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Abstract
While plant community theory tends to emphasize the importance of abiotic hetero-
geneity along niche axes, much empirical work seeks to characterize the influence 
of the absolute magnitude of key abiotic variables on diversity. Both magnitude (as 
reflected, e.g., by a mean) and heterogeneity (variance) in abiotic conditions likely 
contribute to biodiversity patterns in plant communities, but given the large number 
of putative abiotic drivers and the fact that each may vary at different spatiotemporal 
scales, the challenge of linking observed biotic patterns with the underlying envi-
ronment remains acute. Using monitoring data from a natural resource agency, we 
compared how well statistical models of the mean, heterogeneity, and both the mean 
and heterogeneity combined of 17 abiotic factor variables explained patterns of forb 
species richness in Northeast Ohio, USA. We performed our analyses at two spatial 
scales, repeated in spring and summer across four forest types. Although all models 
explained a great deal of the variance in species richness, models including both the 
mean and heterogeneity of different abiotic factors together outperformed models 
including either the mean or the heterogeneity of abiotic factors alone. Variability in 
forb species richness was mostly due to changes in mean calcium levels regardless of 
forest type. After accounting for forest type, we were able to attribute variation in 
forb species richness to changes in the heterogeneity of different abiotic factors as 
well. Our results suggest that multiple mechanisms act simultaneously according to 
different aspects of the abiotic environment to structure forb communities, and this 
underscores the importance of considering both the magnitude of and heterogene-
ity in multiple abiotic factors when looking for links between the abiotic environ-
ment and plant community patterns. Finally, we identify novel patterns across spatial 
scales, forest types, and seasons that can guide future research in this vein.
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1  | INTRODUC TION

A longstanding goal in ecology is to understand how species' re-
sponses to the environment will scale up to community‐level pat-
terns (Braun, 1950; Cornell & Lawton, 1992; HilleRisLambers, Adler, 
Harpole, Levine, & Mayfield, 2012; Raup, 1942; Tilman, 1982). 
However, it is often difficult to incorporate realistic abiotic complexity 
into research questions because organisms can respond to multiple 
abiotic factors in different ways. For example, species in a community 
might show classic niche differentiation with respect to one abiotic 
variable (McKane et al., 2002), while simultaneously sharing a single 
niche optimum for some other variable (Vergnon, Ooi, & Freckleton, 
2017). Individual abiotic factors vary through time and have unique 
spatial characteristics, differing in their range of variation and scale of 
spatial autocorrelation. Given all this complexity, it is easy to see why 
the role of abiotic drivers is often simplified, especially in research 
emphasizing other aspects of plant community structure. Establishing 
how plant communities are impacted by multiple abiotic factors that 
vary at different spatial and temporal scales is nevertheless a crucial 
step toward a more complete picture of spatial plant ecology.

Recent simulation work has shown promise in using spatial statis-
tics to distinguish between plant community patterns that arise from 
different mechanisms (Brown, Illian, & Burslem, 2016). However, as 
the authors point out, ignoring the complexity of the abiotic environ-
ment will likely limit the application of this approach to real systems, 
because the signature that results from a given biotic mechanism 
may depend on the spatial structure of the abiotic environment. In 
other words, regardless of whether our central interest is in the abi-
otic drivers themselves or in other processes that structure plant 
communities, a comprehensive understanding of the influence of 
abiotic conditions is critical.

Research concerning abiotic enrichment (Clark & Tilman, 2008), 
the stress‐gradient hypothesis (Maestre, Callaway, Valladares, & 
Lortie, 2009), the available energy (AE) hypothesis (Lundholm, 2009), 
and others (Burton, Mladenoff, Clayton, & Forrester, 2011; McEwan 
& Muller, 2011) relate community patterns to the amount or level 
of key abiotic factors, such as the concentration of a soil nutrient. 
In these situations, abiotic conditions at a site could be measured 
in terms of the mean level of each important factor, and the spe-
cies richness at that site results in part from how many species have 
these mean conditions within their niche (Scheffer & van Nes, 2006). 
If the total number of species able to tolerate different abiotic con-
ditions varies in a systematic way (Myers & Harms, 2009), such that 
there is a tendency toward greater richness as conditions become 
more favorable, then we would expect to see a correlation between 
the mean abiotic conditions and species richness. Relationships be-
tween mean conditions and richness may be further influenced by 
relative fitness differences among competitors for different levels 
of a limiting resource (Clark & Tilman, 2008), or by interactions with 
dispersal ability leading to mass effects (Mouquet & Loreau, 2003; 
Shmida & Wilson, 1985).

Abiotic heterogeneity—as measured by the spatial variance or 
coefficient of variation of abiotic variables—can also be related 

to patterns of species richness (Stein, Gerstner, & Kreft, 2014). 
Relationships between species diversity and abiotic heterogeneity 
are commonly referred to as heterogeneity–diversity relationships 
(HDRs; Lundholm, 2009), terminology that we adopt throughout 
this paper. We might expect plant richness to increase with abiotic 
heterogeneity if communities are structured by niche differences 
(Chu & Adler, 2015; Kneitel & Chase, 2004; McKane et al., 2002). 
HDRs can also arise in other ways, such as when abiotic hetero-
geneity promotes microbial diversity which in turn increases plant 
species diversity (van der Heijden et al., 1998), or if sampling units 
encompass a wide range of abiotic conditions, for example, across 
habitat types with different regional species pools (Davies et al., 
2005).

