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Semaphorins are a large class of secreted or membrane-bound molecules. It has been
reported that semaphorins play important roles in regulating several hallmarks of cancer,
including angiogenesis, metastasis, and immune evasion. Semaphorins and their
receptors are widely expressed on tumor cells and immune cells. However, the
biological role of semaphorins in tumor immune microenvironment is intricate. The
dysregulation of semaphorins influences the recruitment and infiltration of immune cells,
leading to abnormal anti-tumor effect. Although the underlying mechanisms of
semaphorins on regulating tumor-infiltrating immune cell activation and functions are
not fully understood, semaphorins can notably be promising immunotherapy targets
for cancer.
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INTRODUCTION

Relative to traditional cancer treatments, tumor immunotherapy has shifted the paradigm for the
treatment of cancer (1). Particularly, the emergence of immune checkpoint inhibitors (ICIs, such as
CTLA-4 and PD-1/PDL-1 inhibitor) (2) and adoptive cell therapy (chimeric antigen receptor T
cells, CAR-T) (3) represents a turning point for tumor treatment. However, due to the existence of
multiple immunosuppressive mechanisms in the tumor microenvironment (TME), tumor cells can
get rid of the surveillance and immune killing effects of the immune system under various immune
escape pathways.
Abbreviations: APC, antigen presentation cell; AML, acute myeloid leukemia; BTLA, B- and T-cell lymphocyte attenuator;
CTLA-4, cytotoxic T lymphocyte-associated antigen-4; CTL, cytotoxic T lymphocytes; CIML, cytokine-induced memory-like;
DCs, dendritic cells; GBM, glioblastoma; GC, germinal center; HNSCC, head and neck squamous cell carcinoma; HPV, human
papillomavirus; ILT-4, immunoglobulin-like transcript 4; ICANS, immune effector cell-associated neurotoxicity syndrome;
LAG-3, lymphocyte-activation gene 3; MDSCs, myeloid-derived suppressor cells; Nrps, Neuropilins; NK, natural killer cells;
PD-1, programmed cell death-1; PD-L1, programmed cell death-ligand 1; PLGF, placental growth factor; PDPN, podoplanin;
PDX, patient-derived xenograft; PanNET, pancreatic neuroendocrine cancer; SDF1, stromal cell-derived factor 1; TME, tumor
immune microenvironment; TAMs, tumor-associated macrophages; Tregs, regulatory T cells; TILs, tumor-infiltrating
lymphocytes; TIM-3, mucin domain-3 protein; TLS, tertiary lymphatic structure; VEGF, vascular endothelial growth factor.
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Semaphorins, initially characterized as axon guidance factors,
are membrane-bound or secreted proteins that participate in
cell-to-cell communication and functions (4). Semaphorins play
versatile roles in pathophysiological processes, including cancer,
immune diseases, and bone diseases, which can be used as novel
targets for drugs for preventing or treating various diseases (5–7).
There are more than 20 kinds of semaphorins in vertebrates,
which can be divided into class 3–7 categories. Class 3
semaphorins are secreted proteins, whereas the others are
membrane-bound proteins, and membrane-bound Class 4
semaphorins can be shed into soluble forms by proteolytic
cleavage under certain circumstances (6, 8, 9).

Semaphorins contain a common “sema domain”, the domain
for receptors binding. The main receptors of semaphorins are
Neuropilins or Plexins families. The most membrane-bound
semaphorins directly bind to conservative plexins that also
contain a “sema domain”. Plexins can be classified into four
classes, A–D, and transfer signals mediated by small GTPases
(10), whereas soluble class 3 semaphorins transmit signals
requiring neuropilins (Nrps) as co-receptors (11). Nrps are
divided into two isoform subtypes Nrp1 and Nrp2. Nrp1 is
Frontiers in Oncology | www.frontiersin.org 2
essential for immune response and identified as the co-receptor
of VEGF to mediate angiogenesis (12), and Nrp2 exerts a
significant role in VEGF-C/D/VEGFR-3-mediated tumor
lymphangiogenesis and lymphatic metastasis (13). Moreover,
there are a few semaphorins that require additional receptors
to participate in biological activities. For instance, Sema4A can
bind to TIM2 (14), Sema4B to CLCP1 (15), Sema4D to CD72
(16), and Sema7A to integrin b1 (17) (Figure 1).

