine the relationship between epigenomic modifi-
cations and the identified genomic interactions, we mapped
9 histone modification marks (H3K4me1/2/3, H3K36me3,
H4K20me1, H3K9ac, H3K27ac, H3K9me3 and
H3K27me3) and regions identified as open chromatin
using DNase hypersensitivity onto the set of identified
interacting loci. In the initial clustering, we also included
CTCF, which is an insulator protein known to influence
chromatin structure (37). Using our peak-finding
programs, wBELT and BALM (30,31), we first identified
genomic regions that are enriched for each mark
(Supplementary Table S2, Supplementary File S3). We
observed that the enriched regions of H3K9me3,
H3K27me3, H3K36me3 or H4K20me1 showed broad
peak patterns (>1000 bp) in contrast to regions marked
by H3K4me1/2/3, H3K9ac or H3K27ac, which showed
sharp peak patterns over a relatively small region
(�200 bp), which is in line with previous studies (1,4)
(Supplementary Figure S5). We defined an interacting
locus as associated with a certain epigenetic mark if it was
within a broad peak region of H3K9me3, H3K27me3,
H3K36me3, H4K20me1 or if a sharp peak of open chro-
matin, CTCF, H3K4me1/2/3, H3K9ac or H3K27ac was in
the interacting DNA segment. The peak score from the
wBELT output was used to define the intensity of the epi-
genetic status of that locus. Because many interacting loci
may be associated with several peak scores from different
marks, the intensities were standardized among different
marks. We then performed hierarchical clustering (38) on
the interacting loci using Cluster 3.0 software (http://
bonsai.hgc.jp/�mdehoon/software/cluster/software.htm,
Stanford University, 1998–99) with Pearson correlation as
the distance measurement. We used epigenetic information
from only one end of the hybrid fragments to cluster the 96
137 interacting loci pairs into 12 groups (Figure 3A loci 1,
Supplementary File S2). Interestingly, the second loci
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often showed a very similar pattern of epigenetic status
as the first loci (Figure 3A loci 2). All clusters can poten-
tially interact with all the other clusters of chromatin;
however, an interaction between two loci of the same
cluster has a much higher formation rate (Chi-square test
for every cluster, P value< 0.00001) (Supplementary
Figure S6, Supplementary Table S3). For example, in
cluster 6 (identified as having only H3K9me3 at loci 1),
which constitutes 7.3% of the total interactions, 3307 out
of 6980 (47.4%) of the loci 2 have a similar epigenetic status
(H3K9me3 only) as loci 1. This formation rate of an inter-
action between two regions with H3K9me3 is much higher
than the random formation rate of 7.3% (P< 1E-20,
Chi-square test). Conversely, in cluster 6, only 163 out of
6980 (2.3%) of the loci 2 have an epigenetic status that is

similar to that of cluster 9 (H3K4me1 and partiallyDNase).
This formation rate of an interaction between cluster 6 and
9 is much lower than the random rate of 10.2% (P< 1E-20,
Chi-square test). To compare the density of the individual
epigenetic marks between clusters, we plotted the distribu-
tion of the average intensities for each mark in each cluster
(Figure 3B). Each of the clusters, indeed, has distinct dis-
tribution of epigenetic marks. Clusters 7 and 8 appear
similar in the clustergram (Figure 3A); however, cluster 7
has much higher level of H3K9ac and H3K27ac compared
with cluster 8.
To examine how these different clusters of chromatin

interactions may correlate with gene structure and tran-
scriptional regulation, we determined the relative distance
between TSS and interacting loci of each cluster (Figure 4,

