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Abstract: The gut microbiota undergoes rapid changes during infancy in response to early-life
exposures. We have investigated how the infant gut bacterial community matures over time and how
exposures such as human milk and antibiotic treatment alter gut microbiota development. We used
the LonGP program to create predictive models to determine the contribution of exposures on infant
gut bacterial abundances from one month to two years of age. These models indicate that infant
antibiotic use, human milk intake, maternal pre-pregnancy BMI, and sample shipping time were
associated with changes in gut microbiome composition. In most infants, Bacteroides, Lachnospiraceae
unclassified, Faecalibacterium, Akkermansia, and Phascolarctobacterium abundance increased rapidly
after 6 months, while Escherichia, Bifidobacterium, Veillonella, and Streptococcus decreased in abundance
over time. Individual, time-varying, random effects explained most of the variation in the LonGP
models. Multivariate association with linear models (MaAsLin) displayed partial agreement with
LonGP in the predicted trajectories over time and in relation to significant factors such as human
milk intake. Multiple factors influence the dynamic changes in bacterial composition of the infant
gut. Within-individual differences dominate the temporal variations in the infant gut microbiome,
suggesting individual temporal variability is an important feature to consider in studies with a
longitudinal sampling design.
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1. Introduction

During the first 2-3 years of life, the gut microbiome undergoes rapid and important
changes to bacterial community structure and function [1,2]. This period of maturation is
characterized by early abundances of Bifidobacterium, Bacteroides, and Escherichia, which
are gradually replaced by obligate anaerobic bacteria, notably members of the Firmicutes
phylum, such Clostridiaceae and Lachnospiraceae [3]. One of the strongest drivers of infant
gut composition is human milk in the infant diet [1]. Human milk exposure is associ-
ated with increased Bifidobacterium abundance and decreased abundance of the Firmicute
Lachnospiraceae [4,5]. Formula-fed infants tend to be enriched in Bacteroides, Escherichia,
Enterobacteriaceae, Clostridium [1,6], and other bacteria associated with a more mature micro-
biota [7]. Some evidence suggests bacterial colonization in the gut by breastmilk bacteria
acts in a dose-dependent manner. Pannaraj et al. found that infants whose diet consisted
of >75% human milk receive around 27% of their gut bacteria from their mother’s milk,
while infants who breastfeed less than that receive only about 17% of their bacteria from
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milk—this difference in bacterial acquisition decreases as the infants age and are exposed
to other sources of bacteria [8].

Infant gut colonization is also influenced by other exposures, including C-section deliv-
ery [9], antibiotic use [10], and maternal body mass index (BMI) [11]. Like formula feeding,
these factors have been associated with early gut maturation (i.e., higher abundance of
Firmicutes), which may have adverse effects on immune system development [12,13] and
may increase the risk of obesity in children [11,14].

Since alteration in the gut microbiota may be linked to childhood health and develop-
ment, understanding these bacterial differences and how they change over time during
early development opens the door to ameliorating developmental trajectories through
manipulation of bacterial communities. Here, we use longitudinal fecal microbiota data
collected from children from about 1 month to 2 years of age to describe gut community
changes over time and to examine how common infant exposures affect changes in taxa
abundance. We found that within-individual differences dominate temporal variations in
the infant gut microbiome, and that human milk exposure is a key factor. Excluding the
significant results for age, only Lachnospiraceae unclassified and low abundances of Bilophila,
Butyricimonas, and Pyramidobacter were associated with more than one exposure variable
of interest. When comparing the LonGP results to the MaAsLin linear models, there was
partial agreement between the results.

2. Materials and Methods
2.1. Study Participants

The participants for this study were enrolled as part of the ARCHgyt or BABYGyut
cohorts. ARCHgyr participants were enrolled as a sub-study of the Archive for Research
in Child Health (ARCH) study. Both ARCHgyr and BABYgyr have been described
previously [15]. Briefly, participants provided written informed consent to obtain an
enrollment questionnaire (pre-pregnancy height and weight, antibiotic use in the past year,
parity, diagnosed or suspected food allergies/intolerances) and fecal samples from the
women during their third trimester of pregnancy and fecal samples from their infant at
1 month, 6 months, 12 months, and 24 months of age. All subjects gave their informed
consent for inclusion before they participated in the study. The study was conducted in
accordance with the Declaration of Helsinki, and the Michigan State University Human
Research Protection Program approved these studies (IRB C07-1201, 15-1240, and 14-170M).

