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Lifelong experiences and learned knowledge lead to shared expectations about how
common situations tend to unfold. Such knowledge of narrative event flow enables
people to weave together a story. However, comparable computational tools to evaluate
the flow of events in narratives are limited. We quantify the differences between autobio-
graphical and imagined stories by introducing sequentiality, a measure of narrative flow
of events, drawing probabilistic inferences from a cutting-edge large language model
(GPT-3). Sequentiality captures the flow of a narrative by comparing the probability
of a sentence with and without its preceding story context. We applied our measure to
study thousands of diary-like stories, collected from crowdworkers, about either a recent
remembered experience or an imagined story on the same topic. The results show that
imagined stories have higher sequentiality than autobiographical stories and that the
sequentiality of autobiographical stories increases when the memories are retold several
months later. In pursuit of deeper understandings of how sequentiality measures the
flow of narratives, we explore proportions of major and minor events in story sentences,
as annotated by crowdworkers. We find that lower sequentiality is associated with higher
proportions of major events. The methods and results highlight opportunities to use
cutting-edge computational analyses, such as sequentiality, on large corpora of matched
imagined and autobiographical stories to investigate the influences of memory and
reasoning on language generation processes.
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When we tell a story, we weave together sets of events to form a coherent narrative
(1–3). The narrative flow of those events is influenced by our recollection of experiences
from episodic memory (4–6) as well as common knowledge about prototypical sequences
of events, referred to as schema (1, 7–11). For example, telling an imagined story
about a friend’s wedding relies on common knowledge about the schema of how a
wedding in their culture unfolds. In contrast, a recalled story drawn from memories
about a friend’s wedding involves an autobiographical recollection of episodic details about
experienced events in addition to the knowledge of wedding schema (12). Furthermore,
in autobiographical stories, the extent to which schema and episodic details are used in
storytelling changes with time passing, as memories of experience become consolidated
and schematized into more abstract, semantic, and “gist-like” versions (13–15).

A key element of narrative storytelling is referencing occurrences of salient events (16),
which often deviate from prototypical schema (17). Such salient events can range from
major (e.g., big plot twists) to minor (e.g., subtle details) (18), and from surprising to
expected. Small-scale human studies have demonstrated that salient events often mark
surprising or expected shifts in a story [e.g., of character focus, location, or circumstances
(19)], that they stand out as particularly memorable to readers (20, 21), and that they can
influence the emotional impact of a narrative (22). However, how salient events contribute
to the narrative flow of imagined or autobiographical stories is not well understood.

We introduce a computational measure, sequentiality, to uncover how autobiographical
and imagined stories differ with respect to narrative flow and occurrences of salient
events. Sequentiality leverages probabilities of words and sentences in stories to determine
the difference in the likelihood of story sentences conditioned on a story’s topic versus
conditioned on the story topic and the context given by all of the preceding sentences
(Fig. 1). In this work, we draw probabilities from a cutting-edge and large-scale language
model [GPT-3, with 175 billion parameters (23)], substantially scaling up our previous
investigations (24) that employed a much smaller language model [GPT-1, with 115
million parameters (25)]. By using large-scale language models, sequentiality presents a
characterization of narrative flow in stories that contrasts with previous measures which
focused on either detecting event words from sentences (16, 26) or tracking attributes
over time in stories [e.g., sentiment, emotion, categories of words, or sentence embeddings
(27–29)].

Significance

We explore the open question
about differences in the narrative
flow of stories generated from
memory versus imagination. We
introduce sequentiality, a
computational measure of
narrative flow of events that
compares the influence of
preceding sentences versus story
topic on story sentences, using a
cutting-edge large language
model (GPT-3). Applying
sequentiality to thousands of
stories, we find that the narrative
flows of imagined stories have
greater reliance on preceding
sentences than for
autobiographical stories and that
autobiographical narratives
become more similar to imagined
stories when retold several
months later. Furthermore, we
uncover a link between events
perceived as salient and
sequentiality. The methods
provide a window into cognitive
processes of storytelling that
breaks away from traditional
approaches to analyzing
narratives.
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Fig. 1. Graphical models depicting the two components of sequentiality.
Sequentiality reflects the probabilistic relationship among consecutive sen-
tences (s0, s1, . . . , si) in a story about a topic T , and is computed as the
difference between the log-likelihood of a sentence conditioned only on
the story topic (i.e., topic-driven model; Top) and the log-likelihood of that
sentence conditioned on both the story topic and all preceding sentences (i.e.,
contextual model; Bottom). The log-likelihood of a sentence given a topic or
topic and prior sentences is provided by the GPT-3 neural language model.

