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Abstract: The traffic accident occurrence rate is increasing relative to the increase in the number
of people using personal mobility device (PM). This paper proposes an airbag system with a more
efficient algorithm to decide the deployment of a wearable bike airbag in case of an accident. The
existing wearable airbags are operated by judging the accident situations using the thresholds of
sensors. However, in this case, the judgment accuracy can drop against various motions. This study
used the long short-term memory (LSTM) model using the sensor values of the inertial measurement
unit (IMU) as input values to judge accident occurrences, which obtains data in real time from the
three acceleration-axis and three angular velocity-axis sensors on the driver motion states and judges
whether or not an accident has occurred using the obtained data. The existing neural network (NN)
or convolutional neural network (CNN) model judges only the input data. This study confirmed that
this model has a higher judgment accuracy than the existing NN or CNN by giving strong points
even in “past information” through LSTM by regarding the driver motion as time-series data.

Keywords: wearable; artificial intelligence; human safety; bike accident; airbag; LSTM

1. Introduction

Due to personal mobility device (PM) diversification and the increased demand for
delivery platforms, two-wheeled vehicles are quickly becoming popular. In particular,
according to the decrease in outings and contacts since COVID-19, the demand for deliv-
ery has largely increased, in proportion to which small and large traffic accidents have
increased, along with the increase in users of transportation means such as bicycles or
motorcycles. According to the statistics of the Traffic Accident Analysis System (TAAS), a
total of 38,453 bike accidents including PM happened in 2019 in Korea. Since bikes, unlike
cars, do not have an enclosure to protect riders in the event of a traffic accident, a collision
can cause direct impacts on the riders and separate the riders from the bike. In this case,
the rider can collide with other objects after being separated from the bike, resulting in
significant hits to the rider’s head and neck, resulting in serious injuries or deaths [1,2].
Although there are helmets, suits, and airbags as protective equipment to protect the riders,
most of the riders, except for professional riders, usually wear only helmets in daily life.
Additionally, there are many riders who ride bikes without even helmets.

Several methods for judging a person’s movement are being studied. Using an
image through the camera, the movement of the arms and legs can be tracked or the facial
expressions can be identified [3,4]. It is also possible to judge movement with a sensor rather
than an image or video. The acceleration sensor, the angular velocity sensor, the height
sensor, and the EMG sensor are used to measure the current movement, running, walking,
and climbing stairs [5–10]. Based on these studies, research on motion measurement using
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artificial intelligence is also being conducted, which greatly contributes to the development
of the healthcare and game industry [11–20]. Research related to motorcycle accidents
is also increasing. A study by [21] provided an analysis of the accident sequence in
the event of a two-wheeled vehicle accident. Another study [22] presented a magnetic,
angular rate, and gravity sensor-based system that detects accidents with 95.2% accuracy
through principal component analysis (PCA) and support vector machines (SVMs) and
proposed a system that can be notified to emergency medical centers. In [23], the authors
presented an idea for an efficient design method of a detection system that effectively
uses a large number of sensors through a two-step detection algorithm based on the self-
organizing maps (SOMs) method. The authors of [24] proposed a system that attaches
inertial measurement devices to the driver’s head, torso, and rear of the motorcycle to
determine the occurrence of an accident through a maximum a posteriori(MAP) classifier
and transmits the driver’s location and accident information. Another study [25] provided
data on airbags for jackets.

This paper proposes the LSTM as an artificial intelligence model used in airbag
systems to protect riders in cases of accidents. Artificial intelligence can continuously
improve accuracy through consistent data collection and learning, receiving much concern
recently as a core technology in various industries. In the case of airbags, conventional
products often inflate the airbag through a mechanical method or use the threshold value
of a sensor, and 2–3 types of sensors are used together. Studies are underway to find the
possibility of using artificial neural networks, instead of the threshold method used in
the existing bike airbags, to produce an airbag system with high accuracy [26–29]. The
precedent studies using other artificial intelligence models made judgments only with
respect to the “incoming input data” and outputted the results. By contrast, in this paper,
the proposed LSTM can use new and old data to judge the accident situation. The wearer’s
state of motion depending on accident situations can be assessed to be a state of motion,
with the order depending on time. It was supposed to judge between the accident situation
and the non-accident situation by analyzing the currently incoming data while bringing
the information on the past motion state together.