Figure 3. Clustering interacting loci. (A) Interacting loci were divided into 12 groups using hierarchical clustering based on the epigenetic status of
loci 1. In many cases, the epigenetic status of interacting loci 2 shows a similar pattern to that of the partner loci 1. (B) Comparison of the
distribution of the average intensities for each mark in each cluster. The plots of broad peak marks, including H3K9me3, H3K27me3, H4K20me1
and H3K36me3, are centered at the position of interacting loci, and the plots of sharp peak marks, including open chromatin, H3K4me1/2/3,
H3K9ac and H3K27ac, are centered at the middle point of each peak. The X-axis is the relative distance to the central position of the analyzed mark,
and the Y-axis is the tag density of that mark at each position.
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Supplementary Figure S7). For example, (i) we found a
higher promoter presence in the interacting loci of clusters
7 and 8, which is consistent with the abundance of
H3K9ac and H3K27ac in these clusters. ii) cluster 10
loci are not at promoters, and loci 1 and loci 2 in this
cluster are both enriched with the gene body marks
H4K20me1 and H3K36me3, suggesting that cluster 10
may represent interactions between two regions that are
both actively being transcribed. (iii) Cluster 9 had several
interesting properties. First, loci 1 in this cluster are not
directly at promoters (as determined by distance from a
TSS and the lack of H3K9ac and H3K27ac marks) nor are
they at active enhancers (they lack H3K27ac). However,
these loci lack repressive marks but are marked by open
chromatin and H3K4 monomethylation, suggesting that

these regions are available for transcription factor
binding. Further analyses of the TFs that bind to loci 9
are provided later in the text. (iv) Other clusters that were
not enriched in promoter regions correspond to CTCF
insulator-binding sites (cluster 5), had marks of epigenetic
silencing (cluster 6, 11) or had none of the epigenetic
modifications that was analyzed by the ENCODE
Consortium (cluster 12).

The analysis presented earlier is representative of intra-
chromosomal interactions because the majority of the
interactions in K562 cells is in this category. To determine
if the epigenetic patterns of the inter-chromosomal inter-
actions are different from those of the intra-chromosomal
interactions, we performed the clustering analysis using
only the inter-chromosomal interactions. A large portion

Figure 4. Relative distance of the interacting loci to a transcription start site. The X-axis is the relative distance between the nearest transcription
start site (TSS) and the interacting loci, and the Y-axis is the occurrence frequency (i.e. the frequency that an interacting loci and the nearest TSS
have a distance of x) in each cluster; 20 kb up- and downstream of the nearest TSS was analyzed, using a bin size of 2 kb.
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of these interactions is formed by regions that lack any
of the epigenetic marks analyzed by the ENCODE
Consortium, which is similar to cluster 12 in the
combined analysis of intra- and inter-chromosomal inter-
actions. Strikingly, the inter-chromosomal interactions
consist of a significant portion of regions that is marked
by H4K20me1 (active gene body regions), H3K36me3
(active gene body regions) and H3K27me3 (epigenetic
silencing) (Supplementary Figure S8).

Associating TFBSs with the sets of clustered interacting
chromatin loci

It is possible that the identified paired loci are brought
together by interactions between a transcription factor
bound to the loci 1 with another transcription factor
bound to loci 2 in each paired set. CTCF has previously
been shown to be highly correlated with looping (26).
However, as shown in Figure 3, we found that a large
portion of the chromatin interactions is not associated
with a CTCF-binding site. In addition, CTCF can poten-
tially interact with other types of chromatin (Supple-
mentary Figure S6, cluster 5), suggesting that CTCF
bound to loci 1 may interact with another TF at loci 2
to create a loop. Because certain transcription factor-
mediated chromatin interactions have been associated
with different types of gene regulation, it was possible
that the different clusters may be regulated by distinct
sets of transcription factors. The availability of a large
set of ChIP-seq data from the ENCODE Consortium
provided the opportunity to test this hypothesis.

