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function annotations from the Saccharomyces Genome Database to assign yeast protein domains to SCOP
superfamilies using a simple Bayesian approach. We have predicted the structure of 3,338 putative domains and
assigned SCOP superfamily annotations to 581 of them. We have also assigned structural annotations to 7,094
predicted domains based on fold recognition and homology modeling methods. The domain predictions and structural
information are available in an online database at http://rd.plos.org/10.1371_journal.pbio.0050076_01.
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Introduction

The yeast Saccharomyces cerevisiae is one of the most widely
studied organisms, yet a large fraction of its proteins are of
unknown structure and/or unknown function. Knowledge of
the structure of a protein is critical to understand how it
functions, and hence, a complete set of protein structures for
yeast is desirable, but difficult to accomplish experimentally.

The accuracy of de novo structure prediction methods,
although far from the accuracy of experimental structures,
has improved in recent years. The Rosetta de novo structure
prediction method [1–4] is currently one of the best methods
available for predicting the structure of proteins lacking
obvious homology to known structures [5–8]. Application of
Rosetta to genome-wide annotation has been limited by the
difficulty of distinguishing accurate from inaccurate predic-
tions and the computational cost associated with scaling the
procedure to whole genomes. Initial results have been
encouraging, showing promise on subsets of protein families
and prokaryotic genomes [9,10]. We have previously [11]
predicted structures for short Pfam families without struc-
tural information, and showed that a simple confidence
function could partially separate correct structure predic-
tions from incorrect predictions.

There is a rich body of work on the relationship between
superfamily (encoded in databases such as SCOP [12–14] and
CATH [15]) and function (encoded in databases such as Kyoto
Encyclopedia of Genes and Genomes [KEGG] [16] and Gene
Ontology [GO] [17]). Although many superfamilies have been
shown to carry out multiple functions, Hegyi and Gerstein
[18] found that the majority of structure superfamilies carry
out one or a few molecular functions, and conversely, that the
majority of functions are carried out by one or a few SCOP

superfamilies. This relationship can be exploited when
predicting to which structure superfamily a protein belongs
[9].
We describe an integrated approach for assigning protein

domains to structure superfamilies that combines de novo
structure predictions with GO function, process, and com-
ponent annotations. We first parse all yeast proteins into
putative structural domains using the Ginzu method [7,19].
Ginzu predicts domain boundaries by applying a hierarchy of
sequence-based methods beginning with searching for ho-
mologs of known structure using PSI-BLAST [20] and ending
by parsing block patterns in multiple sequence alignments
(MSAs). After running Ginzu on the full proteome, we applied
the Rosetta structure prediction method to domains shorter
than 150 amino acids for which no homolog of known
structure was found. The top structure predictions were
compared to protein domains of known structure using the
MAMMOTH protein structure comparison program [21]. The
reliability of an assignment to a protein structure superfamily
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derived from these structure comparisons was evaluated
using a logistic regression–based confidence function opti-
mized on a large training set of Rosetta models for proteins of
known structure. Superfamily predictions of increased
accuracy were obtained by integrating GO function, compo-
nent, and process annotations [17,22] from the Saccharomyces
Genome Database [23] with the structure prediction data
using a simple Bayesian approach. We predicted structures
for 3,338 domains and have annotated 581 of them with novel
SCOP superfamily assignments. The domain predictions, the
predicted structures, and superfamily assignments are acces-
sible at http://rd.plos.org/10.1371_journal.pbio.0050076_01.

Results

Predicting Structural Domains
A total of 6,238 open reading frames (ORFs) were parsed

into structural domains using Ginzu [7,19]. Ginzu was used
successfully in Critical Assessment of Techniques for Protein
Structure Prediction 6 (CASP6) to delineate domains within
query proteins by sequentially searching for (1) sequence-
detectable homology to the Protein Data Bank (PDB) using
PSI-BLAST [20], (2) more-remote fold recognition hits to
PDB structures [24,25], (3) hits to Pfam-conserved sequence
family domains [26,27], and (4) block patterns in MSAs. This
hierarchical application of methods is organized so that
methods providing more reliable information are applied

first, thus accuracy is not sacrificed as we apply multiple
methods in an attempt to maximize comprehensive coverage
of the genome. A total of 14,934 domains were predicted, of
which 38% had a sequence-detectable homolog of known
structure, and an additional 9% could confidently be
annotated by fold recognition methods. A summary of the
genome-wide domain parses is presented in Table 1, and a
complete list of domain predictions are presented in Table
S1.

Fold Recognition
Although the confident fold recognition results generated

as part of this study are not the main focus of this paper, they
provide a wealth of information on proteins for which there
are no detectable sequence homologs of known structure.
The results for 1,361 domain annotations using fold
recognition are detailed in Table S1 and are available at
http://rd.plos.org/10.1371_journal.pbio.0050076_01.