There is no a priori reason that both the AE and HDR hypoth-
eses cannot act simultaneously (HilleRisLambers et al., 2012; Kerr 
& Packer, 1997; Kreft & Jetz, 2007). When they do, both the mean 
and the variance in abiotic conditions will influence plant diversity. 
Observational studies can be extremely helpful for confronting the 
complexity inherent in the sheer number of distinct ways that abiotic 
conditions can scale up to community patterns. Using observational 
data from a natural resource agency, we show how characterizing 
both the mean and heterogeneity in abiotic conditions simultane-
ously is a powerful way to identify potential mechanisms structuring 
herbaceous plants across spatial scales, seasons, and forest commu-
nity types. This type of analysis can be a productive precursor to 
future experiments that pin down mechanism, particularly in under-
studied systems.

The current study addresses the following three gaps common 
in plant community ecology: (1) plants respond to an array of abi-
otic factors (Pausas & Austin, 2001), but many studies only include 
one or a few factors (Stevens & Carson, 2002). (2) When studies do 
include more than one abiotic factor, they are usually concerned 
with the effect of either abiotic mean conditions or abiotic hetero-
geneity on community patterns (e.g., Burton et al., 2011; Tamme, 
Hiiesalu, Laanisto, Szava‐Kovats, & Pärtel, 2010; but see Richard, 
Bernhardt, & Bell, 2000), or they treat mean conditions and hetero-
geneity as alternative hypotheses (Lundholm, 2009). And finally, (3) 
Abiotic drivers change across spatial and temporal scales (e.g., soil 
calcium with bedrock type [Bellemare, Motzkin, & Foster, 2005], 
or nitrogen with season, as in the vernal dam hypothesis [Tessier & 
Raynal, 2003]), but many studies consider only a single scale (Baer, 
Blair, Collins, & Knapp, 2004; Kreft & Jetz, 2007). We addressed 
points (1)–(2) through a statistical analysis of 29 herbaceous layer 
forb communities located across four common forest types found 
in the Allegheny plateau ecoregion, for which we have estimates 
of both the mean and spatial variance of 17 different abiotic fac-
tors (34 abiotic factor measurements). To explore point (3), we ran 
analyses across 2 spatial scales, repeated in spring and summer. 
Using these data, we built a suite of linear and linear mixed‐effects 
models to determine which abiotic factor measurements explained 
the most variation in species richness within and across different 
forest community types at two spatial scales in spring compared 
to summer.
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2  | METHODS

2.1 | Study system

Forbs—flowering, nongrass herbaceous plants—are an important 
yet understudied component of forest ecosystems (Gilliam, 2014; 
Figure 1). Often both common and diverse, forbs contribute to 
ecosystem services like nutrient cycling (Gilliam, 2007), and serve 
as nectaries and hosts for pollinators (Bess, 2005; Davis & Cipollini, 
2014; Hanula, Ulyshen, & Horn, 2016). They also account for a large 
proportion of plant biodiversity in temperate forests. For example, 
most spring ephemerals (species that begin to bloom in early April, 
then die back and give way to a summer vegetation community at 
the end of May) are forbs, and therefore drive much of the compo-
sitional change in plant communities across seasons (Gilliam, 2014). 
There have been a multitude of studies assessing the connection be-
tween resource availability and herbaceous layer species richness 
in temperate forests (including forbs; e.g., Bellemare et al., 2005; 
Burton et al., 2011; Lundholm, 2009; McEwan & Muller, 2011; Peet, 
Palmquist, & Tessel, 2014). Recent studies have also highlighted the 
importance of biotic processes in forest forb communities, like dis-
persal limitation (Burton et al., 2011; Ehrlén & Eriksson, 2000; Flinn 
& Vellend, 2005; Pärtel, Szava‐Kovats, & Zobel, 2011) and the role of 
plant‐soil feedbacks (Burke, Klenkar, & Medeiros, 2018). Much less 
common, however, are studies examining the relationship between 
temperate forest forbs and abiotic heterogeneity.

2.2 | Study area

Sampling was conducted in collaboration with a monitoring program 
implemented by Cleveland Metroparks (CMP). The sites used in 
our analysis are a subset of 100 sights chosen randomly using the 
Generalized Random Tessellation Stratified (GRTS) spatial sampling 
method at the start of the monitoring program in 2010 (Mack & 
Robison, 2010). At each site, a 400 m2 plot composed of four contigu-
ous 100 m2 subplots (of any configuration) was placed to encompass 
an area with similar canopy species, and without any conspicuous 

inclusions (e.g., a vernal pool, or a drastic change in slope aspect). 
One plot with just two subplots was also included in our analysis.

Spring sampling was conducted by a crew led by the first au-
thor (17 April–14 May), and summer sampling was conducted by 
two crews of CMP employees led by the second author (23 June–8 
September). CMP's crews only sample in summer, so our spring 
sampling was done without the benefit of CMP's field staff. For this 
reason, visiting all 100 sites was not feasible in spring. As such, we 
selected 4–5 plots in each of 6 land holdings (29 plots total) that 
had at least one tree individual >60 diameter at breast height (DBH; 
to exclude early successional communities). In each land holding, 
we attempted to select plots representing the four terrestrial hard-
wood community types commonly found in Northeast Ohio: Beech–
Maple, Floodplain, Mixed, and Oak forests (Eysenbach & Hausman, 
2013), although this was not always possible (Figure 2).

2.3 | Field sampling protocol

Sampling procedures were based on the North Carolina Vegetation 
Survey Method (Peet, Wentworth, & White, 1998). Data were col-
lected on all plant species (including non‐natives) found growing to 
the height of the tallest herbaceous species off the forest floor, in-
cluding tree seedlings, ferns, grasses, sedges, mosses, and forbs. As 
we did not directly control for functional and/or phylogenetic re-
latedness in our study, we limited our analyses to include only forb 
species because we were especially interested in spring ephemeral 
communities. Species cover was assessed in each subplot (α) and 
each plot (γ) using the Braun‐Blanquet method (Peet et al., 1998; 
Figure 2). Cover data were converted to presence–absence data to 
get a species count in each plot (plot‐level species richness, γS) and 
subplot (subplot‐level species richness, αS). Sometimes, individuals 
of the same genus but different species (identifiable via unique char-
acteristics, like smooth or hairy stems in the genus Solidago) were 
nevertheless unidentifiable to species at the time of sampling. These 
were identified as Genus sp. 1, 2, 3, etc., allowing us to accurately 
measure species richness without a confirmed species identification.