We used the BALM program (31) to identify sets of
genome-wide binding sites for 45 transcription factors
using publicly available ChIP-seq data (Supplementary
Table S4, Supplementary File S4). We found that a
majority of the binding sites for the 45 factors is associated
with DNase hypersensitive regions, which is an indication
of nucleosome depletion (39) (Figure 5A). Furthermore,
an inverse correlation between DNA methylation and
DNase hypersensitivity was observed in these open chro-
matin regions (Supplementary Figure S9, Supplementary
Methods). This result is consistent with our previous study
(31) and many other studies, which have demonstrated
that a majority of TF-DNA interactions requires the
DNA fragment to be in an ‘open’ status (40), which is
associated with nucleosome depletion (19), DNA hypo-
methylation (41) and specific side-chain modifications of
histones (42). Open chromatin can reflect both promoter
regions and other distal regulatory regions such as
enhancer and repressor elements. To determine the pref-
erential binding behavior of factors to promoters versus
distal regulatory elements, we defined a promoter–distal
ratio as the occurrence rate of a factor binding in a
promoter region divided by the occurrence rate of that
same factor binding in a non-promoter region. This
analysis defined two distinct groups of transcription
factors. For example, 14% of the non-promoter open
chromatin regions contain GATA1-binding sites,
whereas only 5% of the promoter open chromatin
regions have GATA1-binding sites. Thus, the promoter–
distal ratio is 0.36, which indicates that GATA1 preferably

binds to non-promoter, open chromatin regions. Factors
such as MYC and E2F4 are highly enriched in promoter,
open chromatin regions, whereas factors such as GATA1
and GATA2 are over presented in non-promoter/open
chromatin regions (Supplementary Figure S10).
We next correlated the identified TFBSs with the 12 sets

of interacting loci to determine which sets of TFs are pref-
erentially associated with each type of loci. We first defined
a specific TF-associated interacting locus if a binding site
was found in the interacting DNA segment. We then
ranked the TFs according to the percentage of the
binding sites that is associated with interacting loci
(Table 1). Not surprisingly, CTCF, which is thought to
be a major determinant of looping, ranked number 1 in
this list (53% of CTCF sites were associated with interact-
ing chromatin loci). However, many of the TFs showed a
similar high percentage of binding sites associated with the
identified interacting loci as did CTCF, suggesting that
most TFs may be involved in looping. A hierarchical
clustering (38) was performed to classify the factors
(Figure 5A). Similar to the analysis of the epigenetic
marks, the peak score from the BALM output was used
to represent the binding affinity of the TF at that locus, and
the scores were standardized among different TFs. The
clustering result showed several major groups of transcrip-
tion factors with distinct binding preferences for loci with a
distinct epigenetic status. For example, one group of
factors includes CTCF and RAD21, which can bind to in-
sulators that are open (i.e. marked by DNAse hypersensi-
tivity) (cluster 5). The majority of the transcription factors
binds specifically to loci marked by H3K9ac and H3K27ac
and which are likely to be active promoters (cluster 7 and
8) (1,4). However, three site-specific transcription factors
(c-Jun, GATA1 and GATA2) and three chromatin regula-
tors (BRG1, INI1 and SIRT6) bind specifically to loci in
cluster 9 that are open chromatin marked by H3K4
mono-methylation but not by promoter (H3K9Ac) or
active enhancer (H3K27Ac) modifications.
To find the concurrence of these proteins at the two

ends of the interacting loci, we applied the Apriori algo-
rithm (29), which is a widely used data-mining method
for searching for association rules in large data sets of
transactions (Supplementary Methods). The Apriori
algorithm revealed a protein interaction network
through DNA looping (Figure 5B). First, our analysis
showed a high concurrence of CTCF and RAD21 in the
ends of interacting loci, which is consistent with their
similar binding preference and with previous reports
(43). Second, proteins in the polymerase (POL) III ma-
chinery, including POL3, TFIIIC, BRF1 and BDP1, also
linked together through long-distance DNA looping.
Third, E2F4 and RNA polymerase were highly linked,
consistent with previous studies (13). Finally, we note
that c-Jun, GATA1, GATA2, INI1 and BRG1 are
closely linked. Interestingly, nearly all of the factor
nodes have loops connected to themselves, which might
be owing to the cross linking of the distant DNA elements
to the protein during the ChIP-seq procedure. This may
also explain the situation that some highly enriched peaks
detected from a TF ChIP-seq experiments lack a consen-
sus motif for that TF (11).
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Correlating gene expression with different sets of
interacting loci