In this paper, Section 2, “Method and Design of the Proposed System”, introduces
“Data collection and System Design” (Section 2.1) and “LSTM theory and design”
(Section 3.1). Section 2.1 explains the method of data collection and the analysis and
treatment method of the collected data to teach and test the artificial neural networks
and introduces the hardware system for the corresponding system. Section 3.1 describes
the design of the artificial neural network LSTM and the LSTM model used in this study.
Section 3, “LSTM Experiment Results and Comparisons”, explains the simulations using
test data, and the experiments using a testbed to confirm the operation of the actual airbag
system. Through the simulations with test data, in particular, the performance differences
between each artificial neural network NN, CNN, and LSTM are discussed. Section 4,
“Conclusion”, analyzes the experiment results and concludes the study.

2. Method and Design of the Proposed System
2.1. Data Collection and System Design

To train and build the artificial intelligence model, fundamental data on the objects
are necessary. The system under study was the operation of wearable airbags amid the
occurrence of bike accident situations, for which it is necessary to distinguish whether
the wearer’s motion state is a general motion state or a state in which an external force is
applied to its body due to the occurrence of an accident. The collision types in terms of
bike accidents are largely classified into the following five types:

1. Front collision;
2. Rear collision;
3. Left collision;
4. Right collision;
5. Fall, Roll, etc.
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This study collected the accident data on the above items to be used as data on the
accident situations and explains the analysis of the cases depending on the situations.
However, because it is very dangerous for people to directly ride a bike and make an
accident, a mannequin was used in place of people, as shown in Figure 1 [26–29].

Figure 1. Mannequin and bike.

2.1.1. Raw Data Collection

To know the wearer’s motion state, the accelerations and angular velocities were
measured using an Arduino device and an MPU6050 sensor. Figure 2a,b shows that
the sensor has X, Y, Z axes, each of which indicates the head, arm, and body directions,
respectively. The acceleration and angular velocity values depending on the wearer’s
motion state were measured using this sensor. The data values measured via the sensor
were corrected for noise using the complementary filter and a moving-average filter. Since
the MPU6050 sensor data value is unstable, and errors can accumulate, an appropriate
correction is required. First, by using a moving average filter, the average value was
obtained through the data bus of 10 columns, and after squaring and summing them, the
root value was obtained. The sensor value was corrected by the difference between this
value and the gravitational acceleration. A complementary filter was used along with a
moving average filter. Complementary and Kalman filters are usually used extensively,
but the complementary filter was chosen because the processing of the Kalman filter took
longer than that of the complementary filter. To prevent accumulated errors due to the
integral calculation, the weights of acceleration and angle data were varied and corrected
according to the stopping and driving conditions [26–31]. When it is close to a stationary
state, the weight of acceleration is increased, and when a sudden rotation or movement is
detected, the weight of angular velocity is increased to respond to the changed angle.

The learning data were largely classified into 2 kinds of cases and collected. The
data collected on Case1 were general motion states (including movement, e.g., stretching),
and on Case2, wearer’s motion state amid occurrence of accidents; the accident situations
were divided into the front, rear, left, right, and fall situations. Since there is a difference
in characteristics of acceleration and angular velocity depending on each situation, the
accident situation and non-accident situation were supposed to be determined through
artificial intelligence learning by using this difference [32]. The experiments to collect data
were conducted 20 times according to each situation, and the measurement period was
50 ms [26–29]. A total of about 658 data were collected, including non-accident data. If there
are more data, it is advantageous for learning, but due to the characteristics of collecting
accident data, it was impossible to collect more data due to risks and equipment destruction.
The reason for measuring 50 ms was that the data were saved in real time through the
process of sensor→Arduino→save csv file, and the period it took was slightly shorter than
50 ms. Therefore, for ease of data processing later, the experiment was conducted by setting
it to 50 ms.
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Figure 2. Three-axis of MPU 6050: (a) X, Y, Z axes indicated the head, arm, and body directions; (b) MPU6050 with battery.

