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Data mining reveals a network of early-response genes as a
consensus signature of drug-induced in vitro and in vivo toxicity
JD Zhang, N Berntenis, A Roth and M Ebeling

Gene signatures of drug-induced toxicity are of broad interest, but they are often identified from small-scale, single-time point
experiments, and are therefore of limited applicability. To address this issue, we performed multivariate analysis of gene expression,
cell-based assays, and histopathological data in the TG-GATEs (Toxicogenomics Project-Genomics Assisted Toxicity Evaluation
system) database. Data mining highlights four genes—EGR1, ATF3, GDF15 and FGF21—that are induced 2 h after drug
administration in human and rat primary hepatocytes poised to eventually undergo cytotoxicity-induced cell death. Modelling and
simulation reveals that these early stress-response genes form a functional network with evolutionarily conserved structure and
intrinsic dynamics. This is underlined by the fact that early induction of this network in vivo predicts drug-induced liver and kidney
pathology with high accuracy. Our findings demonstrate the value of early gene-expression signatures in predicting and
understanding compound-induced toxicity. The identified network can empower first-line tests that reduce animal use and costs of
safety evaluation.
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INTRODUCTION
Drug toxicity and associated adverse events are critical issues in
drug development: by a general estimate, 20–40% of novel drug
candidates fail because of safety issues.1–3 Over the past 10 years,
gene expression profiling has been introduced into drug
development to predict and understand toxicity in pre-clinical
settings, either as a stand-alone method4–7 or integrated within
systematic approaches.8–13

In this work, we focus on the problem of identifying
transcriptomics signatures that (a) predict toxicity prior to
histopathological observations and (b) extrapolate between
in vitro and in vivo settings and across species. Several studies
have undertaken this task:14–17 while making remarkable progress,
they have illustrated two major challenges caused by limited data
availability.18 First, most studies have derived signatures from
small-scale experiments with one or few compounds. Such
signatures suffer both from limited statistical power and from
limited translatability to other compounds. At the same time, it is
difficult to interpret ‘black-box’ signatures, which are statistically
significant but not associated with biological function. Second,
most studies have sought late-time signatures (Z24 h). Such
signatures are likely to be downstream effectors of signalling
networks, which are compound specific and highly dependent on
the specific cellular context and the availability of complex
regulatory elements, as recently revealed by the ENCODE
project.19 In contrast, early-response genes (o24 h) may be less
context specific and more generic, because many of them are
essential transcription factors or regulators of stress response,20

and they are closer to the core machineries of ‘bow-tie’-like
signalling networks.21

It is not feasible to identify early-response toxicity signatures
from large-scale experiments with current bottom–up practices.22

Therefore, we took a top–down approach by analysing TG-GATEs
(Toxicogenomics Project-Genomics Assisted Toxicity Evaluation
system), a toxicogenomics database covering 170 compounds
(Supplementary Table 1). The data comprise time-series gene
expression, cell-based assay readouts and pathological records
(Figure 1a). TG-GATEs is publicly available and is one of the most
comprehensive data sets up to date.6,23–25

Here we report an ab initio analysis of TG-GATEs using a novel
computational pipeline (Figure 1b). We start by reporting data that
support the generality of early-response genes. Next, we describe
how integrative analysis of differential gene expression and
cellular assay data revealed a consensus set of cytotoxicity
signatures in human and rat primary hepatocytes. We provide
evidence that the signatures form an evolutionarily conserved
functional network that is responsible for early stress response.
Finally, we confirm the network’s predictive power for hepatic and
renal pathology in a short-term (o30 days) study in vivo.

MATERIALS AND METHODS
Data pre-processing
Raw data were downloaded from the TG-GATEs website (http://toxico.
nibio.go.jp). Gene expression was profiled with Affymetrix Human Genome
U133 PLUS 2.0 (Santa Clara, CA, USA) or Rat Genome 230 2.0 chips (Santa
Clara, CA, USA). For each in vitro experiment, a Pico-Green fluorescence
assay was performed, which quantitatively measures the total DNA content
of cells. For in vivo experiments, histopathology in liver and kidney was
assessed by pathologists (Supplementary Table 2).