Accumulating evidence indicate that semaphorins are
dysregulated and play versatile and multifaceted regulatory
roles in several hallmarks of cancer, including angiogenesis
(18), metastasis (19), tumor immune escape, and tumor-
associated inflammation (20–22). Semaphorins can contribute
to tumor progression by modulating immune responses between
tumor cell and tumor-infiltrating immune cells in TME. The
immunological function of semaphorins is widespread, mainly
due to membrane-bound semaphorins or their receptors widely
distributed on the surface of immune cells and tumor cells. The
so-called immune semaphorins can act as attractants to regulate
the recruitment of macrophages, natural killer cells (NK),
dendritic cells (DCs), and cytotoxic T lymphocytes (CTL) to
FIGURE 1 | The classification and structure of semaphorins and their receptors. The upper part: Class 3 semaphorins are secreted proteins. Class 4 to 6
semaphorins are membrane-bound proteins. Sema7A is the only GPI-linked protein in the semaphorin family. The N-terminus of the semaphorins is Sema domain.
Adjacent to the downstream area of the Sema domain is the plexin-semaphorin-integrin (PSI) domain. Class 3, 4, and 7 semaphorins contain an immunoglobulin-like
domain located downstream to the PSI domain. Class 4 semaphorins have a PDZ binding motif. The lower part: The receptors of semaphorins. The most
membrane-bound semaphorins directly bind to conservative plexins, which are classified into four classes A–D. Plexin A proteins are mainly associated with class 5
and 6 semaphorins, whereas Plexin B proteins are mainly associated with class 4 and 5 semaphorins, and Plexin C proteins are bound with Sema7A. Secreted class
3 semaphorins transmit signals requiring neuropilins (Nrps) as coreceptors. Neuropilins are divided into two subtypes, Nrp1 and Nrp2. There are a few semaphorins
that require additional interactors to participate in biological activities. Sema4A binds to TIM2, Sema4B binds to CLCP1, Sema4D binds to CD72, and Sema7A binds
to integrin b1.
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the TME (23). For instance, Sema3A, Sema4C, and Sema4D have
been found to promote tumor progression by enrichment of
tumor-associated macrophages in TME (24, 26). On the other
hand, Sema3A, as a tumor suppressor, has been reported to
restrict the proliferation of pro-tumoral macrophages and
repress tumor growth (27). The role of Sema4A is also
intricate in tumor immunity. Sema4A expression enhances B-
cell infiltration, which contributes to favorable outcome for head
and neck squamous cell carcinoma (28), and Sema4A expression
on DCs activates CTL and exerts anti-tumor in Lewis lung cancer
(29), whereas Sema4A maintains the stability and function of
Tregs in melanoma (30). Due to the versatile and multifaceted
regulatory roles of semaphorins in tumor-infiltrating immune
cells, semaphorins with their receptors could mediate intricate
cross-talking between tumor cells and the microenvironment.
This review mainly illuminates the regulatory effects and
potential mechanisms of representative semaphorins on
tumor-infiltrating immune cells, as well as the potential
application of semaphorins as therapeutic targets for
tumor immunotherapy.
SEMAPHORINS AND TUMOR
ASSOCIATED MACROPHAGES

Tumor-associated macrophages (TAMs, Mf) are main
infiltrating cell groups in tumor stroma and closely associated
with tumor angiogenesis, invasion, and metastasis. TAMs have
two opposing phenotypes, anti-tumorigenic M1-Mfs and pro-
tumorigenic M2-Mfs. M1-Mfs function as inhibiting tumor
progression by secreting pro-inflammatory cytokines (IFN-a/
b/g and IL-12) and chemokines (CXCL9 and CXCL10), which
can attract CTL and NK cell to restrict tumor growth (31, 32).
M2-Mfs suppress tumor immunity and accelerate tumor
progression by secreting immune suppressive factors, such as
cytokines (TGF-b and IL-10) and chemokines (CCL2, CCL17,
CCL22, and CCL24) (33, 34). TAMs can also secrete pro-
angiogenic factor vascular endothelial growth factor (VEGF),
placental growth factor (PLGF), and Sema4D to promote
angiogenesis, and express podoplanin (PDPN, lymphatic
marker) to promote lymphangiogenesis in paracrine and
autocrine pathways, leading to tumor vascular and lymphatic
metastasis (18, 35). Studies have shown that semaphorins play
significant roles in the migration and polarization of TAMs.
Sema3A
Sema3A, a secreted protein, plays paradoxical roles in TME in
different types of tumors. In breast cancer, Sema3A is a tumor
suppressor, downregulated in tumor and negatively correlated
with tumor stage. In vivo, Sema3A overexpression increases
CD11b+F4/80+ Mfs accumulation but not CD11b+Ly6C+

monocytic cells, and reduces 4T1-3A+ tumor growth in
immune complete BALB/c mice. Sema3A regulates
intratumoral M1-Mfs (CD11b+Ly6G-Ly6ClowMHCIIhigh) and
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M2-Mfs (CD11b+Ly6G-Ly6ClowMHCIIlow) differentiation by
binding to its receptor Nrp1, and increases M1-Mfs
proliferation but represses M2-Mfs by enhancing CSF1-
mediated phosphorylation of Akt and MAPK, inducing CD8+

T cells and NK cells to repress tumor growth (27).
However, in Lewis lung cancer, Sema3A binding to Nrp1 and