We studied sequentiality and salient events in a set of 7,000
diary-like short stories about memorable life experiences, to ana-
lyze differences in narrative flow of imagined or autobiographical
stories. Collected through crowdsourcing and made available in
the HIPPOCORPUS dataset (24), these stories were either written
about an autobiographical personal experience, recalled shortly
after it happened and retold several months later, or about an
imagined experience on the same topic. We extended a subset
of 240 HIPPOCORPUS stories to additionally include sentence-
level human annotation of event saliency. We applied sequentiality
to these stories to analyze narrative flow difference in autobio-
graphical and imagined stories, and to compare the sequentiality
of sentences with various levels of event saliency. To supplement
sequentiality, we also employed coarser-grained metrics that count
the proportions of realis event terms—references to factual, con-
crete, nonhypothesized events, as well as count words in the
Linguistic Inquiry Word Count (LIWC) (30) and concreteness
(31) lexicons to further examine the differences in stories and
event types.

We hypothesized that autobiographical and imagined stories
would differ in sequentiality and event distributions, specifically,
that imagined stories would have higher sequentiality, since they
are more likely to follow commonly expected schema (5, 32).
On the other hand, we hypothesized that autobiographical stories
would have lower sequentiality but a higher number of annotated
salient events, based on the intuition that those stories likely con-
tain more-specific details drawn directly from episodic memory
(5, 33) and that memorable details of a specific experience are
more likely to diverge from the expected flow of the narrative (20).
We also expected to find an increase in sequentiality for stories that
are retold after a period of time versus freshly recalled memories,
due to the consolidation and narrativization of memories over
time (14).

Sequentiality for Analyzing Narrative Flow in
Stories

Sequentiality provides a measure of narrative flow based on proba-
bilities of story sentences given by large language models (LLMs).
We apply the measure to identify differences in the sequencing
of ideas in recalled versus imagined stories. One might expect
that imagined stories composed in real time would tend to be
described by a contextual model where a next sentence depends
greatly on the prior sentences, with a sequencing influenced by
commonly understood schemas (5, 32). In contrast, generating
an autobiographical story may rely less on such an incremental

sequencing and prototypical schemas (20) and be better explained
by a process of organizing and building a narrative from a set of
events encoded in episodic memory (5, 33).

The sequentiality metric compares, for all sentences of a story,
the differences in likelihood for each sentence as predicted by
a contextual sequencing model versus as predicted by a topic-
driven model where each sentence is conditioned only on the
topic. That is, given sentences from a story written about a topic
T , sequentiality compares the likelihood of each story sentence
under two generative models, illustrated in Fig. 1. The contex-
tual generative model assumes that each sentence is generated
conditioned on the story topic as well as all of its preceding
sentences. The topic-driven generative model assumes that every
generated sentence is conditioned only on the story topic. As
such, higher values of sequentiality for sentences suggests that the
sentences follow the common expectations given the context of
the evolving story and topic, whereas lower values suggest that
sentences deviate more from expectation, given the preceding
sequence of sentences. Here, we first briefly introduce LLMs,
then formally define sequentiality, and, finally, discuss word-based
narrative measures that we also use in our experiments.