2.1.2. Raw Data Analysis

The most significant difference between the accident situation and the non-accident
situation is based on which one of the acceleration and angular velocity axes varies and
how much it varies in a short time. Depending on the information derived from the posture
type and the extent of the impact, the values indicated by the acceleration and angular
velocity axes may differ, and a similar value or outcome appears in a similar situation,
which can be also confirmed through the precedent studies [26–29,32]. Figure 3a,b shows
similar graphs in the same accident situation (left collision). Acceleration graph is the
magnitude of the sum vector of accelerations in the X, Y, and Z axes. It can be inferred that
the acceleration graphs on the left of (a) and (b) and angle graphs X, Y, Z on the right show
a similar flow in the same accident situation.

When there is no occurrence of accidents with a stable motion, there is no significant
variation in acceleration and angle values; however, when an accident occurred that
changed the driver’s motion state rapidly, there was a rapid variation in acceleration and
3-axis angles.

Through the similarity and variation in graphs per time depending on situations, the
accident or non-accident was distinguished, and the accelerations and angles of the 3 axes
were used as the input data for the artificial intelligence model.

2.1.3. System Drive Part

Figure 4 shows the system drive part. The CO2 cartridge was used to inflate the
airbags, and the DC motor was used to pop the CO2 cartridge. An algorithm is needed to
send a signal to the DC motor, and in order to give a reference signal, a system that can
be driven with artificial intelligence is needed. The Raspberry Pi 3B micro-computer was
used for the artificial intelligence model, and the MPU6050 sensor was used to measure the
driver’s motion status to determine the situation [26–29].
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Figure 3. Similar graphs in the same accident situation(left collision): (a) accident 1; (b) accident 2.

Figure 4. Measuring- and driving-part configuration.

The driver’s motion state was measured using the MPU6050 to calculate the ac-
celerations and angular velocities, and while the data file was stored separately, it was
determined whether an accident had occurred through an artificial intelligence model. In
the non-accident situation, the motions were continuously measured, and in the case of an
accident, signals were given to the motor to inflate the airbag. Figure 5 shows a system
diagram of the algorithm.
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Figure 5. System diagram of the algorithm.

2.2. LSTM Theory and Design

The NN, CNN, etc. used in the precedent studies produce outputs by making a
judgment with respect to the currently inputted data. In these cases, the information
on the data inputted before the currently inputted data is lost. The events of generating
traffic accidents can be regarded as data sequence. The current motion of a rider after the
occurrence of a collision is a result depending on the form of the previous motions, and
therefore, it has a sequence such as that presented in Figure 6.

Figure 6. Sequential accident situation.

The RNN model can receive and utilize the past value. LSTM is a model that makes it
possible to remember information from a long time ago by compensating for the inability
to remember information far from the output, which is one of the features of RNN. This
determines whether to forget, save, update, or output a piece of information through the
sigmoid layer and the tanh layer. After passing through the sigmoid function, a value
between 0 and 1 is outputted, which is the amount of information that has been deleted.
The closer the value is to 0, the more the information is forgotten, and the closer it is to 1,
the more remembered is the information. After passing through the tanh function, a value
between –1 and 1 is outputted, deciding what information to store in the cell state. This
paper used the LSTM model to recognize the accident situation, in which learning was
carried out through the data on the accident situation. The LSTM model has a structure
with a cell state added to the hidden state in the existing RNN algorithm and is composed
of the input gate, cell state, forgetting gate, and output gate.