Approximately 340 g of soil taken from within 10 cm of the sur-
face were collected with a soil probe at randomly chosen points 
throughout each subplot (8 plugs/subplot), providing subplot‐level 
composites for each abiotic factor j, αj. Undried soil samples were 
stored in Whirl‐Pak bags at room temperature for the sampling sea-
son, and then sent to A&L Great Lakes Laboratories (Fort Wayne, 
Indiana, USA) where samples were dried, ground, sieved and then 
analyzed for a suite of variables known to affect plant performance: 
organic matter (%), phosphorus (Bray 1 parts‐per‐million [ppm]), pH, 
cation exchange capacity (meq/100 g), nitrogen (% total), carbon (%), 
and the carbon:nitrogen ratio. Potassium, magnesium, and calcium 
were also measured, as both absolute quantities (e.g., in ppm), and 
relative to one another (e.g., % base saturation; Table 1).

In the center of each subplot, leaf litter and organic layer depth 
were measured to the nearest 10th of a centimeter, and light data 
were collected using a densiometer. Restrictive layer depth was also 
measured in the center of each subplot using a tile probe (Table 1). 

F I G U R E  1   Example forb community in a forest understory 
located in Northeast Ohio. Species pictured include Cardamine 
concatenata, Dicentra sp., Geranium maculatum, Floerkea 
proserpinacoides, Podophyllum peltatum, and Viola sp.
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Organic layer depth in summer was extremely zero‐inflated and was 
excluded from the analysis.

2.4 | Seasonal designations

Each plant was designated a spring or summer species based on 
the date of up to three flowering specimens collected since 1990 
found digitized in the Ohio State Herbarium (Museum of Biological 
Diversity Herbarium, The Ohio State University, 2016; Table 2). 
Observed flowering times were also recorded in the field by the 
first author and used to corroborate and supplement dates collected 
online. Spring and summer species had an average flowering date 
before and after June 1, respectively (except Allium tricoccum, which 
was designated as a spring species since it loses its spring vegetative 
parts before flowering and senescing in June [Vasseur & Gagnon, 
1994]). Only designated spring species were used in the spring sam-
ple, whereas all identifiable plants were used in the summer sample, 
and thus often included spring ephemeral species that had not yet 
senesced, especially early in the summer season. We chose this ap-
proach because spring species that persist into summer have fully 
emerged, while summer species that start to appear in spring have 
not. Species that were only identifiable to genus were included in 
the analysis and designated a season based on the natural history of 

their taxonomic group (e.g., violets only identifiable to Viola sp. were 
designated as spring species).

2.5 | Community patterns and abiotic 
measurements

Species presence data were recorded for each plot (to compute 
plot‐level species richness, γS) and subplot (to compute subplot‐
level species richness, αS; Figure 2). As all abiotic factors were 
measured at the subplot level, we were able to assess the mag-
nitude of abiotic conditions at both the subplot level and, by av-
eraging across subplot‐level values, at the plot level (αj and ᾱj, 
respectively). Abiotic heterogeneity could only be assessed at 
the plot level and was measured as the coefficient of variation 
(CV) across subplot‐level values within a plot (cv(αj)) (Figure 2). 
Abiotic factors were measured in units of very different magni-
tude (Table 1). To facilitate comparison between linear models, all 
abiotic predictor variables (i.e., the raw data taken at the subplot‐
level, the plot‐level means as measured via the raw data, and the 
plot‐level coefficient of variation as measured via the raw data) 
were first normalized, if strongly skewed, via a log or square root 
transformation. All measurements were then standardized (z‐
transformed) to have mean of 0 and a variance of 1.

F I G U R E  2   The distribution of sampled plots and the forest community types they represent within Cleveland Metropark's park 
boundaries (located around Cleveland, Ohio). Pictured alongside is an example of a single plot, with levels γ (whole plot) and α (subplots) used 
to denote at what scale measurements were taken
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2.6 | Analysis

2.6.1 | Statistical modeling and model selection

Our first goal was to identify the best statistical models of plot‐level 
and subplot‐level species richness (γS and αS, respectively) via model 
selection. Our general approach was to begin with a full model for 
species richness, γS, that included the plot‐level means of all 17 abi-
otic factors (ᾱj) and then conduct model selection to determine the 
best predictors of species richness. Except where noted, all model 
selection was done using the dredge function in the R package 
MuMIn (Bartoń, 2018), wherein subsets of a full model were ranked 
according to their AICC score (Hurvich & Tsai, 1989). Since there was 
collinearity between multiple abiotic measurements (Figure 3), we 
restricted the dredge so that any pairs of abiotic terms with >40% 
correlation would not be included together in any model subsets. 
After each dredge, models with an AICC score within 2.0 of the 
best model's AICC were retained. Diagnostics were then run on 

TA B L E  1   Minimum and maximum measured values of all 
predictor variables αj for abiotic factor j across all subplots α

Abiotic factors 
(units) Notation

Sampled range (αj)

Spring Summer

Organic matter (%) αOM 1.7–14.6 1.7–31.5

Phosphorus (Bray 
1 ppm)

αP 1.0–191.0 1.0–22.0

Potassium (ppm) αKppm 41.0–162.0 23.0–153.0

Magnesium (ppm) αMgppm 30.0–300.0 30.0–345.0

Calcium (ppm) αCappm 100.0–3,400.0 50.0–2,800.0

pH αpH 3.5–8.0 3.6–7.2

Cation exchange 
capacity 
(meq/100 g)