To examine the influence of looping on gene expression,
we assigned each interacting locus to a known gene if the

locus is located within the gene body or is <10 kb from the
transcription start site of the gene. The expression levels of
the genes in loci 1 and paired loci 2 for each cluster versus
a whole genome gene expression profile were then plotted
(Figure 6). Interestingly, the interacting loci do not only

Figure 5. Interacting loci are bound by a network of transcription factors. (A) Hierarchical clustering suggests the existence of at least three
discriminating groups of factors, namely, insulator-binding factors such as CTCF and RAD21 (bound to regions of open chromatin),
promoter-binding factors such as c-Myc and E2F4 (bound to regions marked by open chromatin, H3K4 methylation and H3K9/27 acetylation)
and non-promoter-binding factors such as GATA1 and GATA2 (bound to regions marked by open chromatin and H3K4 methylation).
Promoter-binding TFs are mainly present in cluster 7 and 8, whereas non-promoter-binding factors showed less frequency in cluster 7 and 8 but
higher frequency in cluster 9. This indicates that different transcription factors preferentially bind to regions with distinct epigenetic status. The left
color bar corresponds to the color scale for the epigenetic marks, and the right color bar corresponds to the color scale for the TF-binding sites.
(B) TF interaction network revealed by the Apriori algorithm. The color of each node represents the binding preference of the TF showed in Figure S9.
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possess a similar epigenetic status, the expression of the
associated genes is also co-regulated. We defined four
co-active clusters (24.8% of total interactions) as Type I
linkages and eight co-repressive clusters (75.2% of total

interactions) as Type II linkages. Specifically, clusters 7, 8,
9 and 10 were composed of paired loci in which the nearest
genes to both loci were more active than a set of randomly
selected genes, whereas the rest of the clusters (1–6, 11–12)

Figure 6. Gene expression analyses reveal two types of chromatin linkages. Gene expression heatmaps show the expression of genes in loci 1 and 2
versus a random set of genes in each cluster. This analysis revealed two types of chromatin linkages. Type I: genes associated with both interacting
loci in each pair have a higher gene expression level than a random set of genes; the interacting genes are likely co-activated (permissive chromatin
linkages). Type II: genes associated with both interacting loci in each pair have lower expression levels than a random set of genes (non-permissive
chromatin linkages).

Table 1. Percentage of binding site associated with chromatin interaction

TF Percentage
(%)

TF Percentage
(%)

TF Percentage
(%)

TF Percentage
(%)

TF Percentage
(%)