Protein Structure Prediction
A total of 4,006 yeast protein domains shorter than 150

amino acids (a practical length limit for the Rosetta method)
and not linked to known structures by PSI-BLAST or fold
recognition methods were identified by Ginzu: 668 of these
contained predicted transmembrane helices and were omit-
ted; the remaining 3,338 domains were folded using the
Rosetta de novo method. Ten thousand structure models
were generated for each of these remaining 3,338 domains
using the Rosetta de novo method [1,2,28] and then
condensed to 30 representative models by clustering. The
size of the calculation is significant and is estimated at 12
million CPU hours, or 1,350 CPU years. This calculation was
performed on the World Community Grid (WCG) parallel
grid computing facility provided by IBM (http://wcgrid.org).

Superfamily Assignment by Structure Comparison
The 30 representative models for each domain were

compared to a database of experimentally determined
protein structure domains (based on ASTRAL; see Materials
and Methods) with representatives from all SCOP (version
1.67) superfamilies and evaluated using a confidence function
(referred to as the MAMMOTH Confidence Metric [MCM])
described below. The confidence of a given prediction for a
given protein-domain is estimated based on features resulting
from the Rosetta structure prediction, clustering, and
structure–structure matching steps (using MAMMOTH [21]).
The primary improvement in the confidence function over
our previous work [11] is the inclusion of the contact order

Author Summary

The three-dimensional structure of a protein can reveal much about
that protein’s evolutionary relationships and functions. Such
information about all the proteins in an organism—the pro-
teome—would offer a more global view of these relationships,
but solving each structure individually would be a formidable task.
In this study, we have parsed all Saccharomyces cerevisiae proteins
into nearly 15,000 distinct domains and then used de novo structure
prediction methods together with worldwide distributed computing
to predict structures for all domains lacking sequence similarity to
proteins of known structure. To overcome the uncertainties in de
novo structure prediction, we combined these predictions with data
on the biological process, function, and localization of the proteins
from previous experimental studies to assign the domains to
families of evolutionarily related proteins. Our genome-wide domain
predictions and superfamily assignments provide the basis for the
generation of experimentally testable hypotheses about the
mechanism of action for a large number of yeast proteins.

Table 1. Summary of Domain Assignments for the Yeast Genome Made Using the Ginzu Method

Detection Method # ORFs # Domains Number of Residues per Domain

Average Standard Deviation Maximum Minimum

Fold recognition 779 1,361 181.5 107.0 792 40

MSA 1,721 2,286 229.1 143.0 1,325 52

Pfam 797 973 219.2 170.3 1,427 33

PSI-BLAST 2,912 5,733 185.7 109.6 1,561 33

Unassigned 3,855 4,581 175.9 163.2 2,220 4

The hierarchy of domain detection methods used by Ginzu is listed in the first column.
doi:10.1371/journal.pbio.0050076.t001

PLoS Biology | www.plosbiology.org April 2007 | Volume 5 | Issue 4 | e760759

Yeast Proteome Structure Predictions



(CO; average sequence separation of contacting amino acids
[29]) of the residues superimposed in the MAMMOTH
structure–structure alignment of the predicted structure
with the matched structure; this CO term penalizes less-
significant matches dominated by local contacts such as single
long alpha helices. Figure 1 describes the performance of the
MCM on a large benchmark set developed for this study (see
Materials and Methods). The MCM score, PMCM, ranges
between 0 and 1 and is an estimate of the probability of the
identification of the correct structure superfamily identifica-
tion. A total of 404 domains in the yeast dataset (see Table 2)
have a PMCM above 0.8 (considered significant for the purpose
of this discussion) and can be found in Table S2 (additional
domains are annotated with superfamily via integration with
GO as described below).

The confidence estimates derived from our SCOP bench-
mark set are likely to be somewhat inflated when applied to
the yeast protein set for two reasons; first, as discussed in the
following section, the domain boundaries are derived directly
from experimental structures in our SCOP benchmark, but
are subject to error for the yeast proteins, and second, in the
SCOP benchmark set, there is by construction always at least
one closely related structure in the correct superfamily,
whereas proteins with novel folds in yeast may not belong to
any pre-existing superfamily. Below and in Materials and
Methods, we describe tests on two additional validation sets
that include the above sources of error (and thus allow for the
estimation of the effects of such errors on structure super-
family prediction). Although there is a non-negligible
presence of errors in domain parsing and superfamily
assignment, our results show that the superfamily assign-
ments generated herein (see Table S2) should be valuable for
stimulating the generation of experimentally testable hy-
potheses about the structure and often the mechanism of
action of these proteins.