PlexinA1/PlexinA4 coreceptors promotes tumor growth by
TAM infiltration and pro-tumorigenic function in hypoxic
areas (24). Under the tumor hypoxia environment, Sema3A is
upregulated, attracting TAMs from the vascularized and
perfused area to the hypoxic area by binding to Nrp1/
PlexinA1/PlexinA4/VEGFR1 (24). Interestingly, when the
expression of Nrp1 on TAMs is downregulated, TAMs are
stopped migrating from normoxic regions to hypoxic region by
Sema3A/PlexinA1/PlexinA4-mediated stop signals. The
redistribution of TAMs weakens their angiogenic and
immunosuppressive ability and hinders orthotopic and
spontaneous tumor growth (36, 37). In terms of glioblastoma
(GBM), the expression of Sema3A is significantly higher in
tumor tissues relative to adjacent normal tissues. Sema3A
derived from GBM elicits TAMs (microglial cell) accumulation,
and antibody blockage of Sema3A (anti-Sema3A, F11) exhibits
notable tumor inhibitory effect through downregulating TAMs
recruitment in patient-derived xenograft (PDX) models (38). In
addition, upregulation of Sema3A boosted the phosphorylation of
downstream PI3K and AKT by binding to Nrp1, and enhanced
the enrichment of M2-Mfs to promote resistance to androgen
deprivation therapy in prostate cancer (39). Another study has
demonstrated that blockage of Sema3A/Nrp1 could also enhance
anti-tumor response by increasing M1-Mfs and decreasing M2-
Mfs in colorectal carcinoma (40). These studies indicate that
Sema3A, particularly binding to its receptor Nrp1 on TAMs,
regulates the recruitment and differentiation of TAMs in TME.
Targeting SEMA3A and Nrp1 has proved to be a novel approach
for multiple malignances.
Sema4C
Sema4C, a transmembrane protein, is overexpressed in multiple
types of malignant tumors, including breast cancer, esophageal
cancer, gastric cancer, and rectal cancer (41, 42). In breast cancer,
the functions of Sema4C in macrophage recruitment contribute
to tumor malignant properties. Sema4C with plexin-B2 receptor
promotes macrophage infiltration in TME, and promotes tumor
growth and progression by activating the NF-kB pathway to
induce CSF-1 production in breast cancer (25). Additionally,
Gao Qinglei found that MDA-MB-231 with shSema4C attracted
few macrophages relative to empty vector control cells in in vitro
migration assays (25). Membrane-bound Sema4C could be
cleaved by matrix metalloproteinases to produce soluble
Sema4C. A multicenter retrospective study demonstrated that
soluble Sema4C was a potential biomarker for breast cancer
diagnosis (43). Thus, not only could membrane-bound Sema4C
be a promising target to macrophage for immunotherapy, but
soluble Sema4C could also be a diagnostic biomarker for
breast cancer.
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Sema4D (CD100)
Sema4D, also known as CD100, is a transmembrane molecule of
150 kDa of semaphorins IV subfamily, and upregulated in
multiple tumor tissues, such as lung, colon, and breast cancer
(44–46). Additionally, Sema4D is the first semaphorin member
known to be widely expressed on immune cells (16). CD72,
Plexin-B1, and Plexin-B2 are the receptors of Sema4D. CD72 is
mainly expressed in immune cells and regulates immune
response by combining with Sema4D, whereas Plexin-B1 and
Plexin-B2 are widely expressed on endothelial cells in multiple
tissues and can trigger MET tyrosine kinase signals to promote
angiogenesis by interacting with Sema4D ligand (47, 48).

Zhou Yan-Bing’s research found that Sema4D and CD68
(TAMs marker) expression were significantly higher in gastric
tumor tissues than that in adjacent normal tissues and correlated
with histological differentiation type, TNM stage, and lymphatic
metastasis by clinicopathological features analysis of 290 gastric
patients (26). In vitro, they further found that gastric carcinoma
SGC-7901 cells showed great morphological changes after non-
contact co-culture of M2-Mfs: cubic tumor epithelial cell with
blunt edge and high confluence shifted to narrow interstitial cell-
like shape with long spindle and less confluence. TAMs
enhanced the expression of Sema4D on SGC-7901 cells, and
promoted invasion and metastasis abilities of SGC-7901 cells in
vitro. It indicated that targeting Sema4D might be able to bring
favorable prognosis for gastric patients. However, anti-Sema4D
treatment with a specific antibody (Mab67, Vaccinex) shrank
tumor bulk and improved survival rates in pancreatic
neuroendocrine cancer (RIP1-Tag2) mice in a short period,
but conversely promoted lymph node metastasis consistent
with an increase in TAMs after anti-Sema4D treatment (49).
To further identify the mechanism of TAMs promoting
metastasis, the study of Oriol Casanovas found a significant
increase in stromal cell-derived factor 1 (SDF1, CXCL12, a pro-
invasive molecule) after anti-Sema4D treatment through a
mouse cytokine array. In the presence of anti-Sema4D
antibodies, macrophages secrete SDF1, which leads to stronger
tumor cell migration by binding to CXCR4 receptor.

Sema7A
Sema7A, also known as CD108, the only GPI-linked protein in
the semaphorin family, promotes neutrophil migration under
hypoxia stimulation (50). Sema7A increases a1b1-integrin
macrophages in viral myocarditis (51). Sema7A can recruit
macrophages not only in viral infection, but also in TME.
Elder and Tamburini found that Sema7A might be involved in
macrophage-mediated lymphangiogenesis in breast cancer (52).
Sema7A promotes macrophages podoplanin (PDPN) expression,
migration, and adhesion of the lymphatic epithelial cell, resulting
in breast cancer lymphatic metastasis. PDPN-expressing
macrophages (PoEMs) can activate integrin b1 (Sema7A
receptor) to bind to lymphatic endothelial cells expressing
galectin 8 (GAL8) and cause lymphatic vessel remodeling,
lymphangiogenesis (35). Lymphangiogenesis depends on
PDPN-CLEC-2 (PDPN receptor) interaction and Sema7A-
integrin b1 interaction. Therefore, CD68, Sema7A, and PDPN
Frontiers in Oncology | www.frontiersin.org 4
are associated with poor prognosis of breast cancer patients with
lymphatic metastasis (52).