2.2. Sample Collection, DNA Extraction, and Amplification

Fecal samples were collected from infants at 1 month, 6 months, 12 months, and
24 months of age. The protocols have been described previously [16]. Briefly, samples were
sent to our lab by mail or retrieved from the participant’s home. Samples were collected
from diapers and placed into Para Pak collection tubes by the parent (Meridian Biosciences,
Cincinnati, OH, USA). Fecal aliquots were stored at —80 °C upon reaching the lab. DNA
extractions were performed using the MoBio Powersoil DNA Isolation kit (Qiagen MoBio,
Carlsbad, CA, USA) and the V4 region of the 16S rRNA gene was amplified using primer
sets SB501-SB508 and SA701-SA712 following the mothur wet lab SOP [17]. Successful
amplification triplicates were pooled and purified using Agencourt AMPure XP (Beckman
Coulter, Brea, CA, USA). Equal amounts (in nanograms) of the purified 16S samples were
pooled and submitted to the Michigan State University Research Technology Support
Facility Genomics Core for paired-end 250 base-pair sequencing on the Illumina MiSeq
platform using V2 chemistry.

2.3. Processing and Analysis of Sequence Data

Sequence reads were processed in mothur using the Illumina MiSeq SOP [17]. Oper-
ational taxonomic unit (OTU) taxonomies were assigned by phylotype in mothur using
the SILVA reference taxonomy (release V132) [18]. Read processing was done in mothur
using the High-Performance Computing Cluster at Michigan State University. Sample
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reads were rarefied to 10,000 reads for 999 times, averaged, and rounded to the nearest
integer before further analysis. Rarefaction curves were generated to confirm adequate
community coverage.

2.4. Statistical Analysis

We applied the “Envfit” function in the “vegan” package to identify the variables
significantly associated with the gut microbial community at each collection period. The
“Envfit” function fits the environmental vectors onto an ordination, which is a 2D plot
that displays how similar/dissimilar one sample’s bacterial community is compared to
other samples. Ordination for “Envfit” was also performed in the “vegan” package using
non-metric multidimensional scaling (NMDS) methods with Bray—Curtis dissimilarity. We
included the following 9 variables that have been found related to gut microbiome develop-
ment in neonates: breastfeeding status, sample shipping time, maternal pre-pregnancy BMI,
antibiotic exposure at the time of sampling, antibiotic exposure since birth, sex, delivery
mode, and cohort. In our analysis, we did not differentiate between samples that were
shipped versus not shipped to the lab. However, these data were captured by the “shipping
time” variable, where samples that were not shipped have a “shipping time” value of 0
or 1 days (n =9), while the samples that were shipped to the lab have a value of 2 days or
greater (n = 154). p-values calculated from “Envfit” were adjusted by the false discovery
rate (FDR) method (Benjamini-Hochberg procedure [19]) for multiple comparison.

To determine the contribution of each independent variable to the changes of the infant
gut microbiota, we used LonGP [20], an additive Gaussian process regression. LonGP
implements time-varying random effects and non-stationary signals by integrating multiple
kernel learning. We included all the variables in the “Envfit” analysis as fixed effects and
child age as an individual-specific time-varying random effect. LonGP then selects variables
that significantly improve the models’ prediction for each bacterial abundance. Variable
information and kernel type for each variable used in LonGP are specified in Table S1. We
modeled the top 50 most abundant genera separately with the same independent variables.
The OTU counts were log transformed for the analysis, and the scale was back transformed
for interpretation of the data. Continuous covariates were centered to the mean to generate
appropriate priors for each function.