Expression data were pre-processed with the MAS5 method.26

Differential gene expression profiles were determined by linear models
using limma,27 and expressed in logarithmic (base 2) fold changes (logFC).
For in vitro samples, cytotoxicity was determined by the difference of total
DNA content between compound-treated samples and the time-matched
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control samples. Large reduction of DNA content indicates strong
cytotoxicity.

Identification of early-response gene signatures of cytotoxicity
We merged all differential gene expression profiles of human samples,
irrespective of compound, dose and time, into one matrix. Unsupervised
clustering was performed and classified the samples into three groups. The
statistical association between the groups and DNA content was
determined by one-way analysis of variance.

A cytotoxicity matrix was constructed for each compound by projecting
the three sample groups (weak, moderate and strong, referring to
corresponding cytotoxicities) onto a two-way matrix of dose and time.
Gene signatures were derived from progressive profiles, where compound
treatment causes weak, moderate and strong cytotoxicity at 2, 8 and 24 h,
respectively. Hierarchical linear models28 were fitted to capture early-
response signatures (Supplementary Methods).

We validated the signatures by analysing rat data with the same
procedure, not involving any information from human data.

Modelling and simulation with Boolean networks
Inspired by a recently developed method, the Boolean Network
Ensembles, which generates semiquantitative time-response simulations
from the network structure,29 we developed an algorithm that generates
time-response profiles of expected node occupancy fractions given initial
states (Supplementary Methods). Intuitively, the occupancy fraction of a
node is the expected probability that the node will be ON. The time
evolution of occupancy fractions simulates the dynamics of the network.

Predicting liver and kidney pathology in vivo
In vivo expression and histopathological records were randomly split into a
training set (80%) and a test set (20%). Radial-kernel support vector
machines (SVMs) were trained by 10-fold cross-validation using LIBSVM.30

Optimal parameters of SVMs (C and gamma) were determined by grid
search. Accuracy was measured by the F1 score, which combines precision
and recall of predictions (Supplementary Methods).

RESULTS
Early-response genes are more generic than late-time induced
genes
We performed differential gene expression analysis to human
gene expression profiles in TG-GATEs, by comparing compound-
treated cells with the time-matched controls (Figure 1bA).

We investigated how global differential expression patterns
change over time. In particular, we focused on the differentially
expressed genes (DEGs) with |logFC|40.5 and multiple-testing
adjusted Po0.05 (Benjamini–Hochberg method). Notably, irre-
spective of compound dose, there are generally fewer genes
induced at 2 h than at 24 h (Figure 2a).

Given the number of DEGs and the number of DEG-inducing
treatments at each time point, we asked whether DEGs are
induced by similar numbers of treatments at three time points. To
test this, we calculated the generality score for each DEG,
representing how often it is induced by different treatments.
DEGs with higher scores are more generic (less specific) than DEGs
with lower scores, as they are induced by more treatments. A
comparison of the scores shows that genes induced at 2 h are
likely to be more generic than genes induced at 8 or 24 h
(Figure 2b). A similar pattern was observed in the rat data
(Supplementary Figure 1).

Although there are generally fewer genes induced at 2 h, these
genes tend to be more generic in the sense that they are
modulated by multiple treatments. This observation guided us to
focus on early-response genes as potential generic toxicity
signatures in subsequent analyses.

Early-response toxicity signatures identified in human hepatocytes
To identify early toxicity signatures in vitro, we set out to
determine which combinations of compound, dose and time

cause cytotoxicity. We took a data-driven approach to address this
question by integrating gene expression data with the results of
DNA quantification assays (Figure 1bB). Unsupervised clustering of
differential expression profiles revealed that compound-treated
samples are classified into three groups with distinct features
(Figure 3a). Statistical analysis showed that the groups are
significantly correlated with decreasing DNA content, or equiva-
lently, with increasing cytotoxicities (Figure 3b).