TAM infiltration, especially pro-tumorigenic M2-Mfs, are
related with poor prognosis of multiple cancer types. Sema4C,
Sema4D, and Sema7A can be considered as promising
biomarkers of TAM infiltration and can be used as prognostic
indicators of cancer. Moreover, depletion of TAMs by Sema4D
blockage to decrease M2-Mfs recruitment and aggregation, to
eliminate TAMs-associated angiogenesis and metastasis, is a
potential strategy to cancer treatment. However, the strategy of
TAM depletion may lead to a decline in ability of tumor antigen
presentation. Therefore, reprogramming TAM polarization from
M2-Mfs to M1-Mfs by altering Sema3A expression can be
another effective approach to enhance anti-tumor effects.
SEMAPHORINS AND T LYMPHOCYTES

The presence of CAR-T targeting to tumor-infiltrating
lymphocytes (TILs) has greatly improved clinical outcome in
cancer, particularly for hematologic malignancies, but fail to
effectively eliminate cancer cells. Due to insufficient expression of
MHC-I or the presence of immunosuppressive signals, the anti-
tumor effect of CTL is greatly compromised and displays
dysfunctional states (53, 54). PD-1, CTLA-4, T-cell
immunoglobulin, and mucin domain-3 protein (TIM-3),
lymphocyte-activation gene 3 (LAG-3, CD223) (55), B- and T-
cell lymphocyte attenuator (BTLA, CD272) (56), T-cell
immunoglobulin and ITIM domain (TIGIT) (57), and V-
domain Ig suppressor of T-cell activation (VISTA) (58) have
been described as hallmarks of T-cell exhaustion. Semaphorins
and their receptors (particularly Nrp-1) have multiple roles in T-
cell responses. Nevertheless, the potential role of semaphorin/
Nrp-1 in regulating immunosuppressive receptors and CTL
functions is complicated.
Sema3A and Sema3B
Recently, numerous lines of evidence indicate that the Sema3
family with Nrp-1 receptor play vital roles in inhibiting anti-
tumor CD8+ T-cell responses (59). Sema3A and Sema3B,
constitutively distributed on immune cells, binding to Nrp-1,
contribute to immune escape from anti-tumor effects of CD8+

CTL (60).
Nrp-1 and Nrp-2 have been shown to be expressed on DCs,

macrophages, and T-cell subpopulations and mainly exert pro-
tumor effects (61, 62). Nrp-1, a transmembrane protein, is widely
involved in cardiovascular and neuronal development, and can
also regulate cancer immunology (59). Moreover, Nrp-1 is also
co-receptor of VEGF and the Sema3 family (40). Nrp-1 has been
characterized in different immune cellular phenotypes including
macrophages, dendritic cells, and T-cell subsets, especially
expressed on activated T cells and regulatory T-cell
populations, but not on the resting T cells (63–65). Nrp-1+

Tregs are highly expressed in both TME and peripheral blood,
making Nrp-1 a potential immune checkpoint target for
January 2022 | Volume 12 | Article 793805
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immunotherapy (66). Those expressing high Nrp-1 CTL subset
also express high PD-1+, with the co-expression of other T-cell
inhibitory receptors like CTLA-4, Tim-3, and LAG-3 in B16F10
melanoma (59). The combination of PD-1 antibody and Nrp-1
antibody is more efficient in repressing tumor growth in vivo. By
contrast, Nrp-2, another isoform, is comparatively less studied in
T cells. The expression pattern of Nrp-2 varied in the CD4/CD8-
defined subsets. Nrp-2 was upregulated in the CD4+CD8+ DP
T cells and downregulated in SP CD4−CD8+ and CD4+CD8−

cells as they gradually became lineage committed (63).
Sema3A secreted from activated DCs and T cells can bind to

Nrp-1 on T cells and inhibit T-cell proliferation. However, Yang
Zhi-Gang has reported that Sema3A was downregulated in acute
leukemia, and exogenous Sema3A could inhibit the Nrp-1
expression on Tregs and promote apoptosis in leukemia cells
(67). Those studies indicated that Sema3/Nrp-1 signaling was a
novel target for tumor immunotherapy (65).
Sema4A
Sema4A, as a new class of immune regulatory molecules, is not
expressed by resting T cells, but can be induced on activated T
cells (14), constitutively expressed on APCs like dendritic cell
and co-stimulates activation of CD4+ T cells. Sema4A has been
found to promote Th1-cell-mediated IFN-g production in mice,
but eliciting Th2-cell-mediated IL-4, IL-5, and IL-13 production
in human by binding with immunoglobulin-like transcript 4
(ILT-4) receptor (68, 69).