Large-Scale Language Models. LLMs are a new family of lan-
guage models (LMs) represented as large-scale neural networks,
which have rapidly come to serve as the foundation of most
current natural language processing systems (34). Formally, a lan-
guage model is a statistical model that estimates the likelihood or
probability of sequences of words, that is, one or more sentences.
We denote this likelihood as pLM(s0:i), where s0:i = {s0, . . . , si}
are consecutive sentences. LLMs are trained to estimate the like-
lihoods of sentences using massive amounts of text. For example,
the model we use in our experiments (GPT-3) (23) is a 175-
billion-parameter neural LM trained on over 45 TB of text data
(e.g., books, news articles, Wikipedia pages). Through training on
such large amounts of text, LLMs also learn an estimate of the
general ordering or expected narrative flow of events and sentences
in stories (35, 36).

Formalization. Sequentiality c(si , h) is measured for each sen-
tence si of a story about topic T for a number h of preced-
ing sentences (the history under consideration, si−h:i−1). The
c(si , h) is computed for each sentence si , as the difference in the
negative log-likelihood (NLL) of the sentence, as computed by the
contextual and topic-driven models. This requires computing the
likelihood of each sentence, conditioned on h prior sentences, per
the history si−h:i−1 under consideration, in addition to the words
in the story topic T and, separately, computing the likelihood of
the same sentences when each is conditioned only on the story
topic T ,

c(si , h) =− 1

|si |
[log pLM(si | T )

︸ ︷︷ ︸

topic-driven

− log pLM(si | T , si−h:i−1)
︸ ︷︷ ︸

contextual

],

where we obtain the likelihood of sentences pLM from LLMs, and
normalize the likelihoods by sentence length |si | to account for
sentence length variation. We then define the overall sequentiality
of the entire story as the average sequentiality of its sentences.

In our analyses, we examined the average sequentiality per
story for history sizes ranging from one to nine preceding sen-
tences (h = 1, . . . , 9) to the full preceding history (h = full).
We use the story summaries written by the storytellers as the
topic T . We compare sequentiality to the topic-driven like-
lihood of sentences, computed by conditioning the sentences
of stories only on the topic; we report the NLL of sentences,
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Fig. 2. Differences in sequentiality in recalled, retold, and imagined stories. (A) Mean sequentiality of stories with varying history lengths (h = 1 to h = full
story length) are different across the story types. Imagined stories have higher average sequentiality than autobiographical stories, and retold stories have
more sequentiality than recalled stories. (B) Stories about imagined events are shorter than autobiographical stories. (C) Proportion of realis events is higher in
autobiographical stories than in imagined stories. (D) Effect sizes: Percentage difference in parameter estimates (Left) and R2 (Right), reflecting the magnitude
of difference in sequentiality, the total number of words (story length), the topic-driven and contextual likelihoods of sentences (NLLT and NLLC ), and the
proportion of realis across story types.

NLLT =−1/|si | log pLM(si | T ). We also compare to the fully
contextual NLL: NLLC =−1/|si | log pLM(si | T , s0:i−1).

Lexicon-Centric Measures. In addition to sequentiality, we ex-
amined the events in narratives and employed several word-based
metrics to analyze narratives. The latter lexicon-centric measures
include counts of the prevalence of realis event words, that is,
nonhypothetical references to concrete events that took place (e.g.,
“she tripped”) in contrast to hypothesized events (e.g., “she feared
tripping,” but she did not trip). To find those words, we used
an automated tagger trained on an annotated corpus of realis
terms (16). We also noted average numbers of words in stories
falling in psychologically related categories using the LIWC (30)
lexicon, and measured the average concreteness level of words
using a concreteness lexicon (31). To ensure the validity of the
concepts measured by these lexicon-based measures (37), we show
the most frequent words in each lexicon category along with our
results.

Results

Analysis of Hippocorpus Stories. We determined the difference
in sequentiality across the three story types (recalled, retold, and
imagined stories), using a factorial linear regression with the story
type as the grouping factor and the story length. We included
the story length because recalled stories are longer than retold
stories (p = 0.001), and retold stories are longer than imagined
stories (p < 0.001; Fig. 2C ). We report the R2, which quantifies
the proportion of variance in the data that is explained by the
group difference, the effect size, and the p-values after correction
for multiple comparisons using the Bonferroni method.