To validate the results of LonGP, we applied multivariate association with linear mod-
els (MaAsLin) [21] to investigate the association between exposures and individual OTUs.
We performed this multivariate statistical framework in the R package “MaAsLin2” [22]
with the default parameters. Differences in participant characteristics between the two
cohorts used in this study were tested using the chi-squared test, ANOVA, or Spearman
correlation where appropriate. Only significant associations with a g-value < 0.05 after
FDR correction (Benjamini-Hochberg procedure) were included.

3. Results

The population characteristics for all infant samples are shown in Table 1. There
were no significant differences in participant characteristics between the two cohorts.
Characteristics for the participants with a sample at every time point (n = 34) are shown in
Table S2. We first examined the association between the single variables and gut microbial
community beta diversity at each collection period using the “Envfit” function in the
vegan package (Table 2). Only maternal pre-pregnancy BMI and breastfeeding status were
significantly associated with gut microbiota at 6 months of age.
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Table 1. Population characteristics of the infants at 1, 6, 12, and 24 months.

1 Month 6 Months 12 Months 24 Months
ARCHGyT BABYgyT p-Value ARCHGyT BABYgyT p-Value ARCHGyT BABYgyT p-Value ARCHGyTt BABYgyT p-Value
n 27 16 25 16 24 16 22 17
Vaginal
Delivery 1 18 (66.7) 10 (62.5) 1 17 (68.0) 9 (56.2) 0.67 16 (66.7) 10 (62.5) 1 15 (68.2) 10 (58.8) 0.79
Girls 1 12 (44.4) 3(18.8) 0.17 10 (40.0) 3(18.8) 0.28 9 (37.5) 3(18.8) 0.36 7 (31.8) 3(17.6) 053
Infant
breastmilk | 0.28 047 0.12 0.35
100 15 (55.6) 13 (81.2) 3(12.0) 4(25.0) 0(0) 0(0) 0(0) 0(0)
>50-80 4(14.8) 2(125) 11 (44.0) 8(50.0) 0(0) 2(125) 0(0) 0(0)
20-50 6(22.2) 1(6.2) 1(4.0) 1(6.2) 9(37.5) 3(18.8) 1(4.5) 2(11.8)
0 2(7.4) 0(0) 10 (40.0) 3(18.8) 15 (62.5) 11 (68.8) 21 (95.5) 14 (82.4)
Missing 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 1(59)

Antibiotic
exposure 0(0) 2(12.5) 0.26 0(0) 0(0) 1 2(8.3) 1(6.2) 1 0(0) 0(0) 1
currently 1

Antibiotic
EXPUSIUIE 13.7) 1(6.2) 1 1(4.0) 2(12.5) 0.69 8(33.3) 4(25.0) 0.83 9 (40.9) 4(23.5) 0.42
Maternal
g::-gnancy 294 +54 272459 0.24 29.6 £ 5.5 269 + 6.0 0.15 295+55 272459 0.21 298 £5.7 269 +58 0.14
BMI 2
(Iz::; ;gc 38.5 4 32.0 36.7 + 33.7 0.86 2049 +£157 208.6 + 32.4 0.68 3855+ 174 386.2 + 22.0 09 749.6 +21.7 767.1 £+ 49.0 0.19
([2:;:; ;;ge 26 (6, 116) 21 (9,125) 0.83 2042-(;9(379/ 19822 5()163, 07 3823(23)56' 3723(;64' 055 743(;07)12' 74961(;23' 051
Sample
shipping 17+28 55439 048 56+ 44 36+19 0.05 14+26 52471 0.66 14+36 16+38 0.88
e (e 742 543, ) 6+ 4. 641, ! 42, 247, ) 443, 643, )
2
Sample
shipping 4 _
ime (days) (1,14) 4(1,15) 0.69 5(1,22) 3(0,7) 0.14 4(1,11) 35(2,31) 055 3(1,18) 4(0,14) 0.95
3
In (%); 2 mean =+ SD; 3 median (min, max). BMI, body mass index.
Table 2. Correlation between selected variables and the gut bacterial community beta diversity.
1 Month 6 Months 12 Month 24 Month
Variable