Superfamily Assignment through Integration of Structure
Predictions with Function

There is a strong relationship between the function of a
protein and its structural superfamily [18]. Most commonly,
proteins in the same superfamily carry out one or a few
functions. The reverse is also true; often only one or a few
superfamilies are found to carry out a specific function. We

derived probability distributions, P(GOjSF), that relate SCOP
superfamily (SF) to molecular function, biological process,
and cellular component (GO). We also constructed proba-
bility distributions, P(SFjD), that give the probability of a
given superfamily, given the predicted structures (D), that is
derived from the distributions of PMCM for a target, as
described in Materials and Methods. These distributions were
integrated to determine the degree to which a superfamily
prediction is simultaneously compatible with the structure
predictions and the functional annotation available for a
given protein, using:

P SFjD
Q
;GO

� �
¼ PðGOjSFÞ � PðSFjD

Q
Þ

PðGOÞ ð1Þ

where P(SFjD,GO) is the probability that the domain belongs
to SCOP superfamily SF, given the predicted structures, D,
and the GO terms, GO, for the protein. The independence
assumption underlying Equation 1 is described in Materials
and Methods.
The superfamily distributions derived from the structure

prediction data alone (P(SFjD)), the GO annotations
(P(SFjGO)), and from the two together (P(SFjD,GO)), are
compared in Figure 2 for four proteins for which the true
SCOP superfamilies are known, showing the synergy between
the two sources of information. The ambiguities in P(SFjD)
(red line) and P(SFjGO) (blue line) are reduced upon
integration P(SFjD,GO) (black line), resulting in less ambig-
uous predictions for many difficult-to-annotate domains. The
overall performance for the P(SFjD,GO) over the benchmark

Table 2. Overview of Domain Annotations Using All Methods
Employed in This Work

Domain Annotations # Domains

Domains annotated by PSI-BLAST 5,733

Domains annotated by fold recognition 1,361

Domains annotated with PGI � 0.8 177

Domains annotated with PMCM � 0.8 404

doi:10.1371/journal.pbio.0050076.t002

Figure 1. Performance of MAMMOTH Confidence Metric on Benchmark Set

(A) Alpha-helical protein model, (B) beta-sheet protein model, and (C) alpha-helical/beta-sheet protein model. The x-axis is the PMCM; the y-axis the
number of matches that are incorrect (black) and correct (red). The blue line is the ratio (correct/incorrect).
doi:10.1371/journal.pbio.0050076.g001
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set (see Materials and Methods) is shown in Figure 3. A total
of 177 yeast domains (see Table 2) were assigned a structural
superfamily with a P(SFjD,GO) over 0.8 (Table S3).

Internal Standards—Additional Validation of Confidence

Metric Using Proteins Solved after Calculations Were

Completed
True performance of these technologies cannot be assessed

on the benchmark dataset because the domain boundaries of

this set are perfect (derived from known structures in the
ASTRAL database). A subset of the proteins without links to
known structure at the start of this project now have strong
homology to a structure that has since been solved, see Figure
4 for examples. These recently solved structures give us an
opportunity to assess the performance of our technology
without bias in the selection of the proteins, with real domain
prediction error incorporated, and without the contamina-
tion of the results by weak homology to known structures.

Figure 2. Integration of Structure Prediction with GO Annotations

Red line represents the superfamily distribution for the predicted structures, P(SFjD); blue line, the superfamily distribution based on GO annotations,
P(SFjGO). Black line represents the Bayesian combination (P(SFjD,GO); Equation 2). Only superfamilies with a probability over 0.001 in either category are
displayed. The names of the proteins and the GO annotations for which the black line is derived are (A) 1KMDA (Vam7p Px Domain)/Golgi to vacuole
transport (process), (B) 1IOUA (v-SNARE)/vesicle fusion (process), (C) 1F32 (Ascaris pepsin inhibitor-3)/endopeptidase inhibitor activity (function), and (D)
1DUJA (Spindle Assembly Checkpoint protein Human Mad2)/Chromosome (component).
doi:10.1371/journal.pbio.0050076.g002

Figure 3. Performance of the GO Integration on Benchmark Set

(A) Alpha-helical proteins, (B) beta-sheet proteins, and (C) alpha-helical/beta-sheet proteins. The x-axis is P(SFjD,GO); the y-axis the number of matches
with that score that are incorrect (black) and correct (red). The blue line is the ratio (correct/incorrect).
doi:10.1371/journal.pbio.0050076.g003

PLoS Biology | www.plosbiology.org April 2007 | Volume 5 | Issue 4 | e760761

Yeast Proteome Structure Predictions



PLoS Biology | www.plosbiology.org April 2007 | Volume 5 | Issue 4 | e760762

Yeast Proteome Structure Predictions



Twenty-seven domains from this project now have a homolog
of known structure (see Materials and Methods for homology
definition) and three of the 11 predictions with a PMCM of 0.8
or higher are correct. Five of seven proteins from this set with
a P(SFjD,GO) � 0.8 are correct; five of which (three correct)
also have a PMCM of 0.8. The small sample size represented by
this dataset makes it difficult to assess accurate upper and
lower bounds of the estimated error. We have also generated
a much larger dataset (see Materials and Methods), as part of
the Human Proteome Folding Project (HPF). This dataset,
containing proteins from over 150 organisms, was derived
without the use of fold recognition (and thus is not identical
to the protocol for yeast), but provides valuable information
as to the effect of domain prediction on our procedure. A
total of 44% of the 207 predictions that were made for
recently solved structures with PMCM above 0.8 in this dataset
were correct; 84% of the 51 predictions with P(SFjD,GO)
above 0.8 were correct; and 31 of these predictions had both a
PMCM and a P(SFjD,GO) above 0.8, and 27 of these were
correct. Over all three validation sets, more than 40% of the
predictions with a PMCM above 0.8, and more than 75% of the
predictions with a P(SFjD,GO) above 0.8, are correct,
illustrating the value of data integration in this work.

