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Polyphenols have been reported to have wide spectrum of biological activities includingmajor impact on initiation, promotion, and
progression of cancer by modulating different signalling pathways. Colorectal cancer is the second most major cause of mortality
and morbidity among females and the third among males. The objective of this review is to describe the activity of a variety of
polyphenols in colorectal cancer in clinical trials, preclinical studies, and primary research. The molecular mechanisms of major
polyphenols related to their beneficial effects on colorectal cancer are also addressed. Synthetic modifications and other future
directions towards exploiting of natural polyphenols against colorectal cancer are discussed in the last section.

1. Introduction

Epidemiological studies exhibiting protective effect of diets
rich in fruits and vegetables against different types of cancer
have drawn increased attention to the possibility of exploiting
biologically active secondary metabolites of plants to fight
against cancer. Among the vast array of phytochemicals,
compounds called “polyphenols” constitute one of the most
numerous and widely distributed groups, covering more
than 10,000 different chemical structures [1]. Polyphenols
(PP) are reported to have antioxidant, anticarcinogenic,
antiatherosclerotic, anti-inflammatory, spasmolytic, hepato-
protective, antiviral, antiallergic, antidiarrheal, antimicrobial,
and oestrogenic activity [2].

Colorectal cancer (CRC) is the third most common
diagnosed cancer in men after lung and prostate cancer
throughout the world. While in women CRC occupies the
second position after breast cancer worldwide. Prevalence of
CRC is 18% higher in developed countries than developing
and undeveloped nations. People of more than 50 years old
aremore prone to be affected by CRC, and incidence inmales
is greater than in females. Although diet andWestern lifestyle
are still considered as being the main factors responsible
for CRC, no specific food or other environmental agent
has been identified as an exact causative factor [3]. Thus

far, clearly identified types or causes of CRC are hereditary
nonpolyposis colorectal cancer, familial adenomatous poly-
posis, inflammatory bowel diseases, human papillomavirus,
and acquired immunodeficiency syndrome [4]. Although
surgical resection remains the only curative treatment for
CRC, an alternative approach to reduce the mortality rate is
chemoprevention, use of synthetic or natural compounds in
pharmacologic doses [5].

Colon cancers result from a series of pathologic changes
that transform normal colonic epithelium into invasive car-
cinoma. Dietary PP affect these different cellular processes
by acting as chemopreventive blockers. So far, only one
review article that has been published concentrated on the
effect of polyphenols on colorectal cell lines [6], and only a
limited number of polyphenols have been considered. This
review focuses on the updated research on a wider variety of
polyphenols as applied to colorectal cancer.

2. Chemistry of PP and Their Dietary Sources

PP are also known as polyhydroxyphenols and characterized
by the presence of large number of phenol units in their struc-
tures, usually existing in plants as glycosides. Polyphenols
can be classified according their sources, chemical structures,
therapeutic actions, and so on. A classification system of
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Polyphenols

Phenolic acids

Benzoic acid 
derivatives (e.g., 
protocatechuic
acid, vanillic 
acid, gallic 
acid, syringic 
acid, tannic 
acid)

Cinnamic acid 
derivatives (e.g., p-
coumaric acid, 
caffeic acid, 
chlorogenic acid, 
cryptochlorogenic 
acid, 
neochlorogenic 
acid, ferulic acid, 
sinapic acid) 

Flavonoids

Isoflavones 
(e.g., daidzein, 
formononetin, 
glycitein, 
genistein, 
biochanin A), 
neoflavonoids 
(e.g., 
dalbergin) and 
chalcones 
(e.g.,phloretin, 
xanthohumol)

Flavones (e.g., 
apigenin, 
luteolin, 
tangeretin, 
nobiletin, 
diosmetin, 
wogonin, 
pinocembrin, 
vitexin, 
orientin), 
flavonols 
(e.g., rutin, 
kaempferol, 
quercetin, 
myricetin, 
isorhamnetin, 
chrysin, 
fisetin, 
galangin, 
morin), 
flavanones 
(e.g., 
naringenin, 
hesperetin, 
eriodictyol) 
and 
flavanonols 
(e.g., 
taxifolin)

Flavanols (e.g., 
catechin, catechin 
gallate, 
gallocatechin, 
gallocatechin 
gallate, 
epicatechin, 
epicatechin 
gallate, 
epigallocatechin, 
epigallocatechin 
gallate) and 
proanthocyanidins 
(e.g., procyanidin 
B1, procyanidin 
B2, procyanidin 
A2, procyanidin 
C1, theaflavin) 

Anthocyanidins 
(e.g., cyanidin, 
delphinidin, 
pelargonidin, 
malvidin, 
peonidin, 
petunidin)

Polyphenolic 
amides (e.g., 
capsaicin, 
dihydrocapsaicin, 
avenanthramide A, 
avenanthramide B, 
avenanthramide C)

Other polyphenols 
(e.g., resveratrol, 
curcumin, 
rosmarinic acid, 
gingerol, ellagic 
acid, valoneic acid 
dilactone, 
secoisolariciresinol, 
matairesinol)

Figure 1: Classification of Polyphenols.

PP has been given in Figure 1 on the basis of the chemical
structures of the aglycone portions and Figure 2 gives the
basic structures of major groups [7].

A list of the 100 richest dietary sources of PP has been
produced using comprehensive Phenol-Explorer data [8].
The richest sources are various spices and dried herbs, cocoa
products, some dark coloured berries, some seeds (flaxseed)
and nuts (chestnut, hazelnut), and some vegetables, including
olive and globe artichoke heads. Top ten of the list containing
the highest amount of PP is in the following order: cloves >
peppermint (dried) > star anise > cocoa powder > Mexican
oregano (dried) > celery seed > black chokeberry > dark
chocolate > flaxseed meal > black elderberry.