αCEC 3.4–26.8 1.9–24.9

Potassium base 
saturation (%)

αK 0.6–7.4 0.7–5.7

Magnesium base 
saturation (%)

αMg 1.0–27.4 1.0–24.6

Calcium base 
saturation (%)

αCa 2.2–91.9 2.0–89.3

Carbon (%) αC 1.0–8.5 1.0–18.3

Nitrogen (% total) αN 0.0–0.6 0.0–0.8

Carbon to nitro-
gen ratio

αC:N 8.9–36.9 10.3–29.0

Light*1.04 (%) αlight 62.0–95.7 0.2–23.2

Litter depth (cm) αld 0.0–11.0 0.0–5.1

Organic layer 
depth (cm)

αod 0.0–3.5 –

Restrictive layer 
depth (cm)

αrd 9.0–101.0 9.0–101.0

Note: Soil chemistry variables (organic matter–C:N ratio) represent a 
composite of soil taken across a subplot. Remaining variables (light–re-
strictive layer depth) were measured from the center of each subplot.

TA B L E  2   List of forb species identified in our study

Spring species Summer species

Actaea pachypoda Actaea pachypoda

Alliaria petiolata Ageratina altissima var. altissima

Allium canadense Agrimonia gryposepala

Allium tricoccum Agrimonia parviflora

Anemone quinquefolia Agrimonia pubescens

Arisaema dracontium Agrimonia sp.

Arisaema triphyllum Alliaria petiolata

Asarum canadense Allium canadense

Barbarea verna Allium tricoccum

Camassia scilloides Amphicarpaea bracteata

Cardamine concatenata Apocynum cannabinum

Cardamine diphylla Arctium lappa

Cardamine douglassii Arisaema dracontium

Cardamine bulbosa Arisaema triphyllum

Caulophyllum thalictroides Asarum canadense

Claytonia virginica Bidens sp.

Conopholis americana Blephilia hirsuta

Dicentra canadensis Caulophyllum thalictroides

Dicentra cucullaria Cerastium fontanum ssp. 
vulgare

Duchesnea indica Circaea lutetiana

Enemion biternatum Clematis virginiana

Erigenia bulbosa Collinsonia canadensis

Erythronium americanum Conium maculatum

Floerkea proserpinacoides Conopholis americana

Fragaria virginiana Cryptotaenia canadensis

Galium aparine Desmodium glutinosum

Geranium maculatum Doellingeria umbellata

Geum vernum Duchesnea indica

Glechoma hederacea Epifagus virginiana

Hepatica nobilis Epilobium coloratum

Hesperis matronalis Epilobium sp.

Houstonia caerulea Epipactis helleborine

Hydrophyllum virginianum Equisetum hyemale

Lilium sp. Erechtites hieraciifolius

Luzula multiflora Erigeron annuus

Maianthemum canadense Eurybia macrophylla

Maianthemum racemosum Euthamia graminifolia

Mertensia virginica Eutrochium maculatum

Mitchella repens Eutrochium purpureum

Mitella diphylla Fragaria vesca

Nabalus sp. Galium aparine

Osmorhiza claytonii Galium concinnum

Osmorhiza longistylis Galium sp.

Oxalis stricta Galium triflorum

(Continues)
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Spring species Summer species

Packera aurea Geranium maculatum

Packera obovata Geum canadense

Panax trifolius Geum sp.

Phlox divaricata Glechoma hederacea

Podophyllum peltatum Hackelia virginiana

Polemonium reptans Heliopsis helianthoides

Polygonatum biflorum Hepatica nobilis

Polygonatum pubescens Heracleum maximum

Potentilla simplex Hesperis matronalis

Prosartes lanuginosa Houstonia caerulea

Ranunculus abortivus Hydrophyllum canadense

Ranunculus fascicularis Hydrophyllum virginianum

Ranunculus ficaria Hypericum perforatum

Ranunculus hispidus Impatiens capensis

Ranunculus recurvatus Impatiens pallida

Ranunculus repens Impatiens sp.

Ranunculus sp. Iris sp.

Sanguinaria canadensis Jeffersonia diphylla

Symplocarpus foetidus Juncus tenuis

Taraxacum officinale Lactuca sp.

Tiarella cordifolia Laportea canadensis

Thalictrum thalictroides Lobelia sp.

Trillium erectum Luzula acuminata

Trillium grandiflorum Lycopus sp.

Trillium sessile Lysimachia ciliata

Trillium sp. Lysimachia nummularia

Tussilago farfara Maianthemum canadense

Unknown forb Maianthemum racemosum

Uvularia sessilifolia Mitchella repens

Veronica officinalis Mitella diphylla

Viola blanda Monarda clinopodia

Viola canadensis Monarda fistulosa

Viola pubescens Monotropa uniflora

Viola rostrata Myosotis scorpioides

Viola sororia Nabalus sp.

Viola sp. Osmorhiza claytonii

Viola striata Osmorhiza longistylis

Zizia aptera Oxalis stricta

Zizia aurea Packera obovata

  Persicaria hydropiperoides

  Persicaria maculosa

  Persicaria sagittata

  Persicaria sp.

  Persicaria virginiana

  Phytolacca americana

TA B L E  2   (Continued)

(Continues)

Spring species Summer species

  Pilea pumila

  Plantago rugelii

  Plantago sp.

  Podophyllum peltatum

  Polemonium reptans

  Polygonatum biflorum

  Polygonatum pubescens

  Potentilla simplex

  Prosartes lanuginosa

  Prunella vulgaris

  Ranunculus abortivus

  Ranunculus acris

  Ranunculus hispidus

  Ranunculus recurvatus

  Ranunculus sp.

  Rubus hispidus

  Rudbeckia laciniata

  Rumex obtusifolius

  Rumex sp.

  Sanguinaria canadensis

  Sanicula odorata

  Sanicula sp.