Importantly, we were able to use these sets of recently
solved proteins to better characterize the errors associated
with different confidence Ginzu domain predictions. We
found that a subset of the incorrect domain parses which
significantly diminish the chances of correctly predicting fold
and function are easily removed using a simple filter
(described in Materials and Methods). This domain-predic-
tion filter allows us to recover more-accurate predictions for
multi-domain proteins. We were able to classify 50% of the
amino acids from the 6,238 attempted ORFs to SCOP
superfamilies which is significantly higher than the 35%
coverage achieved by a sequence-based hidden Markov model
approach [30].

Novel SCOP Superfamily Assignments
In this section, we discuss several protein complexes with

components assigned to superfamilies by both GO-integra-
tion and MCM approaches. These predictions and the much
larger set of predictions in the database accompanying this
paper provide a basis for hypothesis generation and
experimental testing, but it must be borne in mind that
there is a significant probability that any single prediction is
incorrect, as indicated by our estimates of error.
The mediator complex, a large complex containing 24

polypeptides [31], has been shown to be required for
transcriptional activation in many eukaryotic organisms and
play key roles in transmitting regulatory information to the
pre-initiation complex. During transcriptional initiation, it
interacts with the RNA polymerase II holoenzyme and the
promoter region. The role of the mediator complex in
transcriptional regulation, and the complete makeup of this
complex and its dynamic composition throughout different
cell and developmental states (in response to specific
regulators) are active areas of research. To date, several
studies have explored the overall makeup of the complex by
probing protein–protein interactions [31] and by electron
microscopy of purified mediator complex, but to our knowl-
edge, this complex has eluded higher resolution methods such
as crystallographic analysis. Although there exists an exten-
sive body of work on the overall function of this complex, the
roles, positions, and structures of most of the individual
polypeptide components remain undetermined.
We find confident superfamily predictions for several

proteins within this complex that were not structurally
annotated prior to this work. Table 4 outlines these
predictions, as well as their sources and confidence estimates.
Several proteins in the Mediator head domain are predicted
to contain DNA-binding domains. In addition, multiple head
domain proteins are predicted to be long helical bundles,
potentially serving as scaffolds. ROX3 contains two predicted
domains, see Figure 5A. The first domain is predicted to
belong to the Homeodomain-like superfamily (PMCM ¼ 0.43;
GO-term: transcription from RNA polymerase II promoter;
P(SFjD,GO) ¼ 0.83); implying DNA binding. MED4 (Figure
5B), in the middle region of the mediator complex, is also a
two-domain protein with a N-terminal homeodomain-like
superfamily assignment (PMCM¼ 0.65; GO-term: transcription
from RNA polymerase II promoter; P(SFjD,GO) ¼ 0.98).
Several superfamily predictions for this complex (such as hits
to superfamilies like spectrin-like and Rossmann folds) are
difficult to interpret unambiguously due to the large number
of functions compatible with each of these superfamilies, but
are not incompatible with DNA-binding functions. Gal11
(Figure 5C) contains a diverse mix of predicted domain

Figure 4. Predictions of Domains with Confident SCOP Superfamily Assignment Scores That Were Subsequently Solved

The predicted structure is shown in panel 1 (left), and the native structure or the structure of the homolog is shown in panel 2 (middle). The section
matching the domain in the solved structure is colored red in panel 3 (right).
(A) TRS20/YBR254C is involved in the endoplasmic reticulum (ER) to Golgi transport and was predicted to belong to the SNARE-like (d.110.4) SCOP
superfamily with a P(SFjD,GO)¼ 0.98 (PMCM¼ 0.69). The Z-score between the predicted structure and the structure of a homolog with 33% sequence
identity was 7.76.
(B) ECM15/YBL001C is involved in cell wall organization and biogenesis, and was predicted to belong to the MTH1187/YkoF-like (d.58.48) superfamily
with P(SFjD,GO)¼ 0.87 (PMCM¼ 0.82; MAMMOTH Z-score to native structure was 8.18).
(C) KAP104/YBR017C is involved in nuclear localization sequence binding and was predicted to belong to the ARM repeat (a.118.1) superfamily with
P(SFjD,GO)¼ 0.99 (PMCM¼ 0.8; MAMMOTH Z-score to homologous structure [31% sequence identity] was 4.41).
(D) FIS1/YIL065C was predicted to belong to the SCOP superfamily TPR-like (a.118.8) with a PMCM of 0.98. The Mammoth Z-score between the predicted
structure and the experimental structure was 13.34.
doi:10.1371/journal.pbio.0050076.g004