3. Pathogenesis of CRC and Its
Signalling Pathways

Acquired functional capabilities of cancer cells that would
allow them to survive, proliferate, and disseminate are known
as the hallmarks of cancer, that is, sustaining prolifera-
tive signalling, evading growth suppressors, resisting cell
death, enabling replicative immortality, inducing angiogen-
esis, activating invasion and metastasis, reprogramming of
energy metabolism, and evading immune destruction [9].
Underpinning these hallmarks are genomic instability and
inflammation. While genomic instability confers random
mutations including chromosomal rearrangements, causing
genetic diversity that expedites the acquisition of hallmarks
of cancer, the inflammatory state of premalignant and frankly
malignant lesions that is driven by cells of the immune system
also fosters multiple hallmark functions.

Based on investigation of different stages of tumour
initiation and progression, Fearon and Vogelstein proposed
a model of colorectal carcinogenesis that correlated specific
genetic events with evolving tissue morphology [10]. The
Wnt/𝛽-catenin pathway plays a dominant role in an initial
stage of CRC development. Inactivation of the adenomatous
polyposis coli gene is a key starting event in carcinogenesis
of more than 60% of colorectal adenomas and carcinomas
leading to stimulation of the Wnt pathway via free 𝛽-catenin
[10].

Stimulation of the epidermal growth factor receptor
(EGFR) leads to the activation of KRAS or phosphati-
dylinositol-3-kinase pathways, which is important in CRC
development from early adenoma to intermediate adenoma.
Subsequently, numerous signal transduction molecules ini-
tiate a cascade of downstream effectors that trigger tumour
growth, angiogenesis, and metastasis [11].

Transforming growth factor-𝛽 (TGF-𝛽) is a multifunc-
tional polypeptide that binds to specific TGF-𝛽 receptors
for paracrine and autocrine signalling. This ligand and
receptor complex triggers intracellular signalling cascades
that include the canonical Smad2 signalling pathway, which
complexes with Smad4 and accumulates and translocates
into the nucleus. In the nucleus, activated Smad complexes
regulate the transcription of specific genes and ultimately
regulate cell cycle and tissue repair [12]. TGF𝛽 pathway
contributes to a favourable microenvironment for tumour
growth and metastasis throughout all the steps of carcino-
genesis [13]. TGF-𝛽 also induces apoptosis, from the associ-
ation of death-associated protein 6 (DAXX) with the death
receptor Fas. After binding, DAXX is then phosphorylated by
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Figure 2: Basic structures of major groups of polyphenols.
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homeodomain-interacting protein kinase 2 (HIPK2), which
then activates apoptosis signal-inducing kinase 1 (ASK1).
ASK1 activates the Jun amino-terminal kinase (JNK) path-
way that causes apoptosis [14–16]. Inactivation of TGF-beta
pathway components is first detected in advanced adenomas
and affects 40–50% of all CRCs [17].

Almost 50% of all CRCs show p53 gene mutations,
with higher frequencies observed in distal colon and rectal
tumours and lower frequencies in proximal tumours and
those with the microsatellite instability or methylator pheno-
types [18].Themutations in p53 or the loss of its functionality
occurs mainly at the transition from adenoma to cancer, and
the frequency of alterations in the gene increases with the
corresponding progression of the lesion [19].

CRC cells share many properties in common with stem
cells which are conserved in both dormant and actively pro-
liferating cancer cells [20]. On top of maintaining “stemness”
characteristics, CRC cells with metastatic potential dissociate
from the tumour mass and spread to other organs in the
body [21]. This is achieved through a dedifferentiation pro-
gram called epithelial-mesenchymal transition (EMT). This
key developmental program allows stationary and polarized
epithelial cells to undergo multiple biochemical changes that
enable them to disrupt cell-cell adherence, lose apical-basal
polarity, dramatically remodel the cytoskeleton, and acquire
mesenchymal characteristics such as enhanced migratory
capacity, invasiveness, and elevated resistance to apoptosis
[22]. Adhesion molecules that maintain cell-cell contact
in the differentiated tumour cells, such as E-cadherin, are
downregulated in the undifferentiated cells, while molecules
that impart invasive and migratory behaviour would be
upregulated. To accommodate both the “stemness” and
mesenchymal properties of invasive CRC cells, it has been
proposed that CRC cells with metastatic potential are like
“migratory stem cells” [23]. The EMT process is initially
driven by three core groups of transcriptional regulators
described as follows. The first is a group of transcription fac-
tors (TFs) of the Snail zinc-finger family, including SNAI1 and
SNAI2 (SLUG) [24].The second group is the distantly related
zinc-finger E-box-binding homeobox family of proteins ZEB1
and ZEB2 (SIP1) [25]. The third group is the basic helix-
loop-helix (bHLH) family of transcription factors, including
TWIST1, TWIST2, andE12/E47 [26]. InCRC, 85%of resected
specimens have moderate to strong TWIST1 expression [27].
The earlier steps of the metastatic cascade EMT program
include local invasion, intravasation, survival while transiting
through the circulation, and extravasation. EMT programs
are dynamically regulated, and during the last step of the
metastatic cascade, colonization, carcinoma cells are thought
to switch back to an epithelial state through the reverse
process, mesenchymal-epithelial transition (MET) [28]. The
final stage of the invasion-metastasis cascade, colonization,
is likely to require adaptation of propagated CRC cells to the
microenvironment of a distant tissue [29].

Increased matrix metallopeptidases (MMPs) expression
and their activation generally promote hallmarks of CRC
progression including angiogenesis, invasion, and metastasis
and correlate with shortened survival. MMPs comprise a
large family of at least 25 zinc-dependent endopeptidases

capable of degrading all components of the extracellular
matrix (ECM) and are categorized primarily by their struc-
tural features as gelatinases, collagenases, membrane-type,
stromelysins, and matrilysins [30]. Intercellular adhesion
molecule-1 (ICAM-1) is a 90-kDa cell surface glycoprotein
that is known to be a member of the immunoglobulin
gene superfamily of adhesion molecules. ICAM-1 expression
is closely associated with metastasis and may be a useful
indicator of prognosis in patients with colorectal cancer [31].