R2 p-Value R2 p-Value R2 p-Value R2 p-Value
Maternal
pre-pregnancy 0.170 0.171 0.231 0.031 0.080 0.446 0.023 0.946
BMI
Delivery mode 0.040 0.327 0.007 0.99 0.040 0.446 0.022 0.946
Child sex 0.009 0.705 0.003 0.99 0.015 0.699 0.009 0.946
ft’;etf;feedmg 0.083 0.427 0.331 <0.001 0.016 0.822 0.028 0.946
Cohort 0.020 0.517 0.045 0.447 0.004 0.995 0.005 0.946
Antibiotic
exposure at the 0.047 0.327 0 1 0.281 0.338 0 1
time of sampling
Antibiotic
exposure since 0.066 0.262 0.009 0.990 0.050 0.496 0.036 0.946
birth
f’iﬁple shipping 0.075 0.327 0.052 0.729 0.041 0.446 0.021 0.946

Significant p values (p < 0.05) are reported in bold. BMI, body mass index.

We then performed the longitudinal analysis (using LonGP) for the gut microbiota
data collected at 1 month, 6 months, 12 months, and 24 months. Figure 1 shows the model
parameters that are predictive of each genera’s abundance. The individual time-varying
random effect (age*ID) explained most of the variation identified in this longitudinal
dataset. The extent of human milk feeding was significant in 12 genera, infant antibiotic
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exposure at the time of sampling was significant for 7 genera, sample shipping time in
6 models, “antibiotic exposure ever” was significant in 4 models, maternal pre-pregnancy
BMI was significant in 2 models, and sex in 1 model (Figure 1A). At the phylum level,
9 phyla were significantly associated with at least one variable in addition to age and id.
Within these 9 phyla, 5 were associated with shipping, 3 were associated with antibiotic
exposure at the time of sampling, 2 were associated with human milk feeding, 2 with
maternal BMI, and 1 with sex (Figure 1B).
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Figure 1. Model parameters significantly associated with the predicted abundance at the genus (A) and phylum (B) levels.

The figure also illustrates the variance in the predicted abundance of a single genera or phyla explained by each parameter.

As the infants aged, Bacteroides, Lachnospiraceae unclassified, Faecalibacterium, Akkerman-
sia, and Phascolarctobacterium abundance increased rapidly after 6 months, while Escherichia,
Bifidobacterium, Veillonella, and Streptococcus decreased in abundance as the infant gut micro-
biota matured over time (Figure 2). Finally, Clostridium sensu stricto 1 was predicted to have
a relative abundance of less than 0.5% at all timepoints and followed a bimodal distribution,
with a higher abundance at the 1-month timepoint, a sharp decrease in abundance at 6 and
12 months, followed by an abundance comparable to the 1-month timepoint at 24 months.
The age association for the remaining 40 genera examined can be found in Figure S1. Of
these, 31 started at a low abundance and increased as the infant aged. However, genera
such as Staphylococcus and Lactobacillus started at a higher abundance before decreasing
over time.
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Figure 2. Predicted abundance over time for the top 10 most abundant genera.

The predicted relative abundance of each taxon is shown as a function of infant age.
Note that the scale of the y-axis differs for each bacterium.

At the phylum level, Firmicutes and Bacteroidetes became the most abundant phyla
as the infant aged, replacing Proteobacteria as the dominant gut phylum by one year of
age (Figure 3). Besides Firmicutes, Bacteroidetes, and Proteobacteria, the remaining phyla
were all predicted to have an abundance of lower than 1% at all time points (Figure S2).

The predicted relative abundance of each taxon is shown as a function of infant age.
Note that the scale of the y-axis differs for each phylum.

Infants who were taking antibiotics at the time of fecal sampling were predicted to
have lower abundances of bacteria such as Lachnospiraceae unclassified, Ruminococcaceae,
and the phylum Firmicutes (Figures S4 and S5). The genus Fusobacterium and phylum
Lentisphaerae were both predicted to have a lower abundance in infants taking antibiotics
at the time of fecal sampling. Infants who had ever taken antibiotics had higher predicted
abundances of Bilophila, Megamonas, Barnesiella, and Pyrimidobacter (Figure S6).