  Scutellaria lateriflora

  Sedum ternatum

  Sisyrinchium sp.

  Solidago caesia

  Solidago flexicaulis

  Solidago gigantea

  Solidago patula

  Solidago rugosa

  Solidago sp.

  Symphyotrichum cordifolium

  Symphyotrichum lanceolatum

  Symphyotrichum lateriflorum

  Symphyotrichum sp.

  Symplocarpus foetidus

  Taraxacum officinale

  Thalictrum dasycarpum

  Thalictrum pubescens

  Thalictrum thalictroides

  Thaspium barbinode

  Tiarella cordifolia

  Trifolium repens

  Trillium sp.

  Tussilago farfara

TA B L E  2   (Continued)

(Continues)
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each retained model to check for outliers and normally distributed 
residuals. If present, we removed the outlier and/or log‐ or square 
root‐transformed the response variable to meet the assumption of 
normally distributed residuals, then re‐dredged the full model. If 
there were outliers and non‐normal residuals, normality was cor-
rected first.

We next repeated this procedure with a full model that included 
the plot‐level heterogeneities (cv(αj)) instead. Once the best mean‐
based and CV‐based models were attained, we combined the sur-
viving terms from each into a third full model and conducted model 
selection again, to see whether the combined model would better 
predict species richness compared to the best models based on abi-
otic mean or CV alone. To facilitate comparison of AICC scores, we 
removed the same outliers from all full models within a season (e.g., 
if a plot was an outlier in the mean model, it was also removed from 
the CV model). We identified the best statistical models for subplot‐
level species richness (αS) in the same way, using sampled subplot‐
level conditions (αj) as abiotic predictors.

2.6.2 | Assessing different model structures

The procedure described in the preceding paragraph was repeated 
for several classes of “full model,” including linear models that 
treated all plots as independent sampling units, and linear mixed‐ef-
fects models that allowed plot or subplots in different forest types to 
differ in their slope and/or intercept (Table 3). In other words, linear 
mixed‐effects models were used to account for the nonindepend-
ence of plots found in similar forest communities (step B in Table 3).

Each class of model allowed us to answer a different question 
about the richness patterns we observed. Linear models (step A 
in Table 3) describe the relationship between species richness and 
abiotic factors across all plots, regardless of forest community type. 
Linear mixed‐effects (LME) models (steps C‐D in Table 3) describe 
the relationship between species richness and abiotic factors within 
forest types. For example, a variable intercepts model (step C1) sug-
gests that mean richness across forests varies but the overall rela-
tionship with the abiotic factor does not. A variable slopes model 

(step C2) suggests that the overall relationship with an abiotic factor 
depends on forest community type. In steps D1 and D2, best models 
from C1 and C2 were modified to allow slopes and intercepts to vary 
simultaneously.

We did not build linear models for subplot‐level richness because 
of the spatial proximity of subplots within plots. Instead, we com-
pared two types of LME models: one with subplots grouped by plots, 
and another with subplots grouped by plots nested in forest type.

Models were screened for variable slopes in an iterative fash-
ion (i.e., separate models were built to cycle through each abiotic 
measurement separately, instead of dredging a full model). In models 
with variable slopes and intercepts (e.g., step D1 in Table 3), we did 
not force slopes and intercepts to vary according to a particular abi-
otic factor. This allowed us to see whether a different abiotic mea-
surement was important within different forest community types, 
compared to those driving patterns across plots and/or forest types. 
To make sure this practice was not obscuring a best model, we also 
built expanded models where any abiotic measurement associated 
with variable slopes was also added to the suite of best predictors 
identified in previous steps. In all LME models, a diagonal positive 
definite matrix was used to specify the variable slopes part of the 
model to control for any covariance between intercepts and slopes.

All linear models were fit using ordinary least squares. All LME 
models were fit using maximum likelihood in the lme function in the R 
package nlme (Pinheiro, Bates, DebRoy, Sarkar, & R Core Team, 2018). 
The variation explained by LME models is given in terms of marginal‐ 
and conditional‐r2 values (Johnson, 2014). The marginal‐r2 value is the 
variance explained in species richness across plots—for example, the 
single intercept and slope for each predictor that describes its effect 
on species richness without accounting for forest type. The condi-
tional‐r2 value in the LME model is the marginal‐r2 plus the variance 
explained by the intercepts and/or slopes that vary by forest type.

Each step in Table 3 yielded best candidate models describing 
how richness is related to mean abiotic conditions, abiotic heteroge-
neity, or both (except B, which considered the null model including 
no abiotic predictor variables). From among these, AICC scores and 
the amount of variance explained across study levels were used to 
choose a suite of overall best models for each season. All analyses 
were conducted in R (R Foundation for Statistical Computing).

2.7 | Variance partitioning

After assembling a suite of best models, variance partitioning was 
used to determine whether more variance in plot‐level species rich-
ness could be attributed to mean abiotic conditions or to abiotic het-
erogeneity. This allows a higher‐level synthesis of the results from 
our series of fitted models. For each season, the varpart function 
in the R package vegan (Oksanen et al., 2018) was used to partition 
the variance in species richness explained into the portion attrib-
uted to mean abiotic conditions, the portion attributed to the het-
erogeneity in abiotic conditions, the portion attributed to both (i.e., 
indistinguishable due to correlation), and the portion that remained 
unexplained by our abiotic measurements.

Spring species Summer species

  Verbena urticifolia

  Verbesina alternifolia

  Veronica officinalis

  Veronica serpyllifolia

  Viola pubescens

  Viola sp.

  Viola striata

  Zizia aurea

Note: The spring species list does not include species with an average 
flowering date >June 1, as these were not included in our statisti-
cal analysis. The summer species list includes all identifiable species, 
including persisting spring species.