Table 3. MAMMOTH Confidence Metric (MCM) Logistic Regres-
sion Model Parameters

Model Mammoth

Z-Score

CO Convergence Length

Ratio

Intercept

(C)

Alpha 0.66 0.13 0.09 4.08 4.53

Beta 0.66 0.09 0.35 6.72 1.60

Alpha/beta 0.67 0.05 0.03 5.16 4.10

doi:10.1371/journal.pbio.0050076.t003
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structures: for the first domain, we find a PSI-BLAST match
to the motor domain of myosin, and the second domain
shows a strong fold recognition hit to a structural domain
from sec24 (a component of the secretion system). Rosetta
models for the third domain match the spectrin-like super-
family, and the models of the fourth domain match the DNA-
binding lambda-repressor–like fold (with a competing hit to
the tRNA-binding fold). The fifth domain shows a match to
the RNA pol II–like fold (RPB1) by confident fold recog-
nition. Although these domain and structure predictions are
insufficient by themselves to localize specific molecular
function to components of the mediator complex, it is
encouraging that we can make some headway in localizing
specific superfamilies and functions to components of this
large complex.

TIF35 (Figure 5D) is a subunit of the translation initiation
factor complex, a complex essential for translation [32]. We
predict three separate domains exist within this protein. The
middle and C-terminal domains of this protein are both
strongly predicted to belong to the RNA-binding domain,
RDB superfamily (d.58.7; identified by PSI-BLAST). The N-
terminal 65 amino acids lack sequence-detectable homologs
of known structure, but the Rosetta-generated models and
GO-selected structure prediction for this protein shows a
strong match to the Translation proteins SH3-like domain
(PMCM ¼ 0.44; GO-term: translation initiation factor activity;
P(SFjD,GO) ¼ 0.92).

The mitochondrial ribosome, or the mitoribosome, shares
a number of protein components with bacterial ribosomes,
but it is believed that the mitoribosomes have comparatively
more proteins than their bacterial counterparts; many of the
proteins associated with the mitoribosome have no detectable
sequence similarity to other mitochondrial proteins [33]. We
have predicted the structure for two components known to
be associated with the mitoribosome [34,35]. MRPL37 (Figure
5E) is predicted to belong to the Ribosomal protein L6
superfamily (PMCM ¼ 0.31; GO-term structural constituent of
ribosome; P(SFjD,GO)¼ 0.86), a superfamily involved in RNA
binding. We predict that MRPL44 (Figure 5F) belongs to the

dsRNA-binding domain–like superfamily (PMCM ¼ 0.78; GO-
term: structural constituent of ribosome; P(SFjD,GO)¼ 0.86).
Overall, the structure predictions for these mitoribosome
proteins suggest that they belong to superfamilies compatible
with known, although highly diverged, components of both
the bacterial and eukaryotic ribosome.
INH1 (Figure 5G) is an ATPase inhibitor predicted to be a

member of the ARM repeat superfamily (PMCM ¼ 0.73; GO-
term: ATP synthesis couple protein transport; P(SFjD,GO) ¼
0.82). Inh1 dimerizes and binds to the F1 complex of the
ATPase, thereby inhibiting its function [36,37]. Many mem-
bers of the ARM repeat superfamily are involved in protein
and peptide binding, which is consistent with both the
dimerzation and the binding to the ATPase.

Data Access
All data are accessible via the Yeast Resource Center (YRC)

public data repository [38] at http://rd.plos.org/10.
1371_journal.pbio.0050076_01. The data will also be made
available in other formats upon request.

Discussion

Comprehensive generation of three-dimensional structures
with resolution or reliability of those determined by X-ray
crystallography or nuclear magnetic resonance (NMR) is
currently beyond the capabilities of any protein structure
prediction method; these methods can, however, play an
important role in generating structural annotations for whole
genomes due to the much lower investment of resources
required per protein domain. In this work, we have shown
that it is possible to: (1) generate protein structure models on
a genome-wide scale, (2) automate the assessment of the
structure prediction quality, (3) convert the results into pre-
existing encodings of structure in the form of SCOP super-
family classifications, and (4) augment the model-based
assignment of SCOP superfamily by integrating with pre-
existing function, process, and component information
encoded in the GO database.
We were able to assign SCOP superfamilies to 7,094 of the

Table 4. Predicted Domains and Structures for Components of the Mediator Complex

ORF Domain Number Type Span Length Comment

ROX3/YBL093C 1 MSA 1–83 83 PGI ¼ 0.830 to Homeodomain-like (a.4.1)

SIN4/YNL236W 2 Fold recognition 458–641, 689–773 269 Matched PDB: 1qoyA

SIN4/YNL236W 3 Fold recognition 642–688 47 Matched PDB: 1qoyA

SRB6/YBR253W 1 Unassigned 1–121 121 PMCM ¼ 0.838 to t-snare proteins (a.47.2)