Figure 7 shows the cell operation process of LSTM. The ft is the forgetting gate, it is
the input gate, C̃t is a generated vector of new values, Ct is the cell gate, ot is the output
gate, and ht is the output. W is weight at the gate, and b is the bias at the gate. σ is the
sigmoid layer, tanh is the tanh layer, and ◦ is the Hadamard product [11–14]. The sigmoid
and tanh layers are activation functions.

ft = σ
(

W f ·[ht − 1, xt] + b f

)
, (1)

it = σ(Wi·[ht−1, xt] + bi), (2)
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C̃t = tanh(WC·[ht−1, xt] + bC), (3)

Ct = ft ◦ Ct−1 + it ◦ C̃t, (4)

ot = σ(Wo·[ht−1, xt] + bo), (5)

ht = ot ◦ tanh(Ct) (6)

Figure 7. Cell operation process of LSTM.

The input of the LSTM model is a 3D array, as shown in Figure 8. The data used in
this paper were obtained by correcting the 3 axes of acceleration and 3 axes of the angle
measured by the MPU6050 sensor. In total, 15 sampling data of 6 axes, that is, 90 data
were inputted. Table 1 shows a example of the input data. The input data were inputted,
through an action similar to sliding while going over to the next data every 50 ms. When a
person typically falls, it takes about 750 ms. It is 15 times the 50 ms, which was used as
the sampling time of this system. Although 15 sets of data are inputted by axis based on
750 ms [33], in the bike accident, the falls may occur clearly at a faster speed [32], which
can be confirmed from the collected data as well. In Figure 9, an accident occurred in the
46T–48T section and did not exceed 100 ms. The data during the pre-treatment process
were cropped at the section before impacts were applied to the driver after the occurrence
of the accident, and they were used as the input data.

Figure 8. A three-dimensional array of LSTM’s input.
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Table 1. Input data of the LSTM model used in this study.

Time
Acceleration Angle

X Y Z X Y Z

T_s1 1.08873 0.07507 −0.12464 18.58213 89.26502 66.49303

T_s2 0.93897 0.02329 0.53261 25.70627 88.88076 64.56924

T_s3 0.96653 0.08587 0.65714 32.06958 86.69562 59.52053

T_s4 1.23658 −0.25690 0.09096 23.78130 92.49972 66.96293

T_s5 0.53428 0.02383 0.28870 23.87306 91.96020 66.31092

T_s6 0.89975 0.44901 0.57337 26.97208 87.61472 64.80787

T_s7 0.68992 0.22347 0.56436 32.90183 83.46288 57.45921

T_s8 0.64561 −0.21184 0.76713 45.35566 89.55425 49.63304

T_s9 1.10645 −0.63056 0.31480 42.66323 96.83949 55.33480

T_s10 0.94762 −0.25137 0.87484 43.45735 98.79564 52.71785

T_s11 0.63805 −0.30686 0.60364 44.29453 103.07350 52.60575

T_s12 0.47248 −0.27727 0.46273 46.30504 109.24230 51.72902

T_s13 −1.23561 −0.02847 0.10609 64.33788 96.78557 66.50202

T_s14 1.07818 −0.02991 −0.45904 58.99714 93.76888 80.94142

T_s15 1.28572 −1.29456 −1.54209 78.00906 113.27850 84.13935

Figure 9. The accident occurred in the 46T–48T section.

Most of the acceleration values are between −2 g and 2 g, and the angle values are
between −180 and 180 deg. The acceleration was divided by 2, and the angle was divided
by 180 so that the values of the input data were almost between −1 and 1.

The number of cells was 15. Six input data were inputted per cell, and nodes amounted
to 48. The output of LSTM was entered as the input of NN and finally outputted via NN.
Figure 10 shows the structure of LSTM in this paper.

The NN received the output of LSTM as an input, proceeded through 4 hidden layers
to reduce to 90, 30, 15, 8, and then obtained the final output. An activation function was
used for each layer. The 1st, 3rd, and 4th hidden layers used tanh functions, and the
2nd hidden layer used ELU functions. The last output layer used sigmoid functions to
classify the output into a binary. This was to distinguish between the accident and the
non-accident by 1 and 0, respectively. Dropout was used to prevent overfitting. Cross
entropy was used as a loss function and the adaptive moment estimation (ADAM) is used
as an optimization algorithm to help learn inertially, but also adjustably according to the
state of the parameters [34–39].
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Figure 10. The structure of LSTM in this paper.