We assigned one of the three cytotoxicity levels (weak,
moderate or strong) to each sample, which is associated with a
unique combination of compound, dose and time. Subsequently,
we built a cytotoxicity matrix for each compound, presenting how
its cytotoxicity varies with dose and time (Figure 1bC). Cytotoxicity
matrices of all compounds tested in human primary hepatocytes
are given in Supplementary Figure 2, and two of them are
illustrated in Figure 3c as examples: vitamin A, which is nontoxic
over the entire tested time and dose range, and nitrofurantoin,
which is an antibiotic that showed increasing toxicity both along
the dose gradient and with time.

To identify early cytotoxicity signatures, which are detectable
before the toxicity is visible at the molecular or phenotypic level,
we focused on profiles of the progressive type, like the one
described for nitrofurantoin, with weak, moderate and strong
cytotoxicities at 2, 8 and 24 h, respectively (Figure 1bD). We asked
if there are genes that are robustly induced at 2 h in such profiles,
arguing that they may be predictive signatures of the cytotoxicity
outcome at 24 h (Figure 1bE).

Statistical analysis identified five genes that are significantly
upregulated at 2 h in progressive profiles: EGR1, GDF15, ATF3,
FGF21 and IL8; and one gene that is downregulated: TOB2. We
note that these genes are induced by compounds of diverse
chemical and pharmacological properties (Table 1). Nevertheless
the genes show consistent temporal expression patterns in
progressive profiles. In contrast, no significant patterns were
detected when their expression profiles were examined in
treatments causing no or weak toxicity up to 24 h (Supplemen-
tary Figure 3).

Conserved early cytotoxicity signatures between rat and human
The analysis procedure described above was then applied to data
from rat primary hepatocytes. We emphasize again that no
information obtained from the human data were carried over.

Compound-induced expression profiles were classified into four
groups in rat (Supplementary Figure 4). Three of them resemble
the groups in human (weak, moderate and strong): they are
associated with distinct expression profiles, and are significantly
correlated with increasing cytotoxicities (Figure 4a). The fourth
group only contains eight samples treated by either acetamino-
phen (paracetamol) or phenobarbital, both non-genotoxic carci-
nogens (NGTX) inducing tumour formation in rodent models.31,32

Samples in this group contrast strongly with other treatments as
judged by their gene expression profiles (Supplementary
Figure 4). They are associated with loss of total DNA, in line with
previous observations.33

We built cytotoxicity matrices for all compounds that were
tested in rat primary hepatocytes (Supplementary Figure 5), and
focused again on the progressive profiles. Comparing compound
sets inducing progressive profiles in human and rat, we found
only two overlapping compounds (Table 1 and Figure 4b), no
more than the random expectation (P¼ 0.46 by bootstrapping).
The substantial lack of overlap may reflect the distinct bioavail-
ability and different modes of action of compounds in the two
species. In contrast, the overlap of frequently induced genes
(defined as DEGs that are induced in 45% of samples) is far
stronger (81 genes; Figure 4b, P¼ 9.0E–6 by bootstrapping).
The two comparisons suggest that although human and
rat hepatocytes exhibit distinct temporal responses to
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toxicity-inducing compounds, the underlying mechanism is
conserved to some extent.

We applied statistical analysis to detect early-response genes
from progressive profiles in rat. Notably, out of the six genes
found in the human signatures, four orthologous genes were
identified as early cytotoxicity signatures in rat: Egr1, Atf3, Gdf15
and Fgf21 (Figure 4c). Sequence analysis revealed high similarities
between the orthologs (Supplementary Figure 6A). The two

human genes that were not selected as signature genes in rat
either do not have a rat ortholog (IL8, Supplementary Figure 6B) or
just fail to achieve the predefined statistical significance (TOB2,
Supplementary Figure 6C).