It is evident from the above discussion that the patho-
genesis of CRC is characterized by regulatory pathways
that are complex involving several layers of communication,
cascades, crosstalk, and extensive networking. CRC usually
develops through interaction of cytokines, the chemical
mediators of inflammation; cytokine receptors, present on
the surface of a variety of cell types; secondary messengers
which convey signals from cell surface to the interior;
transcription factors, which regulate the expression of several
genes that affect CRC. Figure 3 depicts the signalling path-
ways involved in CRC.

4. Roles of PP in CRC Related to
Chemoprevention and Apoptosis

Consumption of PP rich food proved to be beneficial in
occurrence of CRC in a national prospective cohort study
[32]. Numerous studies have evaluated the efficacy of dietary
polyphenols against CRC in vivo, in vitro model and in
clinical trials [33–35]. Polyphenols can affect the overall
process of carcinogenesis by several mechanisms and cause
tumour cell death through apoptotic pathway.

PP have been shown to be highly effective in scavenging
singlet oxygen and various free radicals, which leads to
DNA damage and tumour promotion [36]. PP also dis-
played chemopreventive effect through their impact on the
bioactivation of carcinogens. Most carcinogens of chemical
origin undergo biotransformation by Phase I metabolizing
enzymes to be converted into more reactive form suitable
for binding with DNA and proceed towards carcinogenesis
process. PP were found to inhibit cytochrome P450 enzymes
of the CYP1A family and thus act as chemopreventive agents
[37]. On the other hand, by increasing the activity of Phase
II metabolizing enzymes (glutathione reductase, glutathione
peroxidase, glutathione S-reductase, catalase, and quinone
reductase), PP are able to provide beneficial effects against
CRC [38, 39]. For example, PP obtained from apple inhibited
growth of HT-29 human colon cancer cells by modulating
expression of genes (GSTP1, GSSTT2, MGST2, CYCP4F3,
CHST5, CHST6, and CHST7) involved in the biotransforma-
tion of xenobiotics [40].

Orner et al. demonstrated that epigallocatechin-3-gallate
(EGCG) attenuated the expression of 𝛽-catenin and inhibited
intermediate and late stages of colon cancer, via effects
on the Wnt/𝛽-catenin/TCF signalling pathway [41]. EGFR
signalling mechanism of CRC progression has been reported
to be inhibited by apple procyanidins [42]. Expression of
p53 gene has been increased by EGCG that can impede the
conversion of colorectal adenoma to colorectal carcinoma
during carcinogenesis [43].
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Figure 3: Signalling pathways in colorectal cancer pathogenesis (adapted from [168]). (EGFR: epidermal growth factor receptor, TGF𝛽 R1/2:
transforming growth factor, beta receptor 1/2, EMT: epithelial-mesenchymal transition, ICAMs: intercellular adhesive molecules, MMPs:
matrix metallopeptidases).

Apoptosis is a vital physiological process in the normal
development, and induction of apoptosis is highly anticipated
mode as a therapeutic strategy for cancer control [44–46].
Bcl family of protein, caspase signalling proteins, and p53
genes are the key factors that regulate apoptosis [47]. PP
are effective general inhibitor of cancer cell growth and
inducers of apoptosis in different cancer cell lines, including
leukaemia, skin, lung, stomach, colorectal, and prostate
cancer cells [34, 48–52]. Anthocyanin, ellagic acid, curcumin,
flavone induced apoptosis in various colon cancer cell lines by
different mechanisms in miscellaneous observations [34, 53–
55].

PP can prevent the DNA damage caused by free radicals
or carcinogenic agents through diverse mechanisms: (a)
direct radical scavenging [56, 57], (b) chelating divalent
cations involved in Fenton reaction [58], and (c) modulation
of enzymes related to oxidative stress (glutathione peroxidase,
glutathione reductase, superoxide dismutase, nitric oxide
synthase, lipooxygenase, xanthine oxidase, etc.) [59]. Dietary

PP can also act as prooxidants depending on the cell type,
dose, and/or time of treatment, as they can enhance reactive
oxygen species production and therefore induce apoptosis
[58, 60, 61]. In colon cancer HT-29 cells, flavone enriched the
mitochondrial pyruvate or lactate uptake, which augmented
the superoxide radical production and led to apoptosis [62].

5. Recent Update of Key PP as Applied to CRC

Reported antitumour activity of PP against CRC is largely
based on in vitro studies, rodent model studies, and even
human clinical trials. During in vitro studies on antitu-
mour activity of PP, different colorectal cancer cells (HT-
29, SW480, Caco-2, Colo-205, Colo-115, HCT-115, HCT-
116, DLD-1, LoVo etc.) were cultured, and cell viability
was determined via MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-
Diphenyltetrazolium Bromide] reduction assay [154], SRB
(Sulforhodamine B) colorimetric assay [155], and crystal vio-
letmethod [156]. In vivo animalmodelmodelswere produced
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by inducing tumour chemically, resulting in APCMin/+mouse
and rodent xenograft models. Carcinogen [azoxymethane
(AOM), dimethylhydrazine (DMH), dextran sodium sul-
phate (DSS)] induced colon cancer in rodents can recapitulate
in a highly reliable way and frequently used to assess activity
of PP. Mutations in the adenomatous polyposis coli (APC)
gene are required to initiate familial adenomatous polyposis
(FAP) and are also important in CRC tumorigenesis. Several
studies have been conducted with PP in APCMin/+ mouse
that contains (multiple intestinal neoplasia Min) a point
mutation in theAPC gene and develops numerous adenomas.
The role of PP has also been investigated in xenograft
model where human tumours are injected and established in
immunodeficient mouse strains (nude or SCID mice). This
section contains the outcome from the studies conducted
with PP against CRC.

5.1. Phenolic Acids

5.1.1. Benzoic Acid Derivatives. From literature, only gallic
acid among benzoic acid derivatives showed anticancer
activity against CRC in vitro and in vivo model [157, 158],
but no study has been conducted to identify the anticancer
mechanism of gallic acid in CRC. However, gallic acid is
believed to exhibit its anticancer effect by upregulating Bax
and downregulating Bcl-2 in other tumour models [157].
Vanillic acid showed significant activity with IC50 values less
than 30 𝜇M in three different CRC cell lines but mechanism
has not been studied [159] although vanillic acid and pro-
tocatechuic acid did not show significant anticancer activity
against CRC [160, 161].