Human milk exposure was predictive of 12 genera (Figure 4) and 2 phyla (Figure S3).
Notably, infants who consumed <50% human milk had higher abundances of several bacte-
ria such as Lachnospiraceae unclassified, Peptostreptococcaceae unclassified, and Acinetobacter.
Unlike the other taxa, Bacteroides was predicted to be highest in the exclusive human milk
and no human milk group, and lower in the mixed-feeding groups.
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Figure 3. Predicted abundance over time for the top 5 most abundant phyla.

Maternal BMI was associated with two low-abundance genera (Bilophila and Turi-
cibacter) and two low-abundance phyla (unidentified Bacteria and Gemmatimonadetes)
(Figures S7 and S8) in the gut microbiota of the children.

Sample shipping time was associated with 6 genera. More time spent between sam-
pling and arrival in the lab was predictive of increases in Parabacteroides, Gastranaerophi-
lales_ge, Prevotella_7, and other low-abundance genera. Two unidentified families of Murib-
aculaceae decreased as the shipping time increased (Figure S9). At the phylum level, four
of the five taxa associated with shipping time were predicted to have a low abundance
at all time points. However, the Firmicutes phylum was predicted to increase slightly
in abundance before decreasing in relative abundance by around 7% after 3—4 days of
shipping before stabilizing (Figure 510).

Sex was predictive of Butyricimonas and Cyanobacteria, where girls were predicted to
have higher abundances of both taxa compared to boys (Figures S11 and S12).
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Figure 4. Genera relative abundance as predicted by age and human milk in the infant diet. Only those genera significantly

predicted by age and human milk intake are plotted.

Comparison of LonGP Genus-Level Results to MaAsLin Linear Models

As demonstrated by the MaAsLin results, infant age was significantly associated
with 19 different bacterial genera (Table S3). Ruminococcus 2, Faecalibacterium, Turicibacter,
Alistipes, and Peptostreptococcaceae unclassified are the five most significant genera that
increased with infant age. Escherichia and Acinetobacter are the only two genera that
decreased with infant age. Comparing the linear trend of MaAsLin to the predicted
trajectories of LonGD, Parasutterella is the only genus that exhibited a different predicted
trend. Using LonGP, Parasutterella was predicted to increase in abundance from 6 months to
24 months and then decrease (Figure S3), whereas MaAsLin predicted that the abundance
of Parasutterella increases over time.

When considering variables other than age and participant, there was partial agree-
ment between LonGP and MaAsLin only for the human milk exposure. Both models
detected a significant relationship between human milk exposure and abundance of
Bacteroides, Staphylococcus, Lachnospiraceae unclassified, Peptostreptococcaceae unclassified,
Erysipelotrichaceae, Acinetobacter, and Epulopiscium. Many of the associations agreed with
each other between the two models. For example, for the taxa that overlap between the
models, both found that >50% human milk feeding had the lowest predicted abundances of
these taxa except for Staphylococcus, which was highest in the exclusively human milk-fed
group in both models. For Bacteroides, both models found that 80% human milk feeding had
the lowest predicted abundance of this genus compared to exclusive human milk feeding.

4. Discussion

Our longitudinal analysis of the infant gut microbiota aimed to identify key exposures
that play a role in shaping the infant microbiome from one month to two years of age.
Using a program that is specifically designed for statistical analysis of longitudinal data,
LonGP, we found that age is the strongest predictor of microbiota change over the course
of infancy, followed by the extent of human milk in the diet, a finding consistent with other
studies [23]. Excluding the significant results for age, only Lachnospiraceae unclassified
and the sparse Bilophila, Butyricimonas, and Pyramidobacter were associated with more than
one exposure variable of interest. When comparing the LonGP results to the MaAsLin
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linear models, we observed agreement between the results. However, the MaAsLin models
tended to identify more bacteria as significantly associated with the exposure variables
than LonGP identified.