The observation that four early-response genes show consistent
compound-induced activation in human and rat hepatocytes
suggests that they are likely to be evolutionarily conserved, func-
tionally linked and intrinsic to the cell’s stress-response system.

Figure 1. Study design of TG-GATEs (Toxicogenomics Project-Genomics Assisted Toxicity Evaluation system) and the computational pipeline
for data mining with TG-GATEs. (a) In TG-GATEs, 170 compounds are tested in up to three doses (including corresponding vehicle controls) in
three systems: human primary hepatocytes, rat primary hepatocytes and rat in vivo. In in vitro experiments, compounds are administrated
once at 0 h (red triangle). Gene expression profiling and Pico-Green DNA quantification assays are performed at three time points (2, 8 and
24 h). In in vivo experiments, compounds are dosed either once or repeatedly. Gene expression profiling and examination of pathology in liver
and kidney take place at 3, 6, 9 and 24 h (single-dose) or at 4, 8, 15 and 29 days (repeated dose). Two biological replicates are available for most
experiments. (b) The computational pipeline that integrates gene expression data, cell-assay readouts and pathology records to identify early
signatures of in vitro and in vivo toxicity. Details are described in the Results section.
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An early-response network with conserved structure and intrinsic
dynamics
Compound-induced expression changes of EGR1, GDF15, FGF21
and ATF3 in vitro are summarized in Figure 5a. The side-by-side
comparison reveals strikingly conserved dynamics in human and
rat: the induction of all four genes at 2 h, followed by decay of
EGR1 and persistent activation of FGF21, GDF15 and ATF3.

Literature search34–42 allowed us to construct a functional
network of the four genes (Figure 5b). The well-connected
network is small but non-trivial: it has an auto-inhibition loop
(EGR1), an auto-activation loop (ATF3), a negative feedback loop
(EGR1 and ATF3), and a feed-forward loop (EGR1, ATF3 and GDF15).
Such components, known as network motifs, can encode dynamic
behaviour of networks.43

We hypothesized that the conserved dynamics is intrinsic to the
network, and tested this with a Boolean network model
(Figure 1bG).44,45 Boolean networks, as the name suggests, are
defined as a set of nodes and edges. All nodes (representing, for
example, genes, proteins or small molecules) are in either one of
the two states: ON and OFF, and edges (interactions) between
nodes are characterized as either activation or inhibition. Update
functions change the states of nodes as a function of their
incoming activating and inhibiting edges. Computational analysis
of a Boolean network produces all the possible steady states of the
network, namely the states of the network for which no further
updates of node states are taking place, that is, when the network
is in equilibrium. In addition, the Boolean network formalism is in
principle able to simulate the dynamics of a network given the
initial states of all network nodes.

Given the network structure in Figure 5b, we identified two
steady states (S):S1 (EGR OFF, ATF3, GDF15, and FGF21 ON)
represents inactive (not induced) EGR1 and active (induced)

ATF3, GDF15, and FGF21; S2 (all four genes OFF) represents all
genes at the baseline level. Note that S1 matches the state of
progressive profiles at 24 h (Figures 5a and b), and S2 matches the
state of non-toxic treatments (Supplementary Figures 3A and B).
The Boolean network model thus is in agreement with the two
observed steady states.

Next, we simulated the dynamics of the network with two
different initial states (IS): IS1 assumes all four nodes are initially
ON, whereas IS2 assumes only EGR1 is ON and all the others are
OFF (Figure 5c). The two alternatives were chosen because neither
of them could be ruled out based on prior knowledge.
Independent of the choice of initial states, simulation results
match very well with observed dynamics: EGR1 induction
gradually decays and is finally turned OFF. The other three genes
either stay ON (IS1) or are induced from OFF to ON (IS2). This
implies the network dynamics is encoded by its structure, and the
Boolean network is a useful model to study this network in silico.