5.1.2. Cinnamic Acid Derivatives. Caffeic acid showed apop-
totic cell death against HCT 15 cell lines although IC50 value
was very high (800𝜇M). Similar findings were made by other
researchers [162, 163]. In a recent study caffeic acid did not
show any significant activity against HT-29 cell lines up to
200𝜇M concentration nor did chlorogenic acid [164] that
did not show any significant activity against different human
colorectal carcinomas [161]. IC50 values of p-coumaric acid
against some other CRC cell lines were around 1mM and
apoptosis was the mechanism of cell death [163, 165, 166].
Ferulic acid inhibited CRC progression at adhesion and
migration steps but no IC50 value was greater than 1mM
concentration [163].

Carnosic acid showed IC50 values in the range of
24–96 𝜇M against Caco-2, HT29, and LoVo cell lines. It
inhibited cell adhesion and migration, possibly by reducing
the activity of secreted proteases such as urokinase plasmino-
gen activator and metalloproteinases. These effects may be
mediated through a mechanism involving the inhibition of
the COX-2 pathway [167]. Sinapic acid showed IC50 values
of less than 25 𝜇M in three different CRC cell lines but
mechanism has not been studied [159].

5.2. Flavonoids

5.2.1. Isoflavones, Neoflavonoids, and Chalcones. Among
isoflavones, biochanin A showed ID50 values below 15 𝜇g/mL

against two CRC cell lines and was found to enhance
radiotoxicity in vitro [170, 171]. Formononetin that showed
dose dependent cell killing, both in vitro and in vivo in
RKO cell line, induces apoptosis by modulating Bax/Bcl-
2 activities, inactivating ERK pathway and TNF-𝛼/NF-𝜅B
pathway [172]. Formononetin also showed anticarcinogenic
activity in HCT-116 cells via promotion of caspase-dependent
apoptosis and inhibition of cell growth, with contribution
by downregulation of the antiapoptotic proteins Bcl-2 and
Bcl-xL [173]. Daidzein killed 50% of HCT cells, LoVo cells,
and DLD-1 cells at concentration of 40 𝜇M, 68.8𝜇M, and
46.3 𝜇M, respectively, but against LoVo cells it exhibited
biphasic effects by killing cells in dose dependent manner
at higher concentrations (≥5 𝜇M) and vice versa at lower
concentrations (≤1 𝜇M) [75, 174, 175]. Most commonly stud-
ied isoflavone, genistein, showed cytotoxicity against HCT,
LoVo, andDLD-1 cell lineswith IC50 values of 15𝜇M, 57.3𝜇M,
and 56.1𝜇M, respectively, whereas in HCC-44B2 cells and
HCC50-D3 the value was 11.5 𝜇g/mL and 9.5𝜇g/mL [75, 170,
174]. Genistein reduces the density of cell surface charge
and increases the order in membrane protein conformation
whichmight be one of themechanisms of its anticancer effect
[174].

No literature reporting neoflavonoids activity against
CRC was found. Among chalcones, phloretin caused apop-
totic cell death to HT-29 cells with an IC50 value close
to 100 𝜇M. The mechanism involved changes in mitochon-
drial membrane permeability and activation of the caspase
pathways [176]. Phloretin also has the potential to increase
adoptive cellular immunotherapy against SW-1116 CRC cells
[177]. Xanthohumol, another important chalcone, is found
to show cytotoxicity in different CRC cells in vivo and in
vitrowith IC50 values less than 5 𝜇M [178–180].The apoptosis
involved downregulation of Bcl-2, activation of the caspase
cascade, and inhibition of topo I activity. In combination
with chemotherapy, it is recommended for use in HCT-15
cell lines, being aimed to reduce drug resistance by inhibition
of efflux transporters [180]. Xanthohumol inhibits metastasis
by inhibiting expression of CXCR4 chemokine receptor
[181].

5.2.2. Flavones, Flavonols, Flavanones, and Flavanonols.
Among all different types of flavones, apigenin and luteolin
were most commonly investigated phytochemicals for their
anticancer activity against CRC. Important flavones that have
been studied against CRC are given in Table 1.

Among all different types of flavonols quercetin, chrysin
and rutin were studied most for their anticancer activity
against colorectal cancer models. Important flavonols that
have been investigated against CRC are given in Table 2.

Naringenin appears to be the most commonly studied
phytochemicals among the flavanones that can act against
colorectal cancer. It suppressed colon carcinogenesis through
the aberrant crypt stage in azoxymethane-treated rats [74].
Another study showed that antiproliferative activity of narin-
genin was estrogen receptor dependent [182], while other in
vitro studies gave mixed results in different CRC cell lines
[65, 80, 152, 183]. Another flavanone, hesperetin, significantly
reduced the formation of preneoplastic lesions and effectively
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Table 1: Important flavones studied against CRC.

Name Cell
line/animal Comments Ref.

Apigenin
SW480,
HT-29, and
Caco-2

Inhibited colon carcinoma cell growth by inducing a
reversible G2/M arrest, associated with inhibited activity
of p34cdc2 kinase, reduced accumulation of p34cdc2 and
cyclin B1 proteins.

[63]

Apigenin HCT-8 Suppressed tumour angiogenesis via HIF-1 and VEGF
expression. [64]

Apigenin

HCT-116,
SW480,
HT-29 and
LoVo;
APCMin/+

mice

Cell death due to apoptosis is mediated by induction of
proapoptotic proteins (NAG-1 and p53), cell cycle
inhibitor (p21), and kinase pathways. In vivo data also
supported in vitro results.

[65]

Apigenin HT-29
Cytotoxic activity is related to cell cycle arrest through
activation of caspase cascade and stimulation of apoptosis.
Synergistic activity observed with 5-FU.