A previous study of the gut microbiota in adults demonstrated that between-individual
differences can explain up to 61% variation in community composition and that between-
individual difference is much more pronounced than within-individual difference because
the highly diverse gut microbiota of adults is very stable over time [24]. However, our
longitudinal sampling of infants has shown that the time-varying random effect (within-
individual temporal variability) dominates the changes in the infant gut microbiome and
explain up to 95% of the variation in individual taxa. The higher variation explained
by within-individual differences in infants can be explained by the rapid maturation of
the infant gut microbiota over the first year of life as the community transitions to an
adult-like profile by 3 years of age [25]. Our results confirmed that the dynamics of human
microbiome composition are a personalized feature [26] and are important to consider in a
longitudinal analysis of the gut microbiome.

In this cohort, we observed a dose-response relationship between the extent of milk
in the infant diet and abundances of several taxa, including Bacteroides and Lachnospiraceae.
Bacteroides is a genus of common gut microbes whose members are able to metabolize
HMOs in breastmilk [6] as well as assist in the transition of the microbiome from formula
or human milk to solid foods [27]. Our results show that the highest predicted levels of
Bacteroides are in the exclusively human milk-fed group and the group with no human
milk in the diet, displaying the metabolic flexibility of this genus and its importance as
an early colonizer of the infant gut [28]. In our cohort, Lachnospiraceae unclassified was
associated with human milk intake and antibiotic exposure at the time of fecal sampling.
Lachnospiraceae abundance generally increases with infant age [5,29], and is a common
taxon associated with gut microbiome maturation [30]. Similar to other studies [5], we
found that infants receiving <50% human milk in their diet had significantly higher levels
of Lachnospiraceae unclassified. Lachnospiraceae abundance in 3-month-old infants has been
associated with increased risk for childhood overweight at 1 year of age [14], though the
mechanisms behind this association are not known. However, it is hypothesized that
short-chain fatty acid production (mainly acetate, propionate, and butyrate) by members
of the Lachnospiraceae family contribute to obesity risk by upregulating lipogenesis [31] and
altering immune system responses to the normal gut flora and their metabolites [32,33].
Our results suggest that an infant diet low in human milk influences the abundance of
important members of the infant gut, which have previously been associated with increased
infant risk for obesity development.

For this study, we categorized antibiotic exposure as antibiotic use during the time of
fecal sample collection or any use of antibiotics before fecal sample collection. As others
have reported [34], we found that antibiotic use at the time of sampling depleted some
bacterial abundances. However, if the participant had ever been exposed to antibiotics,
they were predicted to have higher abundances of Megamonas, Bilophila, Barnesiella, and
Pyramidobacter. This shift may represent opportunistic growth of certain bacteria after
perturbation with antibiotics. For example, Bilophila is a potential opportunistic pathogen
that has been investigated for its role in promoting inflammation [35] and has been im-
plicated in the development of insulin resistance and induction of metabolic dysfunction
under high-fat-diet conditions [36]. Bilophila also displayed a unique pattern of association
with maternal pre-pregnancy BMI. Our models predicted a small increase in abundance
at a maternal BMI of 25 followed by a large increase in predicted abundance as maternal
BMI increased past 30. This suggests that infants born to women with class 2 or 3 obesity
(corresponding to a BMI of 35+) may be at a higher risk of developing metabolic syndrome
and insulin resistance in a diet-dependent manner. High abundance of Bilophila may also
predispose these infants to higher levels of intestinal inflammation by making the epithe-
lium more permeable to other microbial compounds such as lipopolysaccharides [37],
which can cause further systemic inflammation [38].
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Interestingly, neither LonGP nor MaAsLin identified delivery mode as a significant
factor at either the genus or phylum levels. Most studies report that differences in the
microbiome attributable to mode of delivery disappear by around 6 months of age [1,39,40],
though a more recent study found differences in bacterial abundances up to 1 year of
age [41]. Since microbiome differences due to delivery mode are tied to age and gut
maturation, studies that explore microbiome differences by delivery mode may not be able
to utilize methods such as LonGP or MaAsLin for longitudinal analysis of the data, but
instead would need to analyze each timepoint separately to observe the effects of delivery
mode on bacterial community composition.