CTCF 53.10 CMYC 45.47 JUND 41.98 NFYA 38.99 HEY1 34.98
USF1 50.19 CJUN 44.66 SRF 41.84 NFE2 38.84 RFX3 34.78
RAD21 49.85 GATA2 44.44 YY1 41.70 INI1 38.62 SETDB1 33.97
SIX5 48.26 MAX 44.11 ATF3 41.17 XRCC4 38.60 BDP1 32.99
PU1 47.72 GATA1 44.02 TR4 40.45 RPC155 38.41 ZNF274 32.51
CFOS 46.82 E2F4 43.99 NFYB 40.18 TFIIIC 37.50 POL3 32.08
NRSF 46.56 EGR1 43.75 SIN3AK-20 39.31 GTF2B 37.10 NFATC1 32.04
BRG1 45.80 GABP 43.71 E2F6 39.24 NELFE 36.85 BRF2 31.67
ZNF263 45.56 TAF1 43.48 POL2 39.04 SIRT6 36.44 BRF1 30.77
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were composed of paired loci in which the nearest genes to
both loci showed lower expression than a randomly
selected set of genes. Distinct gene expression patterns
were observed in clusters having a different epigenetic
status. Type I chromatin linkages are associated with
active marks, such as H3K4me3, H3K9ac, H3K27ac,
H3K36me3 and H4K20me1, whereas the majority of
Type II chromatin linkages showed low level of these
marks. Cluster 5, 6, 11 and 12, which composed >96%
of Type II chromatin linkages, are bound by insulator
protein (cluster 5), by the heterochromatin mark
H3K9me3 (cluster 6), by the repressive histone modifica-
tion H3K27me3 (cluster 11) or have none of the tested
marks (cluster 12). Ingenuity Pathway Analysis (www.in-
genuity.com) showed that Type I chromatin linkages were
specifically associated with genes involved in cell cycle and
chronic myeloid leukemia signaling, which is appropriate
for genes actively expressed in K562 myeloid leukemia
cells (Supplementary Figure S11A and B).
Repetitive elements have been shown to play an import-

ant role in chromatin organization. Therefore, we
examined the relationship between repetitive elements
with different types of interactions. A few associations
are notable, including depletion of Medium Reiteration
frequency interspersed repetitive elements 1 (MER1) in
cluster 6 (which is high in H3K9me3) and cluster 12 (no
epigenetic marks) and depletion of Mammalian apparent
LTR Retrotransposon (MaLR) in cluster 10 (which is
high in H3K36me3). Other types of repetitive elements
are evenly distributed in the different clusters (L1, L2,
Alu element and mammalian interspersed repeats) or not
present in any cluster (retrotransposable element,
AcHobo, Tip100, chicken repeat 1, MER2, endogenous
retrovirus 1 and endogenous retrovirus like); see
(Supplementary Figure S12).

Combining Hi-C analyses, ChIP-seq and RNA-seq
to classify GATA target genes

One of the most surprising findings in our analyses is the
unique relationship of three site-specific factors, GATA1,
GATA2 and c-Jun, with the clusters of interacting loci.
Another factor that co-localizes with the GATA factors in
cluster 9 is BRG1, which has been implicated in the for-
mation of a GATA-associated DNA loop structure (44).
These results suggested that looping may be involved in
regulating at least some GATA target genes. To investi-
gate this possibility, we performed RNA-seq analyses
before and after knockdown of GATA1 or GATA2 in
K562 cells. We sequenced two biological replicates each
of RNA samples from cells treated with siRNAs to
GATA1 or GATA2 and two control cell populations;
see Supplementary Table S5. A correlation analysis of
the two replicates for each sample showed high reprodu-
cibility (Supplementary Figure S2). Therefore, we
combined the two replicates for each sample to determine
the gene expression levels using a Fragments Per Kilobase
of exon per Million fragments mapped (FPKM) value (see
MATERIAL AND METHODS and Supplementary Files
S5, S6). Not surprisingly, profound changes of gene
expression occurred in K562 cells after knockdown of

GATA1 or GATA2. We found that the expression of
7,497 genes (21.0% of Refseq genes) was altered upon
knockdown of GATA1. Of these, 2769 (36.9%) genes
were downregulated and 4728 (63.1%) genes were upreg-
ulated. Similarly, the expression of 2512 (7.0% of Refseq
genes) genes was altered on knockdown of GATA2.
Of these, 1183 (47.1%) genes were down regulated and
1329 (52.9%) genes were upregulated.