[66]

Apigenin HT-29 and
HRT-18

Inhibited metastasis by upregulating CD26 and degrades
CXCL12 by increasing DPPIV activity. [67]

Apigenin
Xenograft of
SW480 cells
in nude nice

Suppressed growth of colorectal cancer xenografts via
phosphorylation and upregulated FADD expression. [68]

Apigenin
SW480,
DLD-1, and
LS174T

Inhibited tumour growth and metastasis both in vitro and
in vivo by upregulating TAGLN, downregulating MMP-9
expression, decreasing phosphorylation of Akt at Ser473
and in particular Thr308.

[69]

Apigenin

Xenograft
study using
DLD1,
HCT-116,
HT-29,
HCT-8, and
SW480

Synergistic effect was observed with ABT-263 and cell
death is mediated via inhibition of Mcl-1, AKT, and ERK
pathways.

[70]

Apigenin

HCT116

Induced cell death due to apoptosis and autophagy where
apoptosis is via decreased expression of cyclin B1, Cdc2,
and Cdc25c; increased expression of p53 and
p21CIP1/WAF1; decreased levels of procaspase-8, -9, and
-3.

[71]

HT-29 and
HCT-15

Oxidative stress resulted in senescence and
chemotherapeutic effect. [72]

SW480 and
HCT-15

Suppressed cell proliferation, migration, and invasion via
inhibition of the Wnt/𝛽-catenin signalling pathway. [73]

Sprague
Dawley rats

Lowered the number of aberrant crypt foci (ACF)
significantly. [74]

Apigenin,
luteolin,
baicalein

LoVo and
DLD-1

Apigenin had IC50 values in LoVo and DLD-1 cells lines at
44.7 𝜇M and 29.6 𝜇M, luteolin at 57.6 and 40.1 respectively.
Baicalein has IC50 value 51.4 𝜇M in DLD-1 cell line but no
significant activity in LoVo cell lines.

[75]

Apigenin,
luteolin,
tangeretin,
nobiletin

Colo 205

After 24-hour exposure, IC50 value for apigenin was
greater than 100𝜇M. For luteolin, tangeretin, and
nobiletin the values were 47.6𝜇M, 37.5 𝜇M, and 66.2 𝜇M,
respectively.

[76]

Apigenin,
baicalein,
luteolin,
tangeretin,
diosmetin

HT-29 and
Caco-2

IC50 values ranged from 49.4 𝜇M to 203.6 𝜇M in HT-29
cell lines and the trend was baicalein < tangeretin <
luteolin < apigenin < diosmetin. For Caco-2 cell lines the
trend was baicalein < tangeretin < luteolin < diosmetin <
apigenin with values ranging from 56.4 𝜇M to 1115.4 𝜇M.

[77]
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Table 1: Continued.

Name Cell
line/animal Comments Ref.

Luteolin HT-29

Downregulated the activation of the PI3K/Akt and ERK1/2
pathways via reduction in IGF-IR signalling which may be
one of the mechanisms responsible for the observed
apoptosis and cell cycle arrest.

[78]

Luteolin

HT-29,
SW480

In HT-29 cells, IC50 value was greater than 200 𝜇M but in
SW480 cells it is 90 𝜇M. [79, 80]

Male Balb/c
mice

Inhibited azoxymethane-induced colorectal cancer growth
through activation of Nrf2 signalling; altered carbohydrate
metabolizing enzymes; decreased expressions of iNOS and
COX-2; restored reduced glutathione and protein thiols;
decreased lysosomal enzymes, induced apoptosis by
modulating Bcl2, Bax, and caspase-3; decreased mucin
depleted foci, levels of glycoconjugates; controlled cell
proliferation by inhibiting wnt/𝛽-catenin/GSK-3𝛽
pathway. Luteolin also acts as antimetastatic agent by
decreasing MMP-9 and MMP-2.

[81–88]

HCT-15
Induced growth arrest by inhibiting
wnt/𝛽-catenin/GSK-3𝛽 signalling pathway, induces
apoptosis by caspase-3 mediated manner.

[89]

HT-29 Induced cell cycle arrest by inhibiting CDK2 and cyclin
D1, induces apoptosis by activating caspase-3, -7, and -9. [90]

Wistar rats
Decreased the number and volume of 1,2-dimethyl
hydrazine induced colon cancer and increased activities of
enzymic and nonenzymic antioxidants.

[91, 92]

Pinocembrin HCT-116,
SW480

IC50 value in SW480 cell line was 50𝜇M and <100 𝜇M in
HCT-116 cell line. Pinocembrin triggers Bax-dependent
mitochondrial apoptosis.

[93]

Tangeretin

HCT-116,
HT-29 IC50 values were 22𝜇M and 26 𝜇M, respectively. [94]

Colo 205
Induced cell-cycle G1 arrest through inhibiting
cyclin-dependent kinases 2 and 4 activities as well as
elevating CDK inhibitors p21 and p27.

[76]

LoVo and
multidrug
resistant
LoVo/Dx

Greater activity was observed against resistant cells more
than LoVo cells and gave synergistic effects with
doxorubicin by increasing accumulation and sensitizing
doxorubicin. It also induced caspase-3 activation and
elevated surface phosphatidylserine exposure.

[95]

HCT-116 and
HT-29

In vitro and in vivo anticancer activity of tangeretin against
colorectal cancer was enhanced by emulsion-based
delivery system.

[96]

Vitexin-2-O-
xyloside

LoVo and
Caco-2

Showed IC50 values greater than 100 𝜇g/mL in both cell
lines but synergistically affected cell growth and apoptosis
with raphasatin and (−)-epigallocatechin-3-gallate.

[97]

Nobiletin
F344 rats
Sprague
Dawley rats

Study on PhIp-induced cancer in F344 rats indicated that
nobiletin did significantly reduce the total number of
colonic aberrant crypt foci (ACF) compared to the control
value.

[74, 98]

Baicalein,
wogonin

HT-29
Xenograft
assay in nude
mouse

IC50 values for baicalein and wogonin after 48 h exposure
were 100𝜇M and 150𝜇M, respectively. In vivo data
supported the activity of baicalein but wogonin proved to
be ineffective. Baicalein induced apoptosis in HT-29 cells
via Akt inactivation and in a p53-dependent manner.