Subsequently, we tested the robustness of the network by
deleting one edge a time and simulating the network dynamics
with permutated networks. By iterating all single-edge mutations,
we found that the deletion of any edge involving ATF3 (including
the self-loop) dramatically alters the steady state and/or the
dynamics of the network (Supplementary Figure 7). This implies
that ATF3 is an essential gene of the network, and underscores
the importance of ATF3 in the context of cellular response to
compound-induced toxicity.42,46

Early expression changes of the network demonstrate predictive
power for pathological outcomes in vivo
Finally, we evaluated the predictive power of the early-response
network for pathological outcomes in vivo (Figure 1bH). To this
end, we trained SVM, an established tool for binary prediction.47

An SVM is constructed in two steps. First, it is trained with
samples with binary labels (the training set). The SVM learns
patterns from the data by finding the boundary (known as the
hyperplane) in data space that best separates samples of two
classes. Next, the SVM is used to predict labels for a new data set
(the test set) and its accuracy is measured by comparing the
predictions with true labels.

SVMs used in this study take treatment-induced differential
expression of Egr1, Atf3, Gdf15 and Fgf21 at 3 h (the earliest time
point in vivo) as input, and predict histopathological outcomes at
all tested time points of the in vivo study. For each time point, one
SVM was trained and tested for liver and kidney, respectively. We
found that SVMs are able to predict pathological outcomes with
high accuracies between 80 and 97% both in liver (Figure 6a) and
in kidney (Figure 6b). This finding suggests that expression
changes of the four early-response genes contain information that
can predict short-term in vivo pathology.

To test whether the network’s predictive power is superior to
that of single genes, we compared SVMs powered by the four-
gene network against SVMs that use single genes as input (Figures
6a and b). The network-based SVM substantially outperformed
single-gene competitors, confirming synergy between the genes.

DISCUSSION
Large-scale databases such as the Drug Activity database of
NCI-60 cell lines,48 Connectivity Map49 and ToxCast50 have been
extensively explored to study compound-induced gene
expression. However, few databases collect time series data,
which is essential to identify early-response genes. We argue that
such early-response genes can be valuable to understand and
predict in vitro and in vivo toxicity. Our study presents a piece of
evidence: although the four-gene network discussed here was
identified in primary hepatocytes, it predicted liver and kidney
pathology with good performance. Thus, by multivariate analysis

Figure 2. Across the TG-GATEs (Toxicogenomics Project-Genomics
Assisted Toxicity Evaluation system) data set, there are fewer early-
response genes but they are more generic than late-response genes.
(a) Number of differentially expressed genes (DEGs) induced by
compounds in human primary hepatocytes, stratified by dose and
time. Numbers of DEGs induced by TG-GATEs compounds are
represented in boxplots, with each blue dot representing one
compound. Black dots indicate the median number of DEGs. (b) The
generality score of DEGs stratified by dose and time. The score
measures how often a DEG is induced by different treatments. DEGs
with higher scores are more generic (less specific) than DEGs with
lower scores. The scores are normalized to the mean value of DEGs
at 24 h. Bar heights and error bars indicate the average score and the
standard deviation, respectively.
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of time-series data, it may be possible to overcome one of the
biggest hurdles for predictive in vitro toxicity, namely the lack of
conserved markers between in vitro and in vivo and across species.
However, we emphasize that the marker gene set identified here,
whereas translatable from cellular systems to rat in vivo, allows
only for a broad categorization of potential risk. This should guide

researchers in prioritizing candidates out of compound series,
including more specific measurements to identify the mode of
action.