TA B L E  2   (Continued)
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Using the abiotic predictors from the subset of best model(s) 
from the statistical analysis, we did variance partitioning at two 
different levels: once using all plots and excluding abiotic pre-
dictors whose slopes varied with forest community type, and 
once for plots within each forest type and including abiotic factor 
predictors whose slopes varied depending on forest. In the latter 
analysis, we only partitioned variance between two abiotic pre-
dictors at a time since sample size was low within forests (n = 6, 
9, 5, and 9 for Beech–Maple, Floodplain, Mixed, and Oak forests, 
respectively). We then compared results across all pairwise com-
binations of abiotic predictors, but retained only those pairs that 
had the smallest amount of unexplained variance to use in our 
analysis.

3  | RESULTS

3.1 | Statistical modeling

Mean abiotic conditions and heterogeneity in abiotic conditions 
across multiple factors together explained substantial variation 
in plot‐level forb richness in both seasons (Table 4). For example, 
across plots (i.e., from step A in Table 3), plot‐level richness increased 
with mean calcium availability in both seasons (Figure 4a,b) and de-
creased with mean phosphorus and potassium availability in sum-
mer (Figure 4c,d). Across plots and after accounting for forest type 
(steps C–D), we found negative heterogeneity–diversity relation-
ships (HDRs) in spring (Figure 4e,f), but positive HDRs in summer 

F I G U R E  3   Correlation structure across abiotic factor measurements taken in spring and summer
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(Figure 4g,h). Within forest types, trends in plot‐level richness 
changed according to mean abiotic conditions in spring (Figure 4i,j), 
but heterogeneity of different abiotic factors in summer (Figure 4k).

After accounting for plot, subplot‐level richness increased across 
subplots with increasing mean subplot‐level calcium in both seasons, 
but this relationship was much stronger in summer (slope  =  0.73) 
compared to spring (slope = 0.37; Figure 5a,b).

3.2 | Variance partitioning

Across all plots, most of the variability in plot‐level species richness 
was attributed to mean abiotic conditions in spring, and in summer 
this trend became even more pronounced in that no variability could 
be attributed to abiotic heterogeneity alone (Figure 6a). Within most 
forest community types, however, more variability in species rich-
ness was attributed to abiotic heterogeneity than to mean abiotic 
conditions, and this was true for both seasons (Table 5, Figure 6b,c).

4  | DISCUSSION

In spring, 50% of the variation in forb species richness was explained 
by forest community type alone, with no measured abiotic predictors 
included in the linear mixed‐effects models. In summer, only 30% of 
the variation in forb species richness was explained by forest com-
munity type, likely because Floodplain and Mixed forests, as well as 
Oak and Beech–Maple forests, had similarly sized species pools in 
summer. In other words, mean richness varied in a predictable way 
across forest community types in spring, and somewhat less so in 

summer. Differences in the mean number of species could be due to 
differences in the size of a shared species pool (e.g., if certain forest 
types include additional species in an otherwise shared pool), or to 
the presence of a unique species' pools for each forest community 
type. Notably, the AICc score of more complicated models including 
abiotic predictors were always much lower than the AICc scores of 
the null model including only forest community type (∆AICC = 15.9 
in spring and ∆AICC = 16.2 in summer). A lower AICc score compared 
to the null model indicates that the additional variation in forb spe-
cies richness patterns explained after adding abiotic predictors, for 
example, the intercept(s) and slope(s) of the models shown in Table 4 
are not simply due to a more complex model, but actually reflect 
additional variation explained by the measured abiotic factors after 
accounting for differences in mean richness across forest types. We 
review which predictors best explained forb species richness and 
offer some brief interpretation of our results based on when we 
found support for the AE and HDR hypotheses.

4.1 | Summary

Our results confirm that patterns of forb richness depend on both 
mean abiotic conditions and abiotic heterogeneity (Table 4, Figure 4). 
In spring, including both the mean and heterogeneity of different 
abiotic factors resulted in the best overall model and explained the 
most variation in plot‐level richness (Table 4), giving simultaneous 
support for the presence of heterogeneity–diversity relationships 
(HDRs) and the available energy (AE) hypothesis.

In summer, the mean model was the most supported according to 
its AICC score, but the heterogeneity model and the combined model 

TA B L E  3   Stepwise protocol used to generate candidate best models for species richness

Step Model type Question Modeling plot‐level richness (γS)

A: across plots Linear Can abiotic factors explain spe-
cies richness across plots?

Mean model A: full model included the mean 
of all abiotic factors as predictors.

CV model A: full model included the variabil-
ity of all abiotic factors as predictors.

B: unconditional means Linear mixed‐effects Are observations correlated 
with forest community type?

Unconditional model B: contained no abiotic 
predictors, only a grouping factor (e.g., 
plots in forests).

C–D Linear mixed‐effects Can abiotic factors explain 
patterns across and/or within 
forests?

Repeated step A, with forest type added as a 
grouping factor in the various full models

C1: across plots accounting for 
forest

Linear mixed‐effects 
with variable intercepts

Do abiotic factors explain 
changes in community patterns 
across forest types?

C1 models: keeping slopes constant, inter-
cepts varied by forest community type.

C2: within forests Linear mixed‐effects 
with variable slopes

Do abiotic factors explain 
changes in community patterns 
within forest types?

C2 models: slopes varied by forest type with 
a single intercept.

D1: across plots accounting for 
forest, and within forests

C1 with variable slopes Do the same or different abiotic 
factors explain patterns within 
forest types?

D1 models: allowed slopes to vary without 
forcing intercepts through a fixed point.

D2: within forests, and across 
plots accounting for forest

C2 with variable 
intercepts

Do the same or different abiotic 
factors explain patterns across 
plots and forests?