Imagined stories flow in a more expected manner than auto-
biographical stories. The comparisons between the sequentiality
across story types (n = 6,854 stories on n = 2,788 unique top-
ics) show that imagined stories have higher sequentiality than
autobiographical memories (p < 0.001 for the main effect of the
story type on all sequentiality history lengths; see Fig. 2 for the
effect sizes). The pairwise comparisons demonstrate that imagined
stories have higher sequentiality than both retold (p < 0.001) and
recalled (p < 0.001) stories. While there were no differences in
contextual likelihood (NLLC) between story types, we observe
lower topic-driven likelihood (i.e., higher NLLT ) for sentences of
imagined stories versus autobiographical stories. This suggests that
the sentences of imagined stories, on average, have weaker links to
the topic than sentences of autobiographical stories, despite both
types of sentences having strong links to the preceding sentences.
However, in general, sequentiality (with increasing history size)
has much larger effect sizes and R2 compared to the likelihood or
realis metrics (Fig. 2D), which shows that sequentiality is a better
measure for capturing differences in the narratives of imagined
and autobiographical stories.
Retold autobiographical stories have higher sequentiality than
fresh recollections. In comparison to freshly recalled stories,
stories retold after several months have higher sequentiality
(p < 0.001), are shorter (p < 0.001), and contain fewer realis
events (p < 0.001; Fig. 2). This finding demonstrates systematic
shifts in the narratives of autobiographical stories with time,
posing questions and framing future research on the consolidation
of memories and influences of such processes on recollection.
We found that participants’ assessments of the frequency of
recalling or retelling autobiographical stories is not associated
with sequentiality but that sequentiality is negatively correlated
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Fig. 3. Sequentiality of sentences relative to event annotations. (A) The average sequentiality, with varying history, is grouped by the event type. The sentences
with no event (none) follow the narrative flow of the story topics more than sentences with major (all sequentiality history length) or minor events do (with
sequentiality history of one sentence). Sequentialities of minor and major events are not different. (B) The sentences with no event are shorter than sentences
with major events. (C) The realis in sentences with major or minor events is higher than in sentences with no event. (D) The NLL in sentences with major or
minor events is lower than in sentences with no event. Error bars show SEM.

with the number of realis events in stories (r =−0.08,
p < 0.001).
Autobiographical stories contain more realis events and concrete
and time-and-space words than imagined stories. We found that
the proportion of realis events is higher in recalled autobiograph-
ical stories than in imagined stories (p = 0.001; Fig. 2B), but
did not differ when comparing recalled and retold (p > 0.1) or
retold and imagined (p > 0.1) stories. The proportion of concrete
words, measured with LIWC and concreteness lexicons (31, 38),
is different across story types (p < 0.001; SI Appendix, Table S1),
with fewer concrete words being used in imagined versus auto-
biographical stories (recall: p < 0.001; retold: p < 0.001). The
proportion of concrete words is not different between recalled
and retold stories (p > 0.1). Additionally, we found that re-
called and retold stories contain greater proportions of words
related to cognitive processes, time, space, and motion (p <
0.001; SI Appendix, Table S1).

Event-Annotated Subset. Next, we review the differences in the
proportion of salient events in a subset of the HIPPOCORPUS that
consists of 240 stories on 80 different topics across the three story
types. Each story sentence was annotated by eight crowdworkers
for whether a sentence expressed a major or minor event, and
whether the identified event was expected versus surprising. To
control for the variability in schematic knowledge and subjective
understanding of what constitutes a major or minor event, the
same groups of eight people annotated sentences from the three
stories (imagined, recalled, retold) on each topic. We summarized
the annotations based on majority voting and evaluated the dif-
ference in the proportion of major and minor events in the stories
across the three story types using ANOVA including consideration
of sentence length (sentences with major events are significantly
longer than those with no events or with minor events; p <
0.001; Fig. 3B). Then we studied the relationships among event
annotation and sequentiality, LIWC, and concreteness lexicons at
the sentence level.
Autobiographical stories contain more salient events than imag-
ined stories. We observed a main effect for story type on minor
events and expected salient events, but not on major events
or surprising events (Fig. 4). Specifically, higher proportions of
sentences in recalled and retold stories were annotated as minor
events (p = 0.007) and expected events (p = 0.025) as compared