Several taxa abundances were predicted to change as the sample shipping time was
extended. The most abundant taxon that changed with shipping time was the phylum
Firmicutes, which is composed of obligate anaerobic bacteria, and was predicted to increase
slightly in abundance before quickly depleting after 3—4 days. Interestingly, none of the
genera predicted to change with shipping time are members of the phylum Firmicutes.
Since no genera within the Firmicutes phylum were specifically associated with shipping
time, but the Firmicutes phylum was, this suggests that Firmicutes depletion was evenly
distributed across all genera in the phylum—leading to little absolute change per genus—or
the variability of the Firmicutes across timepoints was greater than the variability due to
shipping, preventing the detection of significant shifts in specific genera. Shipping samples
at room temperature is known to affect microbiota abundances [42-44], but community
differences across samples are preserved regardless of storage method [43,45,46]. In other
words, ensuring that samples are all processed using the same method is potentially more
important than immediate sample processing since differing storage conditions result in
unique biases in the data.

There are several strengths and limitations to this study. First, the sample collec-
tion method was not ideal, since immediate freezing is the gold-standard followed by
refrigeration or storage in a preservative during transit [42]. This could have affected the
bacterial abundances in our samples and may explain some of our results, such as a lack of
significance between Bifidobacterium abundance and human milk exposure. We also did not
consider timing of complementary feeding in our analysis. Introduction of complementary
foods is associated with increased gut maturity and a more diverse functional profile [47],
meaning early introduction of complementary foods may have had short- and long-term
impacts on gut microbiota development that we were not able to differentiate from age or
extent of breastfeeding. Strengths include sample collection during a critical developmental
window and a more granular look at the impact of different levels of human milk exposure.

5. Conclusions

In summary, we characterized the infant gut microbiota over the first two years after
birth and found age and extent of human milk feeding were the strongest predictors of
microbiome change over this period. Notably, low levels of human milk feeding were
associated with increased abundances of Lachnospiraceae, which may increase infant risk of
childhood overweight/obesity later in life [14]. Similarly, antibiotic exposure and mater-
nal obesity were associated with an increase in abundance of Bilophila, an opportunistic
pathogen that may affect insulin resistance and alter metabolic responses to a high-fat,
Western-style diet [36]. We have shown that the abundances of several gut microbes are
associated with infant exposures as well as maternal pre-pregnancy BMI. More research
needs to be done to further describe how early alterations to certain microbial taxa—as well
as their metabolic products—can shape microbiome compositions later in life and whether
these changes affect the risk of developing chronic diseases, such as allergies and obesity.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/
10.3390/microorganisms9102140/s1, Table S1: Variables implemented in the LonGP with variable
explanation and kernel type, Table S2. Population characteristics of infants with all four samples,
Table S3: significant MaAsLin results for the 50 most abundant taxa, Figure S1. Predicted abundance
as the infant ages for the 40 least abundant genera, Figure S2 Predicted abundance as the infant ages
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for the 12 least abundant phyla, Figure S3. Phylum relative abundance predicted by age and human
milk in the infant diet, Figure S4 Genus relative abundance predicted by age and antibiotic use at
the time of fecal sampling, Figure S5 Phylum relative abundance predicted by age and antibiotic use
at the time of fecal sampling, Figure S6 Genus relative abundance predicted by age and antibiotic
use ever, Figure S7 Genus relative abundance predicted by maternal pre-pregnancy BMI, Figure S8
Phylum relative abundance predicted by maternal pre-pregnancy BMI, Figure S9 Genus relative
abundance predicted by sample shipping time, Figure S10 Phylum relative abundance predicted by
sample shipping time, Figure S11 Genus relative abundance predicted by age and sex, Figure 512
Phylum relative abundance predicted by age and sex.
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