SSN3/YPL042C 1 PSI-BLAST 1–416 416 Matched PDB: 1opkA_

SSN3/YPL042C 2 PSI-BLAST 417–472 56 Matched PDB: 1b38A_

MED2/YDL005C 2 Fold recognition 133–206 74 Matched PDB: 1l8mA

MED2/YDL005C 3 Fold recognition 207–286 80 Matched PDB: 1l8mA

MED2/YDL005C 4 Fold recognition 287–356 70 Matched PDB: 1l8mA

MED2/YDL005C 5 Fold recognition 357–431 75 Matched PDB: 1l8mA

SSN8/YNL025C 1 PSI-BLAST 1–178, 280–323 222 Matched PDB: 1jkw__

SSN8/YNL025C 2 PSI-BLAST 179–279 101 Matched PDB: 1jkw__

SRB7/YDR308C 1 PSI-BLAST 1–140 140 Matched PDB: 1i84S_

MED4/YOR174W 1 Unassigned 1–64 64 PGI ¼ 0.978 to Homeodomain-like (a.4.1)

GAL11/YOL051W 1 PSI-BLAST 1–296 296 Matched PDB: 1i84S_

GAL11/YOL051W 2 Fold recognition 297–507 211 Matched PDB: 1m2vB

GAL11/YOL051W 5 Fold recognition 682–916 235 Matched PDB: 1k83A

doi:10.1371/journal.pbio.0050076.t004
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14,934 predicted domains in yeast using PSI-BLAST and fold
recognition methodology. A total of 4,006 of the remaining
7,840 domains were short enough (less than 150 amino acids)
for de novo structure prediction. Of these, 668 were omitted
because they contained at least one predicted transmem-
brane helix. Low-resolution structure models were built for
the remaining domains using Rosetta; of these, 404 were
assigned to superfamilies with confidence using MCM, and an
additional 177 were assigned with confidence after integrat-
ing with GO process, component, and function annotations.

A significant challenge in carrying out this work was the

magnitude of the computation required for generating de
novo structure predictions for large numbers of domains.
Robust and fast methodology, efficient data storage, analysis
tools, and data organization were required. Our use of
distributed computing (http://wcgrid.org), innovative data-
base architecture [39,40], and fully automatic methods were
essential for this full-genome annotation. Yeast is particularly
interesting because it is the focus of a vast global research
effort. Future work will include an ongoing effort to scale this
procedure to over 150 completely sequenced genomes as well
as to employ recently developed higher resolution structure

Figure 5. Structure Predictions with High P(SFjD,GO)

The predicted structure with the highest P(SFjD,GO) (left) is shown for (A) ROX3, (B) MED4, (C) GAL11, (D) TIF35, (E) MRPL37, (F) MRPL44, and (G) INH1
displayed next to the matching SCOP representative (right).
doi:10.1371/journal.pbio.0050076.g005
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prediction methods [41] that produce more-accurate and
reliable models, but require significantly greater computa-
tional resources per protein domain.

The information content in the predicted structures may be
further leveraged by integration with other data such as global
quantitative measurements of mRNA, protein expression
levels, DNA–protein, and protein–protein interactions. Such
datasets are available for yeast and several other organisms as
part of ongoing functional genomics efforts, and integration
of these data types with the predicted structures should
contribute to the annotation of protein functions.

Materials and Methods

Benchmark set; folding representatives from SCOP. Two repre-
sentative domains from each SCOP [12–14] superfamily were folded
using the Rosetta de novo method [1,2,28]. Superfamilies without
members shorter than 200 amino acids were excluded, as were
proteins for which Rosetta failed to produce predictions within a
reasonable time. One thousand models were generated for each
domain. This resulted in structure predictions for 998 domains for
which the structures have been experimentally determined. The
predicted structures were clustered by root mean square deviation
(RMSD), and the centers of the top 30 clusters were compared to a
domain database generated from ASTRAL 1.67 (reduced to 40%
sequence identity) [42,43] using a modified version of MAMMOTH
[21] that calculates the contact order of the aligned regions of the
predicted structure and the ASTRAL domain. An overview of the
statistics is presented in Table 5, and a detailed description of the
results in Table S4.

The MAMMOTH Confidence Metric. The MCM estimates the
probability that the MAMMOTH match between predicted structure
and the ASTRAL domain (see previous section) has identified the
correct superfamily and is based on the closeness of match
(MAMMOTH Z-score), the length of the two proteins involved, LAstral
and Lpredicted, the CO of the region of the predicted structure that was
superimposable on the experimental structure, and the degree to
which Rosetta converged during the generation of the set of
predicted conformations (converg below; estimated during the
clustering step). The general formula for the confidence functions

is given in Equation 2, and the weights of the parameters (a, b, c, d, and
the constant C) for the three models described in the following
paragraph are presented in Table 3.