This study used the Jupyter notebook and Tensor Flow in algorithm design, and also
designed the NN and CNN for comparison. The NN had the same structure as the NN
used in the LSTM model. The CNN used the structure used in the precedent studies [20–23].
The convolution layer used 8 sets of 15 × 1 × 1 three-dimensional matrices as a kernel, and
the stride was composed of a 1 × 1 × 1 matrix. The zero-padding technique was such that
the size of the characteristic map became equal to the size of the input map, and the max
pooling was used as the pooling operation.

3. LSTM Experiment Results and Comparisons
3.1. Test Results and Comparisons

For LSTM and CNN/NN, 1000 times of epochs were conducted, respectively. The size
of the batch used in experiments was equal to that of the data used in learning, so weights
were renewed once per epoch.

Figure 11 shows the training accuracy and loss during 1000 times of epochs for LSTM
and CNN/NN. The training accuracy indicates how many pieces of data inputted during
the 1000 times of learning gave the correct answers. In terms of training accuracy, the
CNN (99%) was the highest, followed by the LSTM (97%) and NN (92%). In terms of loss,
the CNN (30) was the lowest, followed by the LSTM (55) and NN (128). To evaluate the
test performance, the pre-separated test data were entered and checked. When training
the artificial intelligence, the accident and non-accident data separated for testing, except
for learning, were used, and the levels of accuracy of the neural networks were checked
through testing. This is called test accuracy.

Tests were conducted 50 times, and Table 2 shows the assessments made by NN,
CNN, or LSTM with respect to the non-accident and accident data. The graphs on the left
represent the accelerations and angles with respect to non-accident and accident data, and
the standards of the correct answer are 0 for non-accident and 1 for accident data.
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Figure 11. Training accuracy and loss. The horizontal axis of the graphs indicates the number of
learning cycles.

Table 2. Comparison of a NN, CNN, and LSTM.

Acceleration Angle Correct Answer NN CNN LSTM

No Accident
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For non-accident data, the correct answer approaching 0 means that a correct judgment
was made. Although all of NN, CNN, and LSTM outputted values near 0, the LSTM model
was closest to 0.

For accident data, the correct answer approaching 1 means that a correct judgment
was made. The NN outputted a value of 0.734 once among two accidents but outputted
a value of 0.205 for the remaining one time, making a wrong judgment. The CNN made
a superior judgment to NN, but the LSTM model showed a point of 0.9, indicating the
highest accuracy.

Table 3 represents a table of average values obtained 50 times of experiments, respec-
tively, for NN, CNN, and LSTM with respect to training accuracy, test accuracy, training
time, and test time. σ is the standard deviation. For training accuracy, the CNN showed the
highest value of 98.87%, followed by the LSTM and NN models. The training time is the
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average time taken for the artificial intelligence to optimize up to the parameters through
the output after receiving the input, and the test time is the time taken for the data to be
inputted into the trained artificial intelligence model and then outputted. For the training
time, the NN had the fastest time of 22.54 ms, and the LSTM had the longest time. When
the data were inputted and tested after training, the LSTM showed the best test accuracy
of 98.25%, compared to the training accuracy. For the test time, the NN took the shortest
time, 1.34 ms, as it did for the training time. A fast test time means that the data judgment
occurs rapidly when used in an actual situation. Of course, the LSTM model had a 0.5 ms
(=0.0005 s) difference from the NN. However, the sampling time was 50 ms (=0.05 s), and
the test time was very small, compared to the sampling time, and thus negligible. The
training accuracy was higher in CNN than in LSTM, but the test accuracy was higher in
LSTM. This means that when the CNN trains, there is a possibility of mistaking the feature
points for the training data. When CNN recognizes a graph from an image point of view, it
is possible to misjudge a non-accidental motion of a similar shape as an accident. Since
LSTM checks the changing process of the axis itself, it can be analyzed with more focus on
the change of the axis.