Regulatory T cells (Tregs) have effects on limiting
immunopathology, preventing autoimmune diseases, and
maintaining immune homeostasis and also negatively
regulating anti-tumor immunity (70). The deletion of Tregs
can induce the reduction and elimination of tumors, but may
induce uncontrolled autoimmunity and even death. Sema4A
interacting with Nrp1 also promotes Treg cells’ survival,
stability, and function through modulation of the Akt-mTOR
signaling and PTEN-Akt-FoxO axis (30). The deficiency of Nrp-
1 on Tregs fails to limit autoimmunity and induces autoimmune
diseases. Thus, the Nrp-1 receptor on Treg cells is dispensable for
the suppression of autoimmunity and the maintenance of
immune homeostasis. Sema4A–Nrp1 blockade via antibodies
or soluble antagonists is possible to limit tumor growth by
targeting Treg cells without triggering autoimmunity.
Sema4D
CD100 has two forms, soluble CD100 (sCD100) and membrane-
bound CD100 (mCD100). Both mCD100 and sCD100 have vital
roles in immune response. mCD100 is constitutively expressed
on the resting T cells, and can be cleaved into sCD100 by matrix
metalloproteases when T cells are activated (71, 72). The
function of Sema4D on CD8+ CTL is controversial. In HIV
infection, the CTL is in lack of mCD100, leading to anti-virus
capacity being disabled (73), while sCD100 enhances CTL
function of virus clearance in HBV infection (74). Fan Fei-Fei
found that MMP-14, sCD100 level decreased and mCD100
increased in non-small cell lung cancer (NSCLC) compared
Frontiers in Oncology | www.frontiersin.org 5
with healthy people, whereas recombinant CD100 or sCD100
upregulation by MMP-14 enhanced CTL activity by secreting
IFN-g and TNF-a. Moreover, the effect of sCD100 on CTL could
be blocked by anti-CD72 antibody. Thus, it indicates that
sCD100 shedding depends on the cleavage of MMP-14 and
CD72 interaction and plays an important role in regulating
CTL of NSCLC (75).

Evans has reported that Sema4D displays an immuno
modulatory function. When Sema4D is highly expressed on the
invasive margins of actively growing tumors, it influences the
infiltration and distribution of leukocytes in the TME. Antibody
neutralization of Sema4D disrupts this gradient of expression,
enhances recruitment of activated monocytes and lymphocytes
into the tumor, and shifts the balance of cells and cytokines toward
a proinflammatory and antitumor milieu within the TME. This
change in the tumor architecture was associated with durable
tumor rejection in murine Colon26 and ERBB2(+) mammary
carcinomamodels (46). Recently, a Phase Ib/II study of pepinemab
(anti-Sema4D) in combination with avelumab (anti-PD-L1)
showed that the combination therapy was well tolerated and
exerted antitumor activity in immunotherapy-resistant and PD-
L1-lowNSCLC patients (76). However, the function of Sema4D on
Treg responses in cancer is still unknown. In ankylosing
spondylitis, Sema4D inhibits Treg cell differentiation in the AhR
pathway (77). Sema4D also promotes liver fibrosis in
Schistosomiasis infection via TGF-b1 and IL-13 pathways. Sja-
miR-71a in Sjaponicum egg-derived EVs can increase Treg and
decrease Th1, Th2, and Th17 by directly inhibiting Sema4D (78).

Exhausted T cells not only highly express PD-1 and CTLA-4,
but also highly express semaphorins and their receptors,
especially Nrp-1; thus, tumor cells are compromised to
immune checkpoint inhibitors and turn to self-tolerance.
Moreover, the expression of semaphorins and Nrp-1 is
positively correlated with PD-1 expression level. Therefore,
concomitant blockade of semaphorins, Nrp-1, and PD-1 may
reshape the anti-tumor function of CTL and abrogate
tumor progression.
SEMAPHORINS AND TUMOR-
INFILTRATING B CELL

T cells are not the only immune cells capable of fighting tumor
cells. Tumor-infiltrating B cells (TIL-Bs) are also important for
tumor immunity. Recent studies have found that bulk of B cells
are enriched in tumor tissues including lung cancer, melanoma,
renal cell carcinoma, breast cancer, and head and neck squamous
cell carcinoma (HNSCC) (28, 79, 80), and B cells play a dual role
in the progression of cancer. On the one hand, B cells can
stimulate anti-tumor immunity by antigen presentation B cell
(APC-B cell) and producing IgG (Plasma cell) to mediate
antibody-dependent cytotoxicity; on the other hand, regulatory
B cells (B-regs) inhibit CD8+ T cell activity by secreting IL-10,
PD-L1, and TGF-b, resulting in tumor immunosuppressive
effects and tumor progression. TIL-Bs have prognostic
January 2022 | Volume 12 | Article 793805
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significance and promise to be a new target to complement T-
cell-based immunotherapy. The expression of Sema4D on
resting B cells is low, but upregulated upon activation. Sema4D
has been found to promote the survival and activation of B cells
and enhance antibody production (81), but the role of
semaphorins on TIL-B is rarely reported.
SEMA4A