to events in imagined stories. We found no significant difference
in the number of minor, major, expected, or surprising events
(p > 0.1) between recalled stories and their retold versions.
Sentences with salient events have lower sequentiality. We ex-
amined the effect of event type (major, minor, or no event)
on the sequentiality of sentences, similar to how we analyzed
the effect on story types. Sequentiality with any history length
shows a significant main effect of event type (p < 0.001; Fig.
3A). The sentences marked as containing major events have lower
sequentiality than those with no events (p < 0.001, all history
lengths; no difference with the minor events, p > 0.1), whereas,
sentences with minor events have lower sequentiality than sen-
tences with no events (p < 0.05) only when the sequentiality is
measured considering the previous sentence (h = 1) but not with
longer history (h > 1, p > 0.1). The results provide evidence that
major events have more global influence in a story than minor
events.
Sentences with salient events have a higher proportion of rea-
lis event terms and concrete, present-related, and space-related
words. We found a higher proportion of realis event terms in
sentences with minor events than in those with a major (p <
0.001) or no events (p < 0.001; Fig. 3C ). Using the LIWC
and concreteness lexicons, we generally observe more differences
between sentences with no event and those with a salient event,
compared to between sentences with a minor vs. major event
(SI Appendix, Table S2). Notably, in addition to lower propor-
tions of concrete and time-and-space words, we see higher pro-
portions of words related to cognitive and affective processes in
sentence with no events.
Sentences with surprising events have lower sequentiality than
those with expected major events. We found that major events are
often annotated as surprising (72%) rather than expected (28%),
whereas all minor events are annotated as expected. Sentences
annotated as describing major events have a lower sequentiality
when they are noted to be surprising versus expected (p < 0.001).
Sequentiality is also lower for expected major events compared to
expected minor events (p < 0.001; the difference increased with
increasing history length). In general, we found that sequentiality
of sentences is not different for surprising and expected sentences
(p > 0.05; the difference decreased with increasing history length;
for h = 1, uncorrected p = 0.014), suggesting that sequentiality
captures more than the event expectancy.
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Fig. 4. Proportions of salient event annotations across the stories. Graphs of the mean and SEM of the proportion of events annotated as salient (from left:
major, minor, surprising, and expected events) in the imagined, recalled, and retold stories. (*p < 0.05, **p < 0.01).

Discussion

We introduced sequentiality as a computational measure of nar-
rative flow of events instantiated by large-scale neural language
models. We used the measure to probe hypotheses about the
generative processes of constructing experienced versus imagined
stories, paired via a matched topical description starting point.
Sequentiality measures the extent to which story events and
sentences flow from their preceding context and overall story topic
versus from only the story topic (Fig. 1), using likelihoods given by
the GPT-3 large-scale language model (23). As such, sequentiality
can be considered a proxy for quantifying how much a story
follows the expected or common narrative flow for a specific story
topic (schematic knowledge) versus is grounded in experiential
details (episodic memory).

We used sequentiality to study differences in narrative flow
across 1) recalled stories based on fresh autobiographical ex-
periences, 2) retold stories about those same autobiographical
experiences after 3 mo to 6 mo, and 3) imagined stories matched
to the topics of the autobiographical stories. With sequentiality
and word-based metrics such as the count of realis event terms
(that refer to concrete, nonhypothesized event occurrences) and
LIWC and concreteness lexicon scores, we observed differences in
episodic details and differing reliance on schematic knowledge for
constructing narratives. Based on sequentiality differences, imag-
ined stories have greater alignment with expected schematic flow
of events than autobiographical stories. Autobiographical stories
contain more minor detailed events than imagined stories (Fig. 4),
and they tend to have higher proportions of concrete words as well
as words related to time and space (SI Appendix, Table S1). Below,
we discuss implications of our findings for analyzing narrative
flow of events using large-scale neural LMs, as well as for un-
derstanding cognitive processes of storytelling with computational
methods.