[99]

Baicalein

DLD-1
(mutant p53),
SW48 (p53
wild-type),
and HaCaT

Proteomic study proved that baicalein upregulated the
expression of PRDX6, which attenuates the generation of
ROS and inhibits the growth of CRC cells.

[100]
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Table 2: Important flavonols studied against CRC.

Name Cell
line/animal Comments Ref.

Quercetin

SW480 and
HT-29

Inhibited cell growth and induced apoptosis via
downregulation of ErbB2/ErbB3 signalling and the Akt
pathway.

[101]

Wistar rats

During DMH induced colon cancer assay, quercetin
inhibited intestinal crypt cell proliferation in vivo, but the
effect diminished as the level of dietary exposure
increased.

[33]

SW480 Inhibited 𝛽-catenin/TCF signalling. [102]
CACO-2 and
HT-29 Had IC50 values in the range 30–40 𝜇M. [103]

CO115 and
HCT15

Produced synergistic effect in combination with 5-FU by
increasing apoptosis via modulating p53. [104]

HT-29
xenografts in
male nude
mice

Induced apoptosis via AMPK activation and
p53-dependent apoptotic cell death. Another study using
HT29 cell line indicated that quercetin inhibited
phosphorylation of EGFR and the ErbB2 receptor.

[105, 106]

SW480
Antitumour action in SW480 colon cancer cells is related
to the inhibition of expression of cyclin D1 and survivin
through Wnt/𝛽-catenin signalling pathway.

[107]

HT-29
Resveratrol and quercetin in combination showed
anticancer activity in colon cancer cells and repressed
oncogenic microRNA-27a.

[108]

HT-29
xenografts in
female nude
mice

Quercetin and trans-pterostilbene in combination
facilitated elimination of colorectal cancer by
chemoradiotherapy through a Bcl-2- and superoxide
dismutase 2-dependent mechanism.

[109]

CF1 mice,
F344 rats,
Wistar rats

Azoxymethane and dimethylhydrazine induced colon
cancer study showed reduction of aberrant crypt foci and
focal areas of dysplasia.

[110–115]

APCMin/+

mouse

Quercetin reduced polyp number and size distribution,
which might be due to a reduction in macrophage
infiltration.

[116]

Quercetin,
myricetin,
fisetin,
galangin,
chrysin,
morin

LoVo and
DLD-1

In LoVo cell lines the trend of IC50 values was fisetin <
myricetin < quercetin < galangin < chrysin, whereas in
DLD-1 cell line it was fisetin <myricetin < galangin <
quercetin < chrysin. No significant antitumour effect was
observed for Morin.

[75]

Quercetin,
chrysin,
kaempferol

SW480 Quercetin, chrysin, and kaempferol gave IC50 values of 85,
165, and 100𝜇M, respectively. [80]

Myricetin HCT-115,
Colo-205

Myricetin induced cell death of human HCT-115 cells via
Bax/Bcl2-dependent pathway. It inhibited matrix
metalloproteinase 2 protein expression and enzyme
activity in Colo-205 cells.

[117, 118]

Rutin

SW480,
Nude mice

Rutin gave IC50 value of 125 𝜇M and exerted in vivo
antitumor and antiangiogenic activities. [119]

HT-29 Induced mitochondrial apoptosis through a
caspase-dependent mechanism. [120]

CF1 –female
mice Inhibited azoxymethane-induced colonic neoplasia. [113]



10 BioMed Research International

Table 2: Continued.

Name Cell
line/animal Comments Ref.

Chrysin

HT-29 Had IC50 value of 3.1 𝜇M. [121]

HCT-116
Chrysin sensitized tumour necrosis factor-𝛼-induced
apoptosis in human tumor cells via suppression of nuclear
factor-kappaB.

[122]

HCT-116 Promoted tumour necrosis factor- (TNF-) related
apoptosis-inducing ligand (TRAIL) induced apoptosis. [123]

SW480 Chrysin caused cell-cycle arrest at the G2/M phase in a
dose-dependent manner. [80]

HCT116,
DLD1 and
SW837

Aryl hydrocarbon receptor was required for the chrysin
induced apoptosis and the upregulation of TNF-𝛼 and -𝛽
gene expression and consequent activation of the
TNF-mediated transcriptional pathway.

[124]

Caco-2 Blocked topotecan-induced apoptosis in spite of inhibition
of ABC-transporters. [125]

Kaempferol

SW480 Sensitized TRAIL-induced apoptosis. [126]

HCT-116

The IC50 of kaempferol was 53.6 𝜇M in HCT116 (p53+/+)
cells and 112.7 𝜇M in HCT116 (p53−/−) cells. It induced via
ataxia-telangiectasia mutated-p53 pathway with the
involvement of p53 up-regulated modulator of apoptosis.

[127]

HT-29

Kaempferol increased chromatin condensation, DNA
fragmentation, and the number of early apoptotic cells in a
dose-dependent manner. Kaempferol increased the levels
of cleaved caspase-9, caspase-3, and caspase-7 as well as
those of cleaved poly (ADP-ribose) polymerase. Moreover,
it increased mitochondrial membrane permeability and
cytosolic cytochrome c concentrations.

[128]

Isorhamnetin

HT-29,
FVB/N mice

Chemoprotective effects of isorhamnetin were linked to its
inhibition of oncogenic Src activity and consequential loss
of nuclear 𝛽-catenin, activities that were dependent on
CSK expression.

[129]

HCT-116,
SW480 and
HT-29

IC50 values for isorhamnetin in HCT-116, SW480, and
HT-29 cell lines were 54.87, 56.24, and 43.85 𝜇M,
respectively. The mechanism of cell death was linked with
PI3KAktmTOR pathway.