D2 models: allowed intercepts to vary along-
side slopes.
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explained more variance (Table 4). We suspect that the heterogene-
ity and combined models have inflated AICC scores because in sum-
mer, the penalty for dividing forest types into 4 categories was not 
justified given that Mixed and Floodplain forests had the same mean 
species richness, as did Oak and Beech–Maple forests. Since there 
was little correlation between means and CVs of the abiotic mea-
surements included in the summer models (Figure 3), we think the 
explanatory power of the combined model is biologically meaningful 
and not simply due to collinearity. We therefore interpret our results 
as evidence that summer plot‐level richness is also determined by 
both mean abiotic conditions and their heterogeneity.

Because our analysis makes use of an observational dataset, we 
cannot isolate the mechanisms underlying our results. Nevertheless, 
our findings are suggestive of which mechanisms are likely to be 
structuring community patterns at different study levels. Below, we 
highlight a few intriguing results and discuss possible mechanisms 
that might explain them.

4.2 | Positive heterogeneity–diversity relationships: 
pH and nitrogen heterogeneity in summer

In summer, richness increased with increasing pH and nitrogen het-
erogeneity: both positive HDRs (Figure 4g,h). This suggests that 
assemblages of summer species may differentiate along pH and ni-
trogen niche axes, while the lack of a similar HDR in spring suggests 
that assemblages of spring species do not. It is also possible that the 
spatial structure in pH and nitrogen changed seasonally such that 
HDRs occurred at a different scale in spring than summer, allow-
ing only the summer relationship to be detected by our sampling 
scheme.

Many herbaceous forbs found in these forests form and benefit 
from associations with arbuscular mycorrhizal fungi (AMF; Burke et 
al., 2018; Whigham, 2004). Soil chemistry properties including pH 
and nitrogen heterogeneity are likely to influence mycorrhizal com-
munities themselves (Coughlan, Dalpé, Lapointe, & Piché, 2000; 
Dumbrell, Nelson, Helgason, Dytham, & Fitter, 2010; Kluber et al., 
2012), as well as the relationship between plants and mycorrhizae 
(Johnson, Graham, & Smith, 1997). More research is needed to as-
sess whether plant–microbe interactions could scale up to contrib-
ute to the positive HDRs we observed in summer.

4.3 | Negative heterogeneity–diversity 
relationships: potassium and phosphorus 
heterogeneity in spring

In spring, we found that plot‐level richness decreased with increas-
ing potassium and phosphorus heterogeneity: both negative HDRs 
(Figure 4e,f). Negative HDRs can arise due to dispersal limitation 
(Lundholm, 2009). If spring species that differentiate across potassium 
and phosphorus conditions are also dispersal limited, an inability to ar-
rive and fill available niches could lead to low richness in plots with high 
abiotic heterogeneity. Alternatively, if more heterogeneous plots con-
tain subplots that can support fewer species, this too would explain the TA
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F I G U R E  4   Selected trends in plot‐level richness (γS). Plotted relationships correspond to models listed in Table 4 (and described in Table 3)
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appearance of negative HDRs (Yang et al., 2015). Indeed, mean phos-
phorus in spring is positively correlated with phosphorus heterogene-
ity (Figure 3). This means heterogeneous plots tend to include higher 
phosphorus concentrations, which could conceivably speed competi-
tive exclusion (Tilman, 1982) and lead to lower plot‐level richness (e.g., 
in Figure 4c,d,j).

4.4 | The available energy hypothesis: calcium, 
nitrogen, and other measures of habitat quality

When species respond to the magnitude rather than the hetero-
geneity of an abiotic factor, increasing the magnitude or “available 
energy” (AE) of that factor may either increase or decrease species 
richness. Theory supports both of these possibilities: increasing the 
availability of a limiting nutrient can lead to faster competitive ex-
clusion (Clark & Tilman, 2008; Tilman, 1982), as mentioned above. 

Alternately, increasing the level of a factor that is favorable to many 
different species, can increase the diversity of species that can 
thrive at that location (Lundholm, 2009). Our results cannot speak 
to mechanism, but we observed both patterns. Richness decreased 
with increased nitrogen availability in beech and Oak forests in 
spring (Figure 4j), and across plots in summer with increasing potas-
sium and phosphorus availability (Figure 4c,d). Conversely, in spring, 
plot‐level richness increased across mixed forests with increasing 
nitrogen (Figure 4j). Forb richness also increased with increasing cal-
cium availability in both seasons and at both spatial scales (Figures 
4a,b and 5a,b). The strength and persistence of this particular trend 
throughout our study, as well as its prevalence in the literature 
(Bellemare et al., 2005; Burton et al., 2011; McEwan & Muller, 2011; 
Peet et al., 2014), suggests it is worth further consideration. We note 
that mean calcium is also highly correlated with pH and potassium 
variability (Figure 3).

F I G U R E  5   Selected trends in subplot‐level species richness (αS). Plotted relationships correspond to models listed in Table 4. Numbers 
indicate to which plot each subplot belonged. The x‐axes for all abiotic predictors have been normalized for comparison, and community 
pattern response variables that were log‐ or square root‐transformed for analysis have been plotted with the original values on the y‐axis

F I G U R E  6   Proportion of variance explained in plot‐level species richness, γS, partitioned between mean abiotic conditions (light gray), 
abiotic heterogeneity (CV, in dark blue), both (mean + CV in white), and neither (unexplained in black). To partition variance explained across 
all plots before accounting for forest type (a), we excluded abiotic factor predictors that changed trends across forest community types (e.g., 
abiotic factors in column 3 of Figure 4). To partition variance explained within forest community types (b and c), we partitioned the variance 
explained in plot‐level species richness in each forest and included abiotic factor predictors that changed trends across forest community type
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4.5 | Effects of scale

To determine whether the response to resource availability depended 
on spatial scale, we also identified the best statistical models for sub-
plot‐level species richness using sampled subplot conditions (αj) as abi-
otic predictors and asked how results changed compared to plot‐level 
relationships. In both seasons, subplot‐level richness and plot identity 
were strongly correlated (step B conditional‐r2 = 90% in spring and 
summer). Plot‐ and subplot‐level richness were also strongly positively 
correlated (r2 = 84% and 88%). In other words, species‐rich plots had 
species rich subplots. Since species richness was so strongly corre-
lated at the plot‐ and subplot‐levels, and since calcium availability was 
an important predictor of plot‐level richness, we thought that calcium 
availability would also be related to forb richness at the subplot level.