Using Sequentiality to Quantify Narrative Flow. Sequentiality
quantifies the extent to which the flow of events follows expected
schema, using large-scale neural language models. This is a de-
parture from previous measures of narrative flow, which have
predominantly approached the task by examining word usage,
such as the rates of emotion-related words over time. In prior
work, researchers have argued that emotional flow plays a role

in the persuasiveness of stories (22), an approach which was
later operationalized through word counting of emotion words in
books (27) and consumer reviews (39). In addition to emotion
words, recent work computed the progression of the rate of
function words and words related to cognitive processes, to study
narrative progression and their relationship to story quality (28).
Beyond studying word frequencies, a recent study (29) employed
high-dimensional word vectors, to compute the speed and com-
plexity of stories. In contrast to previous work which analyzed
narratives through surface-level features, sequentiality leverages a
story’s topic and the language modeling capabilities of large-scale
neural LMs to infer the predictability of words. Sequentiality does
not rely on specific word categories or high-dimensional word
vectors. Sequentiality was initially used to measure the linearity
of sentences, in a preliminary investigation (24) where we used a
much smaller neural LM [GPT-1 (25)] than the one used in this
study.

Conceptually, the sequentiality generative model provides a
lens on how sentences and events are produced or read, adding
to several models of sentence and event processing from cognitive
science. Sequentiality relates to word-level surprisal theory (40,
41), which posits that humans form expectations of which word
should come next in text, before observing it. Contextual genera-
tive models can formalize those expectations (e.g., Fig. 1, Bottom),
and neural LMs can approximate these human expectations about
words given sufficient context (42).

However, surprisal theory does not account for the variation in
noncontextual likelihood of events depending on the story topic,
which may play a role in how humans form expectations. For
example, a story about driving on a highway for 30 mi might have
fewer expected events than one about a birthday party, which has
opportunities for details on whose birthday it was, where it took
place, who attended, how the cake tasted, etc. We account for this
variation by conditioning both the topic-driven and contextual
models on the story topic. Although we find no differences in
contextual likelihood (NLLC) and only small differences in topic-
driven likelihoods (NLLT ), the largest difference across story
types is measured as the ratio of contextual and topic-driven
likelihoods using sequentiality (Fig. 2D). Corroborating this need
for comparing likelihoods, recent work has shown the usefulness
of comparing contextual and noncontextual event likelihoods in
visual event segmentation tasks (21).
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Sequentiality is built on the assumption that large-scale neu-
ral language models encode knowledge about the commonly
expected narrative flow of events. Previous work suggests that
this is a valid assumption, since LLMs can determine the correct
ordering of sentences in text (25, 43) and can be used to generate
expected schemas for events (35). However, the extent to which
LLMs learn the common flow of events is influenced by the
knowledge contained in their training data (44). Specifically, the
culture and identities of the authors of training data can influence
the schema that are deemed likely by the model; a language
model trained exclusively on British text only will likely learn
British-specific schema (e.g., tea time) that other models might
not encode. However, our findings with sequentiality remain
similar when using language models trained on other datasets
(24), such as OpenAI-GPT [trained on 5 GB of English fiction
(25)] and GPT-2 [trained on 40 GB of news-like English text
(43)], suggesting this may not be a substantial issue.