TIL-B mainly comprise naïve B cells, germinal center (GC)
B cells, plasma cells, etc. The team of Jennifer A. Wargo from
the University of Texas MD Anderson Cancer Center found
that B cells and tertiary lymphoid structures play an important
role in tumor immunity (82). In HNSCC patients with
human papillomavirus infection (HPV+) infection, GC TIL-Bs
and tertiary lymphatic structure (TLS) are significantly
increased, both of which correlate with a favorable outcome of
HNSCC. Tullia C. Bruno found that the expression level of
Sema4A was elevated in HPV+ HNSCC by scRNAseq data
analysis (28). Interestingly, Sema4A upregulation was
associated with GC B-cell differentiation and TLS with GC.
Sema4A promote transition from naïve to GC cells, consistent
with the expression of CD38 and BCL-6, a key transcription
factor that regulates GC. It indicates that Sema4A may regulate
the formation of GCs within TLS and B-cell maturity in TME of
HNSCC patients.

The current immunotherapy mainly aims to activate CD8+ T
cells, but the role of humoral immunity against tumor immunity
is still unclear. As a component of the TME, TIL-Bs also play an
important role in tumor progression (79). Sema4A is upregulated
on GC TIL-Bs of HPV+ HNSCC and drives naïve TIL-Bs towards
activated and GC phenotypes, which can be one way to
complement current CD8+ T-cell-based immunotherapies.
SEMAPHORINS AND NATURAL
KILLER CELLS

NK cells are defined as CD3-CD56+ leukocytes and can be
subdivided into functionally distinct subgroups, namely,
CD56brightCD16neg and CD56dimCD16pos (83). The pan-
specific innate immune recognition and rapid killing
mechanism of natural killer cells (NK cells) make them
another sharp sword in anti-tumor therapy apart from T cells.
Decreased NK cell toxicity with KIR and NKG2A upregulation is
associated with increased cancer incidence (84). Cytokine-
induced memory-like (CIML) natural killer cells are
preactivated with interleukin-12 (IL-12), IL-15, and IL-18,
followed by adoptive transfer into patients with active acute
myeloid leukemia (AML) and exhibit enhanced responses
against leukemia target cells weeks later, in the form of
IFN-g production and cytotoxicity, indicating that CIML
NK cells represent potent antitumor effector cells for
Frontiers in Oncology | www.frontiersin.org 6
leukemia immunotherapies (85, 86). However, the molecular
mechanism of CIML NK cell differentiation and reactivation
remains unknown.
SEMA7A

Adoptive transfer immunotherapy of NK cells in solid tumor
patients is not satisfactory. One of the main challenges is the
transport and infiltration of NK cells to the tumor site. Sema7A
can regulate the migration of immune cells including NKs.
Sema7A is widely expressed in lymphocytes and myeloid cells
including CD56bright NK cells. Stephanie Jost found that Sema7A
is substantially upregulated on CIML NK cells after stimulation
with cytokines (IL-12, IL-15, and IL-18), consistent with the
expression of its ligand integrin-b1 and IFN-g production (87).
Strikingly, Sema7A blockade impairs substantial anti-tumor
response mediated by CIML NK cells. These strongly indicate
that Sema7A is a significant marker of NK cell maturation, and
its ligand integrin-b1 contributes to CIML NK cell differentiation
and activity.

NK cell-based tumor treatment strategies include
strengthening activation of NK cell, blocking inhibitory signals
on NK cell, and adoptive transfer of CAR-NK cell. Given that
Sema7A/integrin-b1 interaction promotes CIML NK cell
differentiation, Sema7A can be a potential biomarker of clinical
outcomes for hematologic malignant patients involving CIML
NK cell therapeutic interventions.
SEMAPHORINS AND DENDRITIC CELL

Dendritic cells are a group of antigen-presenting cells (APCs).
Most of the DCs in the human body are immature, expressing
low levels of costimulatory factors and adhesion receptors. DCs
can control the activation or suppression of T cells through
costimulatory molecules CD80 and CD86 interaction with
CD28 or CTLA4, respectively, in cancer (88, 89). Tumor-
infiltrating DCs have often been viewed as tolerogenic or
immunosuppressive (90, 91). However, the biological function
of semaphorins that regulate mature and migratory phenotype of
DCs is poorly defined.
Sema3E
Sema3E has shown to modulate DC function in chlamydial
infection. Relative to Sema3E wild-type mice, knockdown
Sema3E expression exhibits higher bacterial burden by
increasing Th2 response (IL-10), enhancing expression of PD-
L1 and PD-L2 and reducing Th1/Th17 cytokine production (IL-
12) (92). Another study found that Sema3E knockout exerted
inhibitory effect on DC migration through regulation of CCR7
expression and augmenting PD-L2 expression, compared to
Sema3E wild-type mice (93). These studies have shown that
Sema3E can regulate the migration and function of DCs in
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inflammation. However, the role of Sema3E in DCs has not been
elucidated in the TME.