Table 3. Comparison of training and test results by type of artificial intelligence algorithm.

NN CNN LSTM

Tr_Acc[%] (σ) 91.96 (1.23) 98.87 (1.38) 97.17 (0.50)

Ts_Acc[%] (σ) 86.75 (4.78) 95.75 (3.41) 98.25 (3.54)

Tr_Per[ms] (σ) 22.54 (1.18) 31.87 (1.36) 41.83 (2.36)

Ts_Per[ms] (σ) 1.34 (0.47) 1.50 (0.50) 1.88 (0.48)

Figure 12 shows the receiver operating characteristic (ROC) curves of LSTM, CNN,
and NN. The ROC curve is a curve representing the performance of how well the class of
binary classification can be distinguished [22]. For example, when an accident situation
is set to 1, and a non-accident situation is set to 0, there are four cases: 1 is judged as
1 (true positive), 0 is judged as 1 (false positive), 1 is judged as 0 (false negative), and
0 is judged as 0 (true negative). Additionally, through these classifications, sensitivity,
specificity, accuracy, error rate, precision, etc. can be identified. The x-axis (false positive
rate (FPR)) shows a case that non-accident (0) is judged as an accident (1), and the y-axis
(true positive rate (TPR)) shows a case that an accident (1) is judged as an accident (1). It
is possible to know what artificial neural network can distinguish between the accident
and non-accident situations better by using the ROC curve for the artificial neural network
with outputs 1 and 0 for accident and non-accident. The better the distinction is, the more
the ROC curve leans to the corner side at the left top. According to the graph, the ROC
curve of the LSTM model leans toward the utmost top left. Next to the LSTM, the CNN
model leans toward the top left, and the NN shows a lower distinguishment performance
than the other two artificial neural network models.

3.2. Testing with Airbag

After completion of the artificial intelligence training and simulation testing, to test it
by applying it to an actual hardware system, a collision situation was reproduced using a
mannequin and a motorcar, as shown in Figure 13.
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Figure 12. ROC curves of LSTM, CNN, and NN.

Figure 13. Motorcar with a mannequin for collision testing.

The LSTM program was inserted into the Raspberry PI, combined with the MPU6050
sensor module, etc., and it was made into a bag with an airbag and worn by a mannequin.
When the motor car collides with an obstacle, and the mannequin flies off, it shows the
airbag exploding from the bag the mannequin was wearing. It was confirmed that the
airbag inflated before the mannequin hit other objects, as shown in Figure 14.
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Figure 14. Airbag operation confirmation before the collision.

4. Conclusions

This paper proposed a system to operate an airbag by judging whether an accident
involving a bike driver occurred using LSTM. When using the time series feature of the data
using LSTM, it was confirmed that the accuracy of judgment was higher than that of a single
judgment on the existing input data. Through these strengths, it could predict whether the
current situation is an accident by using the time information on the change in the driving
state of the driver after the occurrence of an accident. In addition, it shows it is possible
to train a model using the sensor data with respect to three acceleration axes and three
angle axes, and judge and distinguish the situation from these data. Thus, we confirmed
the possibility of a system that can protect the rider by judging the accident situation of the
rider using the IMU sensor and artificial intelligence algorithm, and operating the airbag
according to the situation.

In this study, the number of nodes and rarities of NN, CNN, and LSTM were limited
to find an optimized model in the same environment, but to optimize the model itself, it is
necessary to simplify the structure of the plant by reducing the weight or parameters of
the model. To be sure, more data should be collected in order to judge other additional
behaviors. If so, it is expected that it can be used for bikes as well as for other uses.
However, there is an issue about the black box problem, i.e., the process of accident
judgment is not yet known. Additional research such as explainable artificial intelligence
(XAI) is needed to interpret the malfunction and the process of deriving the correct answer.
Through such studies, the correlation between the given data and the answer inferred by
the algorithm is analyzed, and it is expected that the reliability and stability of the model
can be further increased.
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