Cognitive Processes of Recalling Versus Imagining. The results
reveal differences in the cognitive processes of how people form
narratives grounded in their own experiences versus from their
imagination, and the differential role of salient events in both
types of storytelling. Although imagination and remembering may
engage similar mental processes (45), and imagination could lever-
age one’s own life experiences (46), we found series of systematic
differences between imagined and autobiographical stories. In all
stories, storytellers appear to combine schematic knowledge with
references to major events. We found that major events tend to be
relayed in surprising sentences that tend to deviate from expecta-
tion, per likelihoods provided by the neural language model. These
sentences are associated with the lowest sequentiality (Figs. 3 and
4), and they are often about personal concerns and core drives and
needs (SI Appendix, Table S2). For example, in the recalled story
on “A warm summer morning with a hummingbird. How I had a
communal moment with nature by misting a hummingbird with
a garden hose,” the major event is that “At first, I thought he [the
hummingbird] was just doing his early morning pollen rituals,
but to my surprise he wanted water.” In an imagined story on the
same topic, the major event is that “[animal started to come to
the garden.] Mostly squirrels at first and a few deer, and one tiny
hummingbird.” Similarly, in the recalled story, the major event is
that “I saw a hummingbird at the corner of my eye.”

A significant difference between the autobiographical and
imagined stories is in the proportion of minor events, as identified
through human annotations (Fig. 4). The minor events tend to
be nonhypothesized, concrete details of the stories that are noted
as expected but typically not part of the general schema of the
story topic. The minor events have local saliency and can be
identified only with computation of sequentiality with a one-
sentence history. These events often contain words on biological
processes and social references. As an example, a minor event in a
recalled story on the same topic as the example above is that “I was
feeling kind of low due to not seeing many of my friends anymore
due to everyone being busy with their schedule, and work being a
little slow was also on my mind,” and, in an imagined story, was
that “For the first few weeks I got nothing and no activity, then
about a month ago animals came.”

We found that sentences annotated as describing salient events
tend to have more concrete words, first-person references, social
words, and words related to cognitive processes, biological pro-
cesses, core drives and needs, and relativity to time, space, and
motion. Only a subset of these observations, including the change
in time, character, and space, has been previously reported in
studies on detection of salient events to mark an event boundary
(2). We also observed that the length of stories showed small

differences among the story types. This observation on length is
congruent with the understanding that the stories that rely largely
on commonly expected schema are generally shorter (47, 48).

We found that the proportions of salient events (major and
minor) are similar in stories about freshly recalled memories
and about memories retold after 3 mo to 6 mo (Fig. 4). The
retold stories have higher sequentiality and are shorter than the
initial recall of stories (Fig. 3). The self-reported frequency of
revisiting and retelling autobiographical stories does not appear
to influence the sequentiality of the stories. The retold stories
that were noted as more frequently revisited memories were
found to contain fewer realis events, which may reflect processes
of abstraction. The sequentiality measure provides a means of
quantifying the observation that, with passing time and memory
consolidation, retelling autobiographical memories relies less on
recall from episodic memory, and instead increasingly invokes
common semantic knowledge of schema (1, 10, 14), especially
since certain events may be forgotten (49).

Open Research Directions. The methods and results presented
show promise as tools for exploring processes of memory, rea-
soning, and imagination employed to generate narratives. The
methods also hold the opportunity to help with building deeper
understandings of influences of common schema and personal
experiences on the stories that people tell. From a computational
perspective, we see rich opportunities ahead for harnessing large-
scale neural models to explore narrative theories, including consid-
eration and comparative study of different generative models (50).
From a cognitive perspective, directions include pursuing answers
to standing questions about the contributions of memory and
reasoning to the stories that people generate about experienced
and imagined events, and how memories—and the autobiograph-
ical stories that flow from them—evolve over time since events
are experienced. From a cultural perspective, the methods can
provide the opportunity to study differences across communities
and cultures of the nature and influences of common schema and
personal experiences on stories. Opportunities for study include
seeking insights about the influences and interpretations of world
events over time on fiction and nonfiction narrativizations (51,
52). Other research directions include applying the results, meth-
ods, and measures in studies of narrativizations with different mo-
tivations (53) such as recall, storytelling, persuasion, lie detection,
false confessions, recovered memories, and the propagation and
effects of misinformation.