One of the major problems in studying the function of
transcription factors is understanding which genes are
directly regulated by a factor and which genes are indir-
ectly regulated by a factor because they are in a down-
stream signaling pathway. The typical approach is to
assign direct targets as those deregulated genes that have
a nearby TF-binding site (as determined by ChIP-seq) and
indirect targets as those deregulated genes that are not
near to a ChIP-seq peak. However, by incorporating
Hi-C data, we can now identify genes that are far from
a TF-binding site on the linear genome but closely linked
in 3-dimensional space. Using BALM software (31), we
identified 10 828 GATA1-binding sites and 8284 GATA2-
binding sites in the K562 ChIP-seq data. We then classi-
fied the genes showing altered expression in the GATA1 or
GATA2 knockdown cells into three categories: genes
directly regulated by a GATA factor binding near the
promoter of that gene, genes directly regulated by a
GATA factor binding to an interacting loci and ‘down-
stream’ genes regulated indirectly by reduction of the
GATA factor (Figure 7). Overall, 48% for GATA1 and
39.0% for GATA2 of the genes showing altered regulation
can be linked directly or indirectly (through DNA
looping) to a GATA-binding site. Among the 7497 genes
that are affected by GATA1 gene knockdown, 2684
(35.8%) genes have at least one GATA1-binding site
within the gene body or within 10 kb up- or downstream
of the transcribed region. Although not directly bound by
GATA1 protein, an additional 924 (12.3%) genes are
regulated via DNA looping, with GATA1 binding to an
interacting locus (i.e. within a pair of interacting loci, one
locus has at least one GATA1 site and the other locus in
the paired set is near the regulated gene). Similarly, among
the 2512 genes that are affected by GATA2 gene knock-
down, 749 (29.8%) genes have at least one GATA2-
binding site within the gene body or within 10 kb up- or
downstream of the gene and an additional 233 (9.28%)
genes are regulated via DNA looping, with GATA2
binding to an interacting locus. Thus, by including the
information about DNA loops, the set of genes directly
regulated by GATA1 and GATA2 in K562 cells could be
greatly expanded. We further performed Gene Ontology
(GO) functional analysis using Ingenuity Pathway
Analysis software (Ingenuity Systems, Inc., www.ingenu-
ity.com) on these different sets of GATA-regulated genes
(Supplementary Figure S13). We found that overall
the genes directly and indirectly regulated by the GATA
factors are enriched in similar functional categories.
However, both GATA1 and GATA2 impact the expres-
sion of cancer-related genes more through DNA looping
rather than through proximal regulation. This indicates
the importance of studying chromatin organization in
understanding disease development and progression.
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DISCUSSION

In this study, we present an integrated analytical method
to identify and characterize different types of chromatin
linkages. By integrating multiple genome-wide data sets
from K562 cells, including Hi-C data, ChIP-seq for 45
transcription factors and 9 histone modifications,
DNase hypersensitivity assays and RNA-seq data, we
have identified 12 distinct sets of chromatin linkages
comprising a total of 96 137 sets of two spatially separated
interacting loci, shown that each cluster has distinct epi-
genetic markings, is composed of paired sets of genes with
distinct expression patterns and is differently correlated
with TFBSs. To validate the biological importance of
the identified interacting loci, we investigated genes
regulated by GATA1 and GATA2. Our analyses are con-
sistent with the hypothesis that the GATA factors regulate
a subset of target genes via looping.

The Hi-C data analysis demonstrated that the regions
involved in creating loops between interacting loci were
preferentially in or near open chromatin, suggesting that
bound transcription factors may play a crucial role in
creating the genomic interactome. Many of the transcrip-
tion factors we analyzed bind near promoter regions (as
defined by specifically modified histones), suggesting that
a factor bound near a start site may interact with another
factor bound to a distal region of open chromatin. In
support of this concept, many of the paired interactions
showed evidence for a promoter region at one locus but
not at the other. However, our analyses also identified a
subset of interacting loci (cluster 9) that has unique
properties. These loci show evidence of open chromatin
and H3K4me1 but do not resemble active promoters or
enhancers. Analysis of the ChIP-seq data identified a set