[130]

Fisetin

HT-29 Fisetin inhibited cyclin-dependent kinases leading to cell
cycle arrest. [131]

HT-29 Enhanced radiosensitivity of p53-mutant HT-29 human
colorectal cancer cells. [132]

HCT-116,
HT-29

IC50 values for fisetin in HCT-116 and HT-29 cell lines
were 132.2 and 57.7 𝜇M after 72 h, respectively. The
mechanism was induction of apoptosis by inhibition of
COX2 and Wnt/EGFR/NF-kB-signalling pathways.

[133]

HCT-116 Securin depletion sensitizes human colon cancer cells to
fisetin-induced apoptosis. [134]

Galangin HCT-15,
HT-29

Induced cell death via mitochondrial dysfunction and
caspase-dependent pathway. [135]

Morin HCT-116
Had IC50 value less than 350 𝜇g/mL after 48 h and induced
apoptosis by modulation of Bcl-2 family members and Fas
receptor.

[136]

modulated the xenobiotic-metabolizing enzymes in rats dur-
ing DMH-induced colon cancer study [184, 185].

Among flavanonols, only taxifolin acts as an effective
chemopreventive agent against colon carcinogenesis due to

its antioxidantmediated apoptosis and antiproliferative activ-
ities [186, 187]. Taxifolin is found to control NF-kB-mediated
Wnt/𝛽-catenin signalling via upregulating Nrf2 pathway
[188].
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Figure 4: Molecular mechanism for anticancer action of EGCG and quercetin in CRC.

5.2.3. Flavanols and Proanthocyanidins. Epigallocatechin
gallate (EGCG) is the most studied flavanols against CRC.
EGCG showed IC50 values of 42.2 𝜇M, 47.7 𝜇M, 50.2 𝜇M,
80.1 𝜇M, and 43.1 𝜇M against HCT116, HT29, SW480, and
SW837 cell lines, respectively. Mechanism of action has
been linked to the inhibition of growth and activation
of the epidermal growth factor receptor and human epi-
dermal growth factor receptor-2 signalling pathways [189].
Among eleven different types of flavanol, EGCG showed
the highest antiproliferative activity against HCT-116 cells at
50 𝜇M [190]. In APCMin/+ mice, EGCG significantly inhib-
ited intestinal tumorigenesis. Oral administration of EGCG
showed increased levels of E-cadherin and decreased levels
of nuclear 𝛽-catenin, c-Myc, phospho-AKT, and phospho-
extracellular signal-regulated kinase 1/2 (ERK1/2) in small
intestinal tumours [191]. In another mice model, EGCG
reduced inflammation-related colon carcinogenesis induced
by azoxymethane and dextran sodium sulphate. Antitumour
activity has been ascribed to decrease in mRNA expression

levels of COX-2 and inflammatory cytokines (TNF-𝛼, IFN-
𝛾, IL-6, IL-12, and IL-18) in the colonic mucosa [192]. Other
studies mentioned the proposed anticancer mechanisms of
EGCG including cell cycle arrest and apoptosis through inhi-
bition of cyclooxygenase-2 expression, activation of AMP-
activated protein kinase, cyclin D1 degradation and p21
transcriptional activation, and inhibition ofHES1 andNotch2
signalling in different colorectal cancer cell lines [43, 193–
196]. EGCG also inhibited invasion and MMP expression,
angiogenesis, through blocking the induction of VEGF [197,
198]. Molecular mechanism for antitumour activity of EGCG
and quercetin is shown in Figure 4.

Chemopreventive effects of theaflavin have been reported
in azoxymethane induced colon cancer study inmale Sprague
Dawley rats [199]. The mechanism behind the beneficial
effects of proanthocyanidins against CRC has been related
to inhibition of angiogenesis through suppressing the expres-
sion of VEGF and Ang1 [200], induction of apoptosis [201],
and antioxidant activity [202].
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5.2.4. Anthocyanidins. Malvidin and pelargonidin showed
IC50 values of 71.7 𝜇g/mL and 154.3 𝜇g/mL against HCT-
116 cell line, whereas cyanidin, delphinidin, and petunidin
did not induce 50% cell killing even at a concentration
of 200𝜇g/mL [203]. Cyanidin, delphinidin, malvidin, and
pelargonidin exhibited no cytotoxicity against Caco-2 cell
line, but against metastatic LoVo and LoVo/ADR cell line
cyanidin and delphinidin showed significant antitumour
activity with low IC50 values [204]. Anthocyanin or antho-
cyanidin containing extracts obtained from a variety of
sources were reported to have significant antiproliferative
activity against CRC in several animal model (APCMin/+

mouse model, chemically induced) and cell lines [205–213].
Anticancer activity of anthocyanidins is believed to be due to
its antimetastatic property through modulation of claudins,
matrix metalloproteinases (MMPs), nuclear factor 𝜅B (NF-
𝜅B) activation, and demethylation of tumour suppressor
genes [214–216]. A pilot study involving 25 CRC patients
showed 7% decrease in proliferation after consumption of
anthocyanin rich diet [217].

5.3. Polyphenolic Amides. Capsaicin is the most studied
polyphenolic amide against CRC. In vitro and in vivo studies
in mice bearing Colo-205 tumour xenografts showed that
capsaicin significantly reduced tumour progression by acti-
vating caspase-3, caspase-8, caspase-9, Bax, Fas and reducing
Bcl-2 [218]. Capsaicin and 3,3-Diindolylmethane worked
synergistically against CRC via modulating transcriptional
activity of NF-𝜅B, p53, and target genes linked with apop-
tosis [219]. Other studies showed that anticancer action of
capsaicin was related to nitric oxide production, reactive
oxygen species generation, and suppression of transcriptional
activity of 𝛽-catenin/TCF pathway [220–222]. In our study,
we have found synergism in binary sequenced combination of
capsaicin with oxaliplatin in all sequences (0,0 h; 0,4 h; 4,0 h)
and more so in higher concentration in Lim 2405 cell line
(unpublished data). Dihydrocapsaicin, a saturated structural
analogue of capsaicin, was found to possess greater activity
than capsaicin against HCT-116 cells and induced autophagy
in a catalase-regulated manner [223]. Avenanthramides sig-
nificantly inhibited proliferation of HT29, Caco-2, LS174T,
and HCT116 human colon cancer cells [224].