log
PMCM

1� PMCM

� �
¼ a � Z�scoreþ b � COþ c � converg

þ d � log LAstral

Lpredicted

� �����
����þ C

ð2Þ

This model is similar to that used in previous studies [11], with two
improvements. First, we have fit three separate logistic regression
models, one for all alpha proteins, one for all beta proteins, and one
for alpha and beta proteins; the size of the benchmark set and the fact
that we are fitting a small number of parameters allows for this
trifurcation of the benchmark set. Second, we compute the CO [29]
over the matched region. This penalizes the scenario in which small
numbers of long secondary structure elements (usually helices) are
aligned; the CO term as well as the length ratio corrects for the overly
confident score we would otherwise calculate based on convergence
and MAMMOTH Z-score alone. We used 5-fold cross-validation to fit
each of the three secondary structure class–specific confidence
functions. For selecting between the three models for a query
protein, we use secondary structure content predicted by PsiPred
[44]. The alpha model is used for proteins with over 15% predicted
alpha-helical content and under 15% beta-sheet content. The beta
model is used for protein with more than 15% predicted beta strand
and less than 15% alpha helical. The alpha/beta model was used for all
other domains.

Estimating superfamily probabilities, given the structure predic-
tions. Given a set of predicted structures D for a given protein, we
estimate the probability the protein belongs to superfamily, SF,
P(SFjD) as follows. Each superfamily is initially assigned a probability
corresponding to the maximum PMCM value for that superfamily over
the top five PMCM values for all predicted conformations for the query
protein; probabilities less than 0.2 are set to zero. If the sum of the raw
probabilities is greater than 0.8, they are scaled linearly so that the sum
is 0.8. Because of the uncertainties of de novo structure prediction,
these scaled probabilities, Pscaled(SFjD), are then linearly combined
with the background superfamily distribution, P(SF) (Equation 3):

PðSFjD
Q
Þ ¼ PscaledðSFjD

Q
Þ þ 1�

X
SF

PscaledðSFjD
Q
Þ

 !
� PðSFÞ ð3Þ

Table 5. Summary of Benchmark Results

Protein Class Subcategory Total Correct in Top 1 Correct in Top 5 Correct in Set Correct SF Prediction

in Top30 with PMCM . 0.8

All 979 294 490 536 415

Alpha 323 149 214 233 158

Beta 233 16 47 53 48

Alpha-beta 423 129 229 250 209

1–100 449 135 228 251 205

101–120 203 67 105 116 96

121–150 209 59 100 108 70

151–200 118 33 57 61 44

1–100 Alpha 172 69 105 115 81

Beta 105 11 27 30 40

Alpha-beta 172 55 96 106 84

101–120 Alpha 60 36 43 46 38

Beta 48 1 9 11 6

Alpha-beta 95 30 53 59 52

121–150 Alpha 49 26 41 44 24

Beta 60 3 9 10 2

Alpha-beta 100 30 50 54 44

151–200 Alpha 42 18 25 28 15

Beta 20 1 2 2 0

Alpha-beta 56 14 30 31 29

The number of proteins for which the top cluster center or top five cluster centers had a MaxSub e-value of 10�6 or better to the native structure is reported in the columns ‘‘Correct in Top
1’’ and ‘‘Correct in Top 5,’’ respectively. The number of proteins for which the native superfamily had a PMCM of 0.8 or better is shown in the column to the right. The rows of the table give
the statistics for domains in different secondary structure classes and length ranges.
doi:10.1371/journal.pbio.0050076.t005
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The final distributions, P(SFjD), are guaranteed to have non-zero
probabilities for every superfamily, and to sum to 1. The background
distribution P(SF) ensures that (1) we do not disregard useful
functional information at the integration with GO stage and (2) that
we do not over interpret the confidence values derived from the
benchmark training set.

Integration of function. We obtain P(SFjD,GO) of a superfamily,
SF, given both protein structure prediction, D, and GO annotations,
GO, using Bayes’ rule and the assumption that P(GO,DjSF) ;
P(GOjSF)*P(DjSF):

P SFjD
Q
;GO

� �
¼ PðSFÞ � PðGOj SFÞ � PðD

Q
j SFÞ

PðGOÞ � PðD
Q
Þ

ð4Þ

We obtain P(DjSF) via Equation 5:

PðD
Q
jSFÞ ¼ PðSFjD

Q
ÞPðD

Q
Þ

PðSFÞ ð5Þ

After substituting Equation 5 into Equation 4, both P(SF) and P(D)
cancel. P(SFjD) is computed as described in the previous section, and
P(GOjSF), P(GO), and P(SF) are computed from proteins in the PDB
that are annotated with GO function, component, or process and also
classified in SCOP. To deal with cases in which there is a single
function annotation for a given superfamily, we allow for the
possibility that the uniqueness of this mapping is due to under-
sampling of superfamily space (as represented by the PDB) or
function space (as represented by GO) by adding pseudo counts
distributed according to the background superfamily distribution,
Pastral95(SF), computed from ASTRAL 1.67 culled so that no sequences
are more then 95% identical.