Sema4A
Sema4A is identified as a biomarker for DC activation status,
especially in the human immune system (69). IL-33, as a
candidate for cytokine therapies, can effectively enhance
Sema4A expression and stimulate anti-tumoral cells including
NK and CD8+ T cells (29, 94), while the mechanism of IL-33 on
anti-tumor effects remains unclear. Sema4A on DC interacting
with its Plexin B2 receptor on CTL can promote INF-g
production, increase the cytotoxicity of CTLs, and repress
tumor growth (29). In vivo syngeneic mouse models, Sema4A
knockdown abolishes the antitumor activity of IL-33. These
results suggest that Sema4A may be an intrinsic antitumor
effector of IL-33 in mice.

Sema7A
DC migration is essential for host defense against tumor
pathogens. The immature DCs have strong abilities to migrate.
The study of Sonja I Buschow identified Sema7A as one of the
most highly upregulated proteins upon DC maturation,
adhesion, and migration in human and mouse by a large-scale
proteome analysis (95). Sema7A-deficent DCs show an increased
adhesion strength and lack the ability of migration in response to
CCL21 by impairing the formation of actin-based protrusions.
Sema7A knockdown impairs the actin cytoskeleton, resulting in
enhancing the adhesion and attenuating migration ability of
DCs (95).

Although Sema7A has a stimulating effect on the maturation
and antigen presentation of DCs, which is beneficial for immune
response, a growing number of studies have shown that Sema7A/
integrin b1 is a promigratory signal and confers poor survival
rate in glioma and breast cancer (96, 97). Therefore, Sema7A
plays an anti-tumor effect in terms of DCs, but promotes tumor
cells migration in the whole TME.
SEMAPHORINS AND MYELOID-DERIVED
SUPPRESSOR CELLS

Myeloid-derived suppressor cells (MDSCs), distinctively
expressing nitric oxide synthase (iNOS) and arginase-1 in the
STAT3-dependent pathway (98), are bone marrow-derived
immature heterogeneous myeloid cells in pathologic conditions
such as chronic inflammation and cancer. MDSCs are progenitor
cells of macrophages and DCs under normal circumstances, but
exert immunosuppressive activity to T-cell function in the
presence of maturation arrest (99). Semaphorin can regulate
the polarization of MDSCs. Conejo-Garcia and Arindam
Bhattacharyya found that semaphorins in exosomes derived
from tumor mesenchymal stem cells promoted myeloid-
derived suppressor cells (M-MDSCs) to differentiate to
immunosuppressive M2-macrophages in breast cancer, but
Frontiers in Oncology | www.frontiersin.org 7
which kind of semaphorins was not mentioned in their
research (100).
SEMA4D

MDSCs are major immunosuppressive cells in head and neck
squamous cell carcinomas (HNSCCs), resulting in resistance to
ICBs. However, the specific pathways of MDSC recruitment and
infiltration remain to be investigated. In HNSCC, tumor cell-
derived Sema4D inducing MDSC polarization corresponded
with an inhibition in T-cell activation and an increase in
arginase-1, TGF-b, and IL-10 production (101). Clint T. Allen
found that Sema4D blockage improved responses to ICIs therapy
for HNSCC patients due to repressing Ly6GhiLy6Cint MDSCs
(PMN-MDSCs) infiltration by reducing MAPK-dependent
expression of chemokines (44, 102). Additionally, Sema4D
mAb did not inhibit MOC1-tumor cell growth or tumor
vascularity. These results indicated that anti-Sema4D
antibodies enhance response of combination therapy by
altering immune response not by inhibiting proliferation or
angiogenesis, and highlighted that anti-Sema4D antibodies
might be beneficial for patients with PD-1 inhibitor resistance.
CONCLUSION AND
FUTURE PERSPECTIVES

Although immunotherapy has been considered a breakthrough for
hematologic cancers and solid tumors, the survival duration and life
quality of patients are compromised to tumor immune evasion.
Immune evasion is one of the hallmarks of cancer, which is one of
the main reasons for the poor prognosis of patients. Imbalance
between pro-tumor and anti-tumor immune response leads to
immune escape of tumor cells. The immunosuppressive responses
are generally manifested as an increase in expression in inhibitory
receptors and ligands in APC cells (DCs, macrophages, and B cells),
CTLs, and NK cells; an increase in tumor-infiltrating
immunosuppressive cell types (M2-Mfs, Tregs, B-regs, and
MDSCs); hypoxic and acidic conditions; and an increase in pro-
tumor cytokine and chemokine production. Accumulating evidence
shows that semaphorins are involved in tumor evasion and
progression. Semaphorins are dysregulated in multiple types of
tumors, making them not only tumor prognostic predictors but also
therapeutic targets. However, the function and signal pathways of
semaphorins in the tumor immune environment are intricate and
not yet fully elucidated.

Semaphorins can act as attractants to elicit inflammation cells
such as macrophages, dendritic cells, NK cells, B cells, and T cells
to the TME (Figure 2 and Table 1). For example, soluble
Sema3A has opposite effects on the recruitment of
macrophages in different types of cancer. In terms of the
transmembrane Sema4 family, Sema4C and Sema4D promote
macrophage recruitment and tumor progression. Sema4A
promotes Treg survival and stability and accelerates tumor
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growth. Sema7A is constitutively distributed on resting dendritic
cells, is highly upregulated on mature DCs, and is a negative
regulator of T-cell responses and plays a critical role in T-cell-
mediated inflammation through a1b1-integrin (103, 104). Thus,
those immune semaphorins provide valuable and novel insights
into immunotherapy for cancer.