of three transcription factors (GATA1, GATA2 and
c-Jun) and three chromatin modifiers (SIRT6, BRG1
and INI1) that were specifically enriched at sites having
only these two chromatin marks. BRG1 (also called
SMARCA4) and INI1 (also called SMARCB1) are both
components of the SWI/SNF chromatin-remodeling
complex. The presence of SIRT6, a histone deacetylase,
perhaps explains the absence of H3K27Ac at the regions
of open chromatin bound by this complex. Interestingly,
analysis of the 45 ChIP-seq data sets using the Apriori
algorithm also showed that GATA1, GATA2, c-Jun,
BRG1 and INI1 were closely linked. Two of the factors,
GATA1 and GATA2, are members of the same gene
family, have several similar DNA-binding motifs and
bind to many of the same sites in K562 cells (17). Also,
we have previously shown that GATA2 co-localizes and
regulates gene expression in concert with c-Jun in human
endothelial cells (45), providing support that GATA
factors cooperate with c-Jun to regulate expression of
genes in cluster 9. Finally, BRG1 is reported as a
cofactor of GATA1 (46,47). We, and others, have previ-
ously shown that BRG1 functions cooperatively with
GATA1 at certain genes through chromatin loop structure
(44,48). However, the overall involvement of GATA
factors in chromatin looping has not been previously
investigated. Thus, taken together, the unbiased clustering
of Hi-C interacting loci, the unbiased clustering of
ChIP-seq data and the correlation of transcription factor
binding with histone modifications, in combination with
previous reports of linkage between GATAs, c-Jun, and
BRG1, suggest that a subset of GATA targets may be
regulated via interacting loci. Accordingly, we tested this
prediction by introduction of siRNAs to GATA1 or

Figure 7. Gene expression changes induced by GATA1 and GATA2 knockdown. RNA-seq was performed using control cells and cells treated with
siRNAs to either GATA1 or GATA2, and genes whose expression was altered upon knockdown were identified. By intersection of the list of
deregulated genes with genes having nearby bound GATA factors, direct target genes were identified (blue pie segments). A second set of direct
target genes were identified by intersection of the list of deregulated genes with genes linked to a bound GATA factor via chromatin looping (maroon
pie segments). All other genes were classified as indirectly regulated genes (green pie segments). The colors in the pie chart correspond to these
different categories of GATA-regulated genes, as labelled in left panel. For each category, the percentage of genes that were upregulated versus
downregulated in the knockdown cells is shown by the purple and orange closed pie graphs. (G: GATA factor; Pol: RNA Polymerase II, TF: a
transcription factor whose expression is regulated by a GATA factor).
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GATA2 followed by RNA-seq analyses. We found that
7497 genes were deregulated on knockdown of GATA1 of
which �36% were regulated by a nearby bound GATA1,
12% by a GATA1 bound to an interacting loci and 52%
were indirectly regulated. Similarly, 2512 genes were
deregulated on knockdown of GATA2, of which �30%
were regulated by a nearby bound GATA2, 9% by a
GATA2 bound to an interacting loci and 61% were indir-
ectly regulated. Our experimental validations support the
concept that GATA factors indeed regulate gene expres-
sion through interaction with distal loci. We note that
GATA1 and GATA2 bind to many of the same sites in
K562 cells (17) and thus most likely regulate some of the
same genes. These factors bind independently (and not at
the same time) to GATA sites; knockdown of GATA1
would still allow binding of GATA2 (and vice versa).
Therefore, it is likely that more robust changes in gene
expression may have been observed if both factors could
be knocked down at the same time.
GATA factors have previously been shown to be both

activators and repressors, and our data demonstrate that
genes regulated by looping can be either upregulated or
downregulated on loss of GATA1 or GATA2. One
possible model by which loss of GATA1 could result in
activation of a distal gene is shown in Figure 8. In this
model, a loop is shown between a promoter and a distal
region that is created by interactions of GATA1, BRG1,
INI1 and SIRT6 (a histone deacetylase), all bound to a