PðGOjSFÞ ¼ NðGO; SFÞ þM � Pastral95ðSFÞ
NðGOÞ þM

ð6Þ

The parameter M (a regularization parameter controlling the
relative contribution of our pseudo-counts) was estimated by
carrying out function assignment given the superfamily over the
benchmark set: we chose M to minimize the classification error
estimated using 10-fold cross-validation. The overall procedure was
relatively insensitive to the value of M ranging from one to ten with
an optimal value of four. The P(SFjGO) are too diffuse for confident
superfamily prediction from GO annotations alone, hence the
integration with the structure prediction data is critical for accurate
superfamily predictions.

Equation 6 relies on the assumption that the functional annota-
tions are independent and mutually exclusive, which is not the case.
(GO is a directed acyclic graph [DAG], with an implicit conditional
dependence of lower nodes on parent nodes.) Nodes can have
multiple parents, thus the probability of the child nodes of a more
general term are not guaranteed to sum to the probability of the
parent term. To circumvent this problem, we assigned the combined
probability for each superfamily by taking the maximum probability
for that superfamily given the predicted structures and all functions,
i.e., Equation 7:

PðSFjD
Q
;GOÞ ¼ maxðPðSFjD

Q
;GO1Þ;PðSFjD

Q
;GO2Þ; :::;PðSFjD

Q
;GON ÞÞ

ð7Þ

Finally, the sum of P(SFjD,GO) for any given protein domain is
normalized to sum to one; thus confident assignments are not made
when there are strong matches to more than one superfamily.

Datasets for evaluation. The performance of the MCM and the GO
integration was evaluated on two independent datasets. The first
dataset, from HPF project, consists of 768 predicted domains that
now have a homolog with a known structure that is classified in SCOP
1.69. The homologs were identified by blasting predicted domains
against all sequences from ASTRAL 1.69 and selecting those with a
PSI-BLAST e-value less than 1310�3. We also require that the shorter
of the two sequences is more than 80% of the length of the longer
one, and that 60% or more of the predicted domain is aligned with
the ASTRAL domain. These domains are part of an ongoing project
in which we predict structures for over 150 genomes; although
domains with any homology to known structures are excluded, a
number of structures have been solved and classified in SCOP during
the 18 mo the project has been running. The scope of this separate
project prohibited us from carrying out fold recognition calculations
on these domains, and since domains that can be assigned using fold
recognition methods will on average have higher MAMMOTH
structural similarities to known structures than domains that cannot

be assigned, results from this dataset represent an upper bound on
performance on the dataset in this paper.

The second dataset was generated the same way the HPF set was
generated, but limited to yeast domains. The proteins from which these
domains are derived have been subjected to fold recognition and hence
give a better estimate of the true performance. This dataset is, however,
too small for statistically significant conclusions to be made.

Domain filter. Based on inspection of the results on the HPF
dataset, domains from predicted two-domain proteins are excluded if
both the domains are predicted using less-confident methods (MSA,
unassigned, or Pfam domains), or if the domain under consideration
is an MSA domain regardless of the neighboring domain type. A large
fraction of these proteins have single domains, and correct super-
family matches are quite unlikely when models are only generated
from domain fragments.

Data production. The generation of structure predictions was
divided into three completely automated steps: pre-processing,
production (the running of Rosetta), and post-processing (clustering,
superfamily assignment, and function integration). The pre-process-
ing protocol includes domain prediction, prediction of secondary
structure, disordered regions, trans-membrane helices [45], and signal
peptides [46], and the local structure fragments and other files
necessary for running Rosetta. This step was conducted in-house on
two 64-CPU Linux clusters. The production step, generating 10,000
structure predictions, was completed in collaboration with IBM
running Rosetta on the World Community Grid as part of a larger
effort, and is estimated to have used 12 million CPU hours, or 1,350
CPU years. The post-processing step was performed in-house (using
the same hardware as the pre-processing step), and included
clustering and superfamily assignment by MCM and GO integration.
The resulting dataset is complex, and is stored, queried, organized,
and analyzed using an open-source software package, 2DDB [39,40] of
our own construction.

Supporting Information

Table S1. Complete Listing of Domain Predictions for All ORFs in
Yeast

All 14,934 domains predicted from the 6,238 sequences are presented
in detail.

Found at doi:10.1371/journal.pbio.0050076.st001 (4.7 MB PDF).

Table S2. Protein Structure Predictions with PMCM � 0.8

The most confident predictions using the MCM are listed.

Found at doi:10.1371/journal.pbio.0050076.st002 (133 KB PDF).

Table S3. Protein Structure Prediction with P(SFjD,GO) � 0.8

The most confident predictions using the GO-integration strategy are
listed.

Found at doi:10.1371/journal.pbio.0050076.st003 (77 KB PDF).

Table S4. Benchmark Results

Best predicted structure—the best predicted structure by RMS
among the 1,000 created; Top5 is the cluster center from the five
largest clusters; Best Match—the best domain match from all 30
cluster centers.

Found at doi:10.1371/journal.pbio.0050076.st004 (476 KB PDF).
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