Combination immunotherapy is an effective way to reshape
TME and improve the therapeutic effect, particularly for
immunotherapy-resistant and PD-L1 negative/low tumors.
Immune semaphorin-based mAb blockade therapy has become
a research hotspot. For instance, the combination of Sema4D
mAb with either CTLA-4 or PD-1 inhibitor abrogates tumor
growth in murine oral cancer-1 mice by inhibiting MDSC
recruitment and enhances CTL infiltration (44). Recently, the
Frontiers in Oncology | www.frontiersin.org 8
combination of lgG mAb targeting Sema4D (pepinemab) with
PD-L1 inhibitor avelumab has been evaluated as a safe and
tolerated synthetic therapy in phase II clinical trials of
immunotherapy-resistant NSCLC patients (76). Another phase
I trial (NCT03425461) has been registered on ClinicalTrials.gov.
to evaluate the safety and tolerability of combination of anti-
SEMA4D monoclonal antibody (VX15/2503) with nivolumab or
ipilimumab in patients with stage III or IV melanoma who have
progressed on anti-PD1/L1-based checkpoint inhibitors
(Figure 3). Nevertheless, the serious toxic side effects of cancer
immunotherapies mainly include cytokine release syndrome
(CRS) and immune effector cell-associated neurotoxicity
syndrome (ICANS) (105). Advanced nanoparticle or exosome
drug delivery system can transport semaphorin-based drugs to
FIGURE 2 | The intricate roles of immune semaphorins and their receptors in tumor microenvironment. Sema3A and Sema3B contribute to decrease in toxicity of
CTL by binding to Nrp-1. However, Sema3A promotes M1-Mf proliferation but inhibits M2-Mf proliferation. Sema4A promotes Treg activation and survival via Nrp1
receptor, but enhance CTL vitality via Plexin-B2 receptor. Sema4D derived from tumor cell or M2-Mf promote tumor angiogenesis via Plexin–B1/2 receptor on
endothelial cells and inhibit immune response by promoting polarization of MDSCs and inhibiting T-cell function via CD72. Sema4D derived from Mf can secrete
SDF-1 (CXCL12) that mediates tumor metastasis by binding to CXCR4. Sema7A can mediate macrophages and dendritic cell migration in integrin b1 signals, and
mediate tumor lymphatic metastasis through upregulating PDPN expression.
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TABLE 1 | The roles of representative immune semaphorins in tumor microenvironment.

Pathway Functions Marker on immune cell Ref.

SF1-mediated phosphorylation of Akt
nd MAPK

M1-Mfs increase; M2-Mfs decrease M1-Mfs: CD11b+Ly6G-

Ly6ClowMHCIIhigh;
M2-Mfs: CD11b+Ly6G-

Ly6ClowMHCIIlow

(27)

lexinA1/PlexinA4-dependent VEGFR1
ctivation

Drive TAMs toward hypoxic niches Mf: F4/80+ (24)

Elicit TAMs (microglial cell) accumulation Microglial cell: Iba1 (38)
hibit T-cell migration toward CXCL12
radient

Impair CTL functions CTL: Nrp-1+PD-1hi CD8+ (59)

orrelate with BCL6 expression Enhance germinal center TIL-Bs
infiltration

TIL-Bs: CD38+IgD−

BCL6+Sema4A+
(28)

odulate the Akt-mTOR signaling axis Potentiate Treg-cell function and survival Tregs: CD4+CD25+Foxp3+ (30)

duce production of CSF-1 in plexin B2-
ependent manner

Promote macrophage infiltration Mf: F4/80+ (25)

Promote macrophage infiltration Mf: CD68 (26)
odulate the SDF1/CXCR4 signaling axis Anti-Sema4D antibody promotes tumor

migration via TAMs
Mf: F4/80+ (49)

MP-14 mediated CD100 shedding Soluble Sema4D enhance CTL activity CD8+ T cell subsets depend on
CD45RA+/-, CCR7+/-

(75)

educe MAPK-dependent CXCL1
xpression

Induce MDSCs polarization G-MDSCs: Ly6GhighLy6Cint

M-MDSCs: Ly6GlowLy6Chigh
(44)

rive the expression of PDPN Promote macrophage-mediated
lymphangiogenesis

Mf: CD68, F4/80+ (52)
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d
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PanNET CD72
PlexinB2

Sema4D upregulated M
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TME with specific antibody to potentially alleviate adverse effects
(106). In addition to eliminating inhibitory signals in the TME,
improving the immunogenicity of tumor cells to enhance CTL
function is also an important strategy for immunotherapy.
Adoptive transfer immunotherapy of CTL and NK cells and
DC-based vaccines genetically engineered with semaphorins or
their receptors of tumor cells may also be a promising cancer
treatment modality. Thus, more in vitro studies, tumor models,
and clinical trials are urgently needed to verify the effectiveness
of reshaping TME and modulating immune cells by combination
immunotherapy and adoptive transfer immunotherapy of
immune effectors.
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