Materials and Methods

Building HIPPOCORPUS. In our analyses, we make use of our previously collected
corpus of autobiographical, imagined, and retold stories [HIPPOCORPUS (24)].
This corpus contains 6,854 stories collected from crowdworkers in three stages
(depicted in SI Appendix, Fig. S1). In the recalled stage, workers write a short
diary-like story and a short summary. Then, in the imagined stage, workers are
given a summary and asked to write a short diary-like story. Finally, in the retold
stage, workers from the first stage are given their original summary and asked
to retell their story, after 3 mo to 6 mo have passed. For both the recalled and
retold tasks, we collect, from workers, the time elapsed since they experienced
the event (TIMESINCEEVENT, in weeks or months), as well as the frequency at which
they thought or talked about the event (FREQOFRECALL, on a five-point Likert scale
of “never” to “constantly”). This study was undertaken following approval from
the Institutional Review Board (IRB) at Microsoft Research. For more details, see
our preliminary work (24) and SI Appendix.

Collecting Event Annotations. We additionally collected sentence-level event
annotations for a subset of the HIPPOCORPUS stories. We randomly selected 80
topics and their associated recalled–imagined–retold stories (n = 240 stories).
Since people’s individual perceptions of what constitutes an expected, surprising,
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major, or minor event could differ depending on their experiences, background,
or culture, we made sure all stories about the same topic were annotated by
the same worker. We collected event annotations from eight crowdworkers per
set of three stories. This effort was also undertaken with IRB approval, and all
crowdworkers had informed consent when they chose to participate.

Participants read each of the sentences in each of the three stories, one
sentence at a time, and indicated whether the story sentences mark a start of
a new event. Specifically, annotators marked whether a sentence represented
a new event that is minor or major and whether the events are expected or
unexpected. See SI Appendix for further details.

Extracting Sequentiality, Realis Events, and Lexicon Counts. To com-
pute the sequentiality of each story sentence, we first split each story in the
HIPPOCORPUS into sentences, using a version of the Natural Language Toolkit
(NLTK) sentence tokenizer adapted to avoid splitting sentences into one-word
sentences (54). We then used the OpenAI Application Programming Interface
(API) to obtain the likelihoods under GPT-3 of each sentence conditioned on the
story topic and various history sizes. Specifically, we compute the log-likelihood
of a sentence pGPT-3(si) by summing the word-level log-probabilities yielded by
the API for the sentence at hand. We can then compute sequentiality for each
history size.

For computing the proportions of realis event terms, we use a realis term
tagger from our preliminary investigations (24). This tagger is a Bidirectional
Encoder Representations from Transformers (BERT) (55) model trained on a realis
annotated corpus of literary fiction (16), which achieves F1 accuracy scores of
83.7% and 75.8%, on the validation and test sets, respectively.

We used the LIWC 2015 software for counting the proportion of words that
belong to specific LIWC categories (38). For the concreteness lexicon (31), we
averaged the concreteness lexicon of each story by matching words in the story
with words in the lexicon.

Data Analysis. For each story, we averaged the sequentiality of all sentences
and had one representative value for each of the sequentialities with history

length of one sentence to full story. We also took the averaged proportion of major
or minor events, the averaged proportion of realis events, the total number of
words (story length), and the averaged NLL (NLLC , NLLT ) per story. We applied a
factorial linear regression on each of the parameters, to identify the differences
between story types. We either included three factors for three story types (imag-
ined, retold, recalled) or included two factors for pairwise comparisons.

We similarly used a factorial linear regression to evaluate the characteristics of
sentences with various event types (major, minor, or no events). A sentence was
accepted to be a minor or major event if the majority of the annotators marked the
sentence as such. We also evaluated the proportion of events that were expected
or surprising by the majority of the annotators. This analysis was done at the
sentence level with 9,412 major, 6,835 minor, and 17,477 no event annotation.
We use Bonferroni correction to adjust the significance threshold for multiple
comparisons. All reported P values are Bonferroni corrected.

Data, Materials, and Software Availability. A dataset of 6,854 English
diary-like short stories about recalled and imagined events, including tag-
ging of events, has been deposited in Hippocorpus (https://msropendata.com/
datasets/0a83fb6f-a759-4a17-aaa2-fbac84577318) (24).
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