Supporting information

Electrosynthesis of Hydrogen Peroxide at Industrial-level Current Density in Flow-cell System: Interfacial Microenvironment Regulation and Catalyst Design

Abdalazeez Ismail Mohamed Albashir^{a, b}, Yunlong Li^{a, b}, Jing Dou^{a, b}, Ke Qi^{a, b}, Wei Qi^{a, b} *

 ^a School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, Liaoning, People's Republic of China
^b Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, People's Republic of China

*Corresponding author: wqi@imr.ac.cn

Fig. S1. UV-vis. (a) UV-vis absorbance of different concentrations of Ce^{4+} , and (b) Calibration curve of different concentrations of Ce^{4+} .

Fig. S2. Material characterizations of catalysts. (a) SEM image, and (b) N₂-adsorption-desorption isotherms of CB.

Fig. S3. XPS characterizations. N 1s XPS spectra before and after electrochemical reactions.

Fig. S4. H_2O_2 production performance in flow cell reactor. H_2O_2 production yield and corresponding FE (%) of CB in 1.0 M KOH containing 10 mM of sodium 1-hexadecanesulfonate anionic surfactant.

Fig. S5. The equivalent circuit diagrams. The equivalent circuit diagram in at 0.6 VRHE.

Catalyst	Carbon (%)	Nitrogen (%)	Oxygen (%)	Bromide (%)
Before reaction	99.49	0.21	0.30	0
After reaction	97.00	1.41	1.50	0.09

Table S1. Chemical composition of CB before and after electrochemical reaction.

Table S2. Specific surface area and pore volume of CB and B-meso-PC.

Catalyst	BET $(m^2 g^{-1})$	$V_t (cm^3 g^{-1})$	V _{micro} (cm ³ g ⁻¹)
CB	59.05	0.158	0.144
B-meso-PC	545.9	0.853	0.631

Table S3. Chemical composition of CB and B-meso-PC.

Catalyst	Carbon (%)	Nitrogen (%)	Oxygen (%)	Boron (%)
CB	99.49	0.21	0.30	0
B-meso-PC	91.58	0.75	6.53	0.60

Table S4. Comparison of H₂O₂ production rate with previously reported electrocatalysts.

Catalyst	j/mA cm ⁻²	Potential	Catalyst	Stability	Ref
		(V _{RHE})	loading (mg)	(h)	
B-meso-PC	382.0	-2.5 - 0.9	0.4	100	This
					work
BN-C-1	>100	-0.2 - 1.0	1	12	[1]
MHCS	>300	0.0 - 0.8	0.158	16	[2]
NBO-G/CNTs	>100	0.6 - 0.8	1.0	12	[3]
СВ	200	-2.5 - 0.0	-	20	[4]
N-C	300	0.55	0.5	-	[5]
В-С	300	0.68	0.5	30	[6]
BBL-PcNi	>220	0.0 - 1.0	0.3	200	[7]
Pb SA/OC	205	0.0 - 0.8	1	100	[8]
CoNCB	>100	0.3 - 0.9	0.2	5	[9]

Catalyst	Electrolyte	H ₂ O ₂ rate	FE	Current density (mA	Ref.
		(Mol g ⁻¹ h ⁻¹)	(%)	cm ⁻²)@potential	
B-meso-PC	1.0 M KOH	15.42	100	300	This
	+10 mM CTA	AB			work
СВ	1.0 M KOH	13.56	83.75	300	This
	+10 mM CTA	AB			work
СВ	1.0 M KOH	8.56	57.37	300	This
					work
Mesoporous	0.1 M PBS	12.64	95	0.1 VRHE	[2]
carbon spheres					
Nitrogen-doped	1.0 M KOH	8.53	95.0	100	[10]
porous carbon					
nanopolyhedra					
Nitrogen doped	0.1 M KOH	7.32	96.7	0.5 VRHE	[11]
hollow carbon					
nanospheres					
N, O co-doped	0.1 M K ₂ SO ₄	6.705	90	0.2 VRHE	[12]
carbon nanosheets					
graphene/hexagon	0.1 M KOH	0.762	75	$0.2 V_{RHE}$	[1]
al boron nitride					
CoIn-N-C	0.1 M HClO ₄	9.68	90	100	[13]
Zn-N ₂ O ₂ -S	0.1 M KOH	6.924	93.1	80	[14]
ZnCo-ZIF-C3	0.1 M PBS	4.35	75	60	[15]
Co-N/O-C	0.1 M KOH	0.88	95.2	100	[16]

Table S5. Comparison of H₂O₂ production rate with previously reported electrocatalysts.