region having H3K4me1 but no marks of an active
enhancer or promoter and the nearby gene is repressed
(consistent with the histone marks enriched in cluster 9).
On reduction of GATA1 levels, a different set of
enhancer-binding factors is recruited to the distal open
chromatin region, the loop changes from a repressive to
an activating structure, and transcription is initiated.
However, we recognize that there are many other mech-
anistic possibilities for how the GATAs and BRG1 could
regulate transcription, such as the complex serving as an
activator. For example, a recent study showed that 58% of
the GATA1 sites identified in Cluster of Differentiation
(CD) 36+erythrocyte precursor cells were also bound by
BRG1 (49); the authors suggest that recruitment of BRG1
by GATA1 allows binding of T-cell acute lymphocytic
leukemia protein 1 (TAL1) to the enhancer region and
results in transcriptional activation of certain GATA1
target genes.

In conclusion, we demonstrate that when combined
with in-depth analysis of histone modifications and tran-
scription factor binding, Hi-C data can serve as a powerful
tool for exploring the complex underlying mechanisms of
chromatin organization. Previous studies have shown that
environmental changes such as estrogen treatment can
cause intensive looping and de-looping events (50–52),
providing evidence that chromatin-bound TFs may
induce dynamic changes in genome organization. Our
analyses show that most TFs have thousands of binding

Figure 8. Schematic model of GATA-regulated chromatin linkages. Dynamic chromatin interactions form globule structures, which may function to
initiate or stabilize three-dimensional gene regulatory structures. Multiple CREs, including enhancers and promoters, are bridged by different groups
of transcription factors (TFs) and mediators under different conditions. In the example shown, a pair of interacting loci from cluster 9 is represented.
A loop is formed between a promoter and a distal region via interactions of GATA1, BRG1, INI1 and SIRT6 (a histone deacetylase), all bound to a
region having H3K4me1 but no marks of an active enhancer or promoter; the nearby gene is repressed. On loss of GATA1 (via reduction of levels of
the protein by treatment with siRNAs or on normal physiological changes or owing to displacement of GATA1 by another DNA-binding factor), a
different set of enhancer-binding factors are recruited to the distal open chromatin region (which now gains the H3K27Ac mark), the loop changes
from a repressive to an activating structure, active histone modifications are placed on the promoter region, RNA Polymerase II is recruited and
begins transcription, and the transcribed region gains H3K36me3. We note that GATA1 can also activate transcription, and thus other functions of
GATA1-mediated loops can be envisioned.

7702 Nucleic Acids Research, 2012, Vol. 40, No. 16



sites that are associated with chromatin interaction sites
and that distinct clusters of interacting loci can be bound
by subsets of TFs provide genome-wide evidence in
support of the concept that a set of TFs may create
distinct types of chromatin linkages, where co-regulated
genes are brought into close proximity from different
chromosomal locations. We also note that our identifica-
tion of a GATA-enriched set of physically interacting loci
was obtained using unbiased clustering of Hi-C and
ChIP-seq data from K562 cells. Given the documented
role of GATA factors in controlling hematopoiesis and
erythroid differentiation (53–55), the identification of a
GATA-enriched set of chromatin linkages provides
evidence that the clustering analysis can identify master
regulators of the transcriptome. With the rapid develop-
ment of sequencing technologies, Hi-C data collection is
becoming more readily available for a variety of cell types.
As other cell type-specific Hi-C data are obtained and the
set of factors analyzed by ChIP-seq increases, our analyses
can be repeated using data from these additional cell
types. We predict that clusters defined by open chromatin
and specific histone marks (such as cluster 9 in K562 cells)
will show co-association with different sets of transcrip-
tion factors in different cell types. We suggest that an
integrative analysis of the Hi-C data with histone modifi-
cations and transcription factor ChIP-seq data sets will
identify different biologically-relevant clusters in different
cell types and help to identify cell type-specific master
regulators.
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