Interestingly, we found that changes in mean calcium within plots 
did explain additional variation in species richness (compared to mod-
els without abiotic predictors in step B; ∆AICC = 12.0 in spring and 24.7 
in summer); however, this relationship was much stronger in summer 
(slope = 0.73) compared to spring (slope = 0.37; Figure 5a,b). In spring, 
subplot‐level richness did increase with increasing calcium (Figure 5a), 
but the relationship was weak, and most of the subplot‐level variance 
was only explained by accounting for plot identity (marginal‐r2 = 11%, 
conditional‐r2 = 88%; Table 4). Thus, in spring, spatial scale mattered: 
calcium availability explained patterns of plot‐level richness better 
than patterns of subplot‐level richness. In summer, both plot‐ and sub-
plot‐level richness increased with increasing mean calcium (Figures 4b 
and 5b). What could cause seasonal differences in scale‐dependent 
effects of calcium is an interesting question for future studies.

4.6 | Variance partitioning and the importance of 
forest community type

In both seasons, the variance in species richness across plots was at-
tributed largely to mean abiotic conditions, regardless of forest type 
(Figure 6a). The variance in species richness explained within each 

forest, however, was attributed to the heterogeneity in abiotic con-
ditions of different factors (Figure 6b,c and Table 5).

In spring, most of the variability in species richness was at-
tributed to potassium heterogeneity in both Beech–Maple and 
Floodplain forests (Figure 6b and Table 5). In summer, most of the 
variability in species richness was attributed to pH heterogeneity in 
Beech–Maple and Oak forests, and to heterogeneity in cation ex-
change capacity in Mixed forests (Figure 6c and Table 5). Thus, we 
find evidence that plot‐level abiotic heterogeneity can drive patterns 
of species richness (Figure 6b,c), but that the identity of the import-
ant abiotic factor may change with season and forest community 
type (Table 5).

4.7 | Limitations and future directions

Patterns of richness and composition within forest type could be 
confounded by differences in size, location (e.g., more urban or rural), 
and/or invasive species and deer population density (Eysenbach & 
Hausman, 2013) across land holdings. To control these confounding 
variables and test proposed mechanisms, it is necessary to confirm 
the drivers of increased species richness experimentally.

We also cannot discern from our data whether species are stably 
coexisting (due, e.g., to niche differentiation) or whether they are 
simply co‐occurring (due to mass effects, high available energy, slow 
competitive exclusion, etc.). Pending further empirical investigation, 
we think it is useful to consider coexistence and species richness, al-
though clearly related, as potentially arising via separate processes.

There was a great deal of correlation between abiotic factors in 
both spring and summer (Figure 3), which we addressed by allow-
ing only uncorrelated (<40%) combinations of abiotic factors into 
a model, thus excluding information about potentially confounding 
correlations. As such, there were many nearly equivalent models 
during the model selection process. Qualitatively, our results pro-
vide a framework for understanding the joint contributions of abiotic 
conditions across plots and abiotic heterogeneity within forests to 
patterns of forb species richness (Figure 6), but larger sample sizes 
within forest type are needed, as are experiments that disentangle 
correlated variables (e.g., between calcium availability and pH, cal-
cium availability and potassium heterogeneity; Figure 3). To clarify 
how species richness is structured by different abiotic factors, we 
also hope that the relationships found at different study levels will 
be able to guide future experiments designed to test the hypotheses 
presented above.

5  | CONCLUSIONS

The abiotic component of what shapes herbaceous layer forb 
communities is complicated, but the large amount of variation ex-
plained across study levels justifies further study and discussion 
of this complexity. We underscore the importance of considering 
mean abiotic conditions and heterogeneity simultaneously across 
multiple abiotic factors. In particular, we show that patterns of 

TA B L E  5   Pairs of abiotic measurements within each forest type 
that resulted in the lowest amount of unexplained variation in plot‐
level species richness after partitioning variance due to the abiotic 
mean, the abiotic CV, both, or neither

 

Spring Summer

Mean Heterogeneity Mean Heterogeneity

BM �N cv
(
�K

)
�P cv

(
�pH

)

FP �rd cv
(
�K

)
�K cv

(
�pH

)

M �N – �Ca cv
(
�CEC

)

OAK �Ca cv
(
�P

)
�K cv

(
�pH

)

Note: Light gray and dark blue bars in Figure 6b,c illustrate the propor-
tion of variation explained by the mean and CV, respectively, in Beech–
Maple (BM), Floodplain (FP), Mixed (M), and Oak forests. N, Ca, K, and P 
refer to elements by their atomic symbols.
Abbreviations: CEC, cation exchange capacity; rd, restrictive layer 
depth.
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species richness vary across forest types according to abiotic qual-
ity, as well as within forest type according to abiotic heterogeneity. 
Connecting patterns associated with the abiotic mean and hetero-
geneity back to theoretical insights allowed us to suggest which 
mechanisms could be structuring plant communities at different 
spatial scales and seasons. Future empirical work in herbaceous 
forb communities should focus on using experiments to pin down 
the mechanism underlying plot‐level increases in richness with in-
creasing nutrient availability, and investigating potential interac-
tions between biotic processes and abiotic drivers within plots; 
for example, whether abiotically mediated microbial communities 
could be driving fine‐scale patterns of forb richness in different 
ways in different forests.
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