Reference

- M. Fan, Z. Wang, Y. Zhao, Q. Yuan, J. Cui, J. Raj, K. Sun, A. Wang, J. Wu, H. Sun, B. Li, L. Wang J. Jiang, Porous heterostructure of graphene/hexagonal boron nitride as an efficient electrocatalyst for hydrogen peroxide generation, Carbon Energy **2023**, 5, 1–14.
- [2] Q. Tian, L. Jing, H. Du, Y. Yin, X. Cheng, J. Xu, J. Chen, Z. Liu, J. Wan, J. Liu, J. Yang, Mesoporous carbon spheres with programmable interiors as efficient nanoreactors for H₂O₂ electrosynthesis, Nat. Commun. 2024, 15, 1–14.
- [3] M. Fan, Z. Wang, K. Sun, A. Wang, Y. Zhao, Q. Yuan, R.b. Wang, J.t Raj, J.g. Wu, J.c Jiang, L. Wang, N-B-OH Site-Activated Graphene Quantum Dots for Boosting Electrochemical Hydrogen Peroxide Production, Adv. Mater. 2023, 35, 2209086.
- [4] Z. Adler, X. Zhang, G.x Feng, Y.p. Shi, P. Zhu, Y. Xia, X.n. Shan, and H.ti Wang, Hydrogen Peroxide Electrosynthesis in a Strong Acidic Environment Using Cationic Surfactants, Precis. Chem. 2024, 2, 129–137.
- S. Rawah, M. Albloushi, W. Li, Electro-synthesis of pure aqueous H₂O₂ on nitrogen-doped carbon in a solid electrolyte flow cell without using anion exchange membrane, Chem. Eng. J. 2023, 466, 143282.
- [6] Y. Xia, X. Zhao, C. Xia, Z. Wu, .P Zhu, J. Kim, X. Bai, G. Gao, Y. Hu, J. Zhong, Y. Liu, H. Wang, Highly active and selective oxygen reduction to H₂O₂ on boron-doped carbon for high production rates, Nat. Commun. 2021, 12, 4225.
- [7] M. Di Zhang, J. R. Huang, C. P. Liang, X. M. Chen, and P. Q. Liao, Continuous Electrosynthesis of Pure H₂O₂ Solution with Medical-Grade Concentration by a Conductive Ni-Phthalocyanine-Based Covalent Organic Framework, J. Am. Chem. Soc. 2024, 146, 31034–31041.
- [8] X. Zhou, Y. Min, C.m Zhao, C. Chen, M-KunKe, S-L. Xu, J-J. Chen, Y. Wu, H.QingYu
- Constructing sulfur and oxygen super-coordinated main-group electrocatalysts for selective and cumulative H2O2 production, Nat. Commun. **2024**, 15, 193.
- [9] L Liu, L. Kang, J. Feng, D. G. Hopkinson, C. S. Allen,Y. Tan, H. Gu, I. Mikulska, V. Celorrio, D. Gianolio, T. Wang, L. Zhang, K. Li, J. Zhang, J. Zhu,G. Held, P. Ferrer, D. Grinter, J. Callison, M. Wilding, S. Chen, I. Parkin, G. He, Atomically dispersed asymmetric cobalt electrocatalyst for efficient hydrogen peroxide production in neutral media, Nat

Commun 2024, 15, 4079.

- [10] P. Cao, X. Quan, K. Zhao, X. Zhao, S. Chen, and H. Yu, Durable and Selective Electrochemical H₂O₂ Synthesis under a Large Current Enabled by the Cathode with Highly Hydrophobic Three-Phase Architecture, A ACS Catal. 2021, 11, 13797–13808.
- [11] Z. Xu, Z. Ma, K. Dong, J. Liang, L. Zhang, Y. Luo, Q. Liu, J. You, Z. Feng, D. Ma, Y. Wang, X. Sun, Electrocatalytic two-electron oxygen reduction over nitrogen doped hollow carbon nanospheres," *Chem. Commun.* Chem. Commun. 2022, 2, 5025–5028.
- [12] L. Jing, Q. Tian, W. Wang, X. Li, Q. Hu, H. Yang, C. He, Unveiling Favorable Microenvironment on Porous Doped Carbon Nanosheets for Superior H2O2 Electrosynthesis in Neutral Media, Adv. Energy Mater. 2024, 14, 2304418.
- [13] J. Du, G. Han, W. Zhang, L. Li, Y. Yan, Y. Shi, X. Zhang, L. Geng, .Z Wang, Y. Xiong, G. Yin, C. Du, CoIn dual-atom catalyst for hydrogen peroxide production via oxygen reduction reaction in acid, Nat. Commun. 2023, 14, 4766.
- [14] G. Wei, Y. Li, X. Liu, J. Huang, M. Liu, D. Luan, S. Gao, X. Lou, Single-Atom Zinc Sites with Synergetic Multiple Coordination Shells for Electrochemical H₂O₂ Production, Angew. Chem. Int. Ed. **2023**, 62, e202313914.
- [15] C. Zhang, L. Yuan, C. Liu, Z. Li, Y. Zou, X. Zhang, Y. Zhang, Z. Zhang, G. Wei, C. Yu, Crystal Engineering Enables Cobalt-Based Metal-Organic Frameworks as High-Performance Electrocatalysts for H₂O₂ Production, J. Am. Chem. Soc. 2023, 145, 7791– 7799.
- [16] B. Li, M. Lan, L. Liu, D. Wang, S. Yang, Y. Sun, F. Xiao, J. Xiao, Continuous On-Site H₂O₂ Electrosynthesis via Two-Electron Oxygen Reduction Enabled by an Oxygen-Doped Single-Cobalt Atom Catalyst with Nitrogen Coordination, ACS Appl. Mater. Interfaces 2023, 15, 37619–37628.