Many parameters have been proposed as in vitro toxicity and
tissue injury markers. Gerets et al.51 identified a battery of six
cytotoxicity assays to screen pharmaceutical compounds in

Figure 3. Early-response signatures identified in human primary hepatocytes. (a) Unsupervised clustering of differential expression profiles
revealed three groups (separated by black lines). Each row of the matrix is a differential expression profile induced by a certain combination of
compound, dose and time. Columns are frequently induced genes, which were induced by 45% of compound treatments. (b) The three
sample groups are significantly associated with decreasing DNA content and increasing cytotoxicities: samples in the weak group show no
significant DNA loss (P¼ 0.60, Student’s t-test). The moderate group is associated with slight DNA content loss (� 1.28% compared with the
weak group, P¼ 8.0E–4, 95% confidence interval (CI; � 2.11%,� 0.46%), Tukey’s method), and the strong group showed the most substantial
loss of DNA (� 6.97% compared with the weak group, Po1E–7, 95% CI (� 8.44%, � 5.51%), Tukey’s method). The three asterisks (***) indicate
that the P-value of comparing DNA content of two adjacent groups is smaller than 0.001. (c) Example toxicity matrices of vitamin A and of
nitrofurantoin, with the progressive profile induced by high dose of nitrofurantoin being highlighted. Green, yellow and red cells indicate
weak, moderate and strong toxicity levels respectively. Empty cells: no data available. (d) Dynamic patterns of early-response cytotoxicity
signatures in human. Thin lines represent expression changes in each treatment, and thick lines represent the arithmetic mean. Error bars
indicate standard errors of the mean.
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HepG2 cells using eight drugs. Recently, Bailey et al.52 evaluated
34 acute rat toxicity studies and proposed three novel candidate
genes (GSTA, ARG1 and HPD) in addition to the established ALT as

drug-induced liver injury biomarkers in rats. Complementary to
these studies, we present here with the network of EGR1, ATF3,
GDF15 and FGF21 a signature set detectable as early as 2 h after

Table 1. Treatments that induced progressive profiles in human and rat primary hepatocytes

Human Rat

Compound Dose level Dose (mM) Compound Dose level Dose (mM)

Acetaminophen H 5000 Caffeine H 1000
Allyl alcohol H 70 Carboplatin M/H 600/3000
Azathiopine H 72.8 Cephalothin H 6
Benzbromarone H 100 Chlorpheniramine H 200
Diazepam H 250 Cisplatin M/H 40/200
Diclofenac H 400 Colchicine L/M/H 200/1000/5000
Ethionine H 600 Diclofenac H 400
Flutamide H 50 Diethyl maleate H 10 000
Ketoconazole H 15 Diltiazem H 250
Methapyrilene H 600 Disopyramide H 400
Naphthyl isothiocyanate H 200 Enalapril H 2000
Nitrofurantoin H 125 Ethambutol H 1000
Omeprazole H 600 Galactosamine H 10 000
Phenobarbital H 10000 Gentamicin H 30mgml–1

Propylthiouracil M/H 800/4000 Hydroxyzine H 150
TGF-beta1 L/M/H 2/10/50 Imipramine H 100

Isoniazid H 10 000
Naphthyl isothiocyanate H 200
Papaverine H 100
Puromycin aminonucleoside L/M/H 100/500/2500
Quinidine H 200
Ranitidine H 4000
Sulindac H 2000
Sulpiride H 2000
Tacrine H 200
Theophylline H 10 000
Valproic acid H 10 000

Abbreviations: TG-GATEs, Toxicogenomics Project-Genomics Assisted Toxicity Evaluation system; TGF, Transforming growth factor. Two overlapping
compounds between the species are displayed in bold. Dose level abbreviations follow the convention of TG-GATEs: H, high; M, middle; L, low.

Figure 4. Four early-response signatures were validated in rat. (a) The four groups of rat samples are significantly associated with cytotoxicities
measured by DNA content. NGTX: non-genotoxic carcinogens. The three asterisks (***) indicate that the P-value of comparing DNA content of
two adjacent groups is smaller than 0.001. (b) Venn diagrams comparing compounds that induce progressive profiles in human and rat, and
comparing frequently induced genes in the two species. (c) Temporal patterns of the four human orthologs that are also signatures in rat.
See caption of Figure 3d for legends.
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compound administration. We propose the network should be
monitored in combination with established parameters for better
toxicity prediction.

Biological functions and biomarker potentials of EGR1, ATF3,
GDF15 and FGF21 have been sporadically proposed for com-
pound-induced in vitro and in vivo toxicity. EGR1, arguably
the best-studied gene among them, is stimulated by many

extracellular molecules. It links signalling cascades controlling
cellular proliferation and apoptosis.53 Bioinformatics and mRNA
expression analyses showed Egr1 mRNA activation is dependent
on the activation of the Ras-Raf-Mek-Erk signalling pathway.54,55

Transforming growth factor-b, an important mediator of the
cellular response to external stimuli and xenobiotics, activates
EGR1 via SMAD3.56 Upregulation of EGR1 was described as an

Figure 6. Performance (F1-score) of support vector machines (SVMs) with four genes (network) as input and of SVMs with individual genes as
input, in liver (a) and kidney (b).

Figure 5. Dynamics of the early-response network is encoded by its structure. (a) Dynamics of the network in human (left) and rat (right),
showing their arithmetic mean (lines) and standard errors of the mean (error bars). (b) The Boolean network model. Four genes are connected
with thick lines embodying binary interactions. Solid-arrow tip: positive trans-activation; solid-circle tip: indirect activation; bar: transcriptional
inhibition. Biological functions are given in rectangular nodes, with genes connected to them with thin lines. Solid-circle tips indicate positive
effects, and bars indicate negative effects. Only gene nodes and their interactions are used for modelling and simulation. (c) Simulated
dynamics using the Boolean network model with the initial state IS1 (top) and IS2 (bottom). Random noise is added to facilitate visualization.
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adaptive measure to attenuate sulindac sulphide-mediated
cytotoxicity in human intestinal epithelial cells.57 In vivo studies
revealed that EGR1 is essential for ethanol-induced58 or
cholestatic59 liver injury. Our study provides further evidences
that early activation of EGR1, presumably an adaptive reaction
against cell death, is a signature of compound-induced toxicity. Its
expression alone, however, is not sufficient for prediction unless
the states of the other genes in the network are known.

ATF3, a direct transcriptional target of EGR1, acts as a central
hub coordinating cellular stress pathways.46,60 It has a key role in
the transforming growth factor-b-SMAD pathway, providing a
convergence point for the joint control of epithelial cells by multiple
stress response pathways.61 Therefore, it has been proposed as
marker for a variety of stressed tissues including liver, heart, brain62

and nerve.63 Our findings underpin its role in stress response and
highlight its synergy with other genes of the network.

The other two members of the network both protect cells from
apoptosis. GDF15, a transforming growth factor-b superfamily
member, protects heart from ischemia/reperfusion injury.64 Its
rapid induction was shown in various models of liver, lung and
kidney injury.65,66 Serum levels of FGF21, a secreted protein, were
recently proposed as a biomarker for liver and kidney
diseases.67,68

Although their functions have been individually characterized,
the hitherto undescribed coherent dynamics of the four genes
induced by distinct compounds in human and rat suggest that
they are more closely linked than previously thought. The network
may act both as a convergence point of upstream stress-sensing
pathways and as a core module coordinating downstream
responses. Boolean network modelling supports the notion that
the network’s intrinsic dynamics is encoded by its structure. It
presents a hypothesis to explain the conserved dynamics and the
generality across compounds, organ types, and even species. We
believe this hypothesis should be challenged by studies with other
cell types, and studies in model organisms beyond rat and human.

In conclusion, we report EGR1, ATF3, GDF15 and FGF21 as a
consensus early signature of in vitro and in vivo toxicity in human
and rat. It was essential to focus on early time points, because at
this stage there seems to be high conservation of general stress-
response signals, which diverge in later time points. Our findings
demonstrate the translational value of multivariate time-series
data in toxicity studies and the potential of early-response genes
as predictive toxicity signatures. We recommend monitoring the
network in first-line compound screenings to increase the efficiency
of safety evaluations and to reduce costs and animal use.
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