5.4. Other Polyphenols

5.4.1. Resveratrol. 3,5,4-Trihydroxystilbene, known as resver-
atrol, is one of the most studied polyphenols against CRC. It
entered into clinical trial after a number of preclinical studies
for its encouraging activity and nontoxicity. All studies
conducted in rodent model and clinical trial regarding the
activity of resveratrol up to 2009 have been described by
Bishayee in his review [225].The authors mentioned 9 in vivo
studies related to CRC, among which three were conducted
in APCMin/+ mice model and others related to chemically
induced tumour [226–234]. All the studies discussed in
the review (except one on APCMin/+ mice study) provided
support for therapeutic potential of resveratrol against CRC.
Later on, in 2012, Juan et al. published another review
article that focused on the effects of resveratrol on CRC

from conducted in vivo studies and clinical trials [235].
The authors provided details on the molecular mechanism
of action of resveratrol against CRC. Two more research
articles recently described the promising effect of resveratrol
in mouse model against CRC, which were not mentioned in
earlier reviews [236, 237]. The results from the investigations
of the anticancer activity of resveratrol against CRC have not
been detailed here because they have been considered well in
the previouslymentioned reviews.However, a pictorial repre-
sentation of themolecularmechanism of action of resveratrol
against CRC is given in Figure 5. The effect of 5-fluorouracil
increased in combination with resveratrol due to chemosen-
sitizing property [238]. Antimetastatic activity of resveratrol
in CRC has also been reported [237, 239]. Since resveratrol
is found to downregulate multidrug resistant protein 1 by
preventing activation of NF-𝜅B signalling and suppressing
cAMP-responsive element transcriptional activity, it can be
used to overcome drug resistance by combining with other
chemotherapeutic drugs [240]. We have found synergism at
higher concentration in binary sequenced combination (at
0,0 h; 0,4 h; 4,0 h) of resveratrol with cisplatin but additive
to antagonism at lower concentration in HT-29, Caco-2, and
Lim 2405 cell lines (unpublished data).

5.4.2. Curcumin. Curcumin is the main active compound in
turmeric (dried rhizome of Curcuma longa). We have found
82 research articles (in vitro and in vivo preclinical studies,
clinical trial) describing effect of curcumin including mech-
anism of action against CRC. Here, we have not considered
the anticancer activity of curcumin in detail because three
review articles discussed well the therapeutic potential of
curcumin for CRC along with its mechanism of action [241–
243]. Curcumin can inhibit the initiation of carcinogenesis by
increasing glutathione S- transferase, induce cell cycle arrest
in S andG2/Mphase, induce apoptosis, and inhibitmetastasis
by decreasingCD31, VEGF, IL-8, andmir-21 expression [244–
247]. Mechanism of curcumin in CRC as applied to apoptosis
is shown in Figure 6. Curcumin has proved to be beneficial
in combination with chemotherapy and radiotherapy as well
[248, 249]. Synergistic activity of curcumin has also been
observed in our study in different sequences and doses
with oxaliplatin and cisplatin in four colorectal cell lines
(unpublished data).

5.4.3. Rosmarinic Acid and Gingerol. Rosmarinic acid is the
main component of Rosemary which at high dose showed
antitumour activity applying to in vitro and DMH-induced
in vivo study against CRC [250, 251]. It is thought that
MAPK/ERKpathway is linkedwith the apoptoticmechanism
of rosmarinic acid in CRC [252]. Rosmarinic acid has also
been reported to possess antimetastatic activity [253].

6-Gingerol is the most important ingredient of gin-
ger showing antiproliferative activity in a dose dependent
manner against LoVo cell lines via G2/M cell cycle arrest.
Exposure to 6-gingerol induced intracellular ROS and upreg-
ulate p53, p27Kip1, and p21Cip1 levels leading to consequent
decrease of CDK1, cyclin A, and cyclin B1 [254]. In HCT-
115 cell line, its anticancer action was found to be mediated
by inhibition of Leukotriene A4 hydrolase [255]. Another
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study showed that 6-gingerol stimulated apoptosis through
upregulation of NAG-1 and G1 cell cycle arrest through
downregulation of cyclin D1 that involved protein degrada-
tion as well as 𝛽-catenin, PKC𝜀, and GSK-3𝛽 pathways [256].
However, 6-gingerol did not show anticancer activity inColo-
205 cell line [257].

5.4.4. Ellagic Acid, Secoisolariciresinol, and Matairesinol.
Ellagic acid is a dilactone of hexahydroxydiphenic acid that
occurs naturally in berries and nuts such as the raspberry,
strawberry, walnut, and pecan. It inhibited growth of Caco-
2 cell line, possibly mediated by regulation of matrix metal-
loproteinases, vascular endothelial growth factor expression,
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and induction of apoptosis [258]. According to others, the
anticancer action is mediated through downregulation of
cyclins A and B1 and upregulation of cyclin E, cell cycle
arrest in S phase, induction of apoptosis via intrinsic path-
way (Fas-independent, caspase 8-independent) via Bcl-XL
downregulation with mitochondrial release of cytochrome
c into the cytosol, and activation of initiator caspase-9 and
effector caspase-3 [54]. Studies on DMH-induced colon
carcinogenesis also proved the beneficial effect of ellagic
acid and showed the mechanism to be linked with reduced
expressions of NF-𝜅𝛽, COX-2, iNOS, TNF-a, and IL-6 as
well as inhibition of AKT-phosphoinositide-3 kinase pathway
[259, 260]. However, metabolic products urolithins were
found to be more potent against CRC compared to ellagic
acid itself [261]. Mixed urolithins and ellagic acid inhibited
phenotypic and molecular colon cancer stem cell features as
well [262].

Secoisolariciresinol and matairesinol are lignans. They
constitute one of the major groups of phytoestrogens that
have been investigated against CRC but the activity remains
controversial. Earlier study with flax seed diet contain-
ing secoisolariciresinol and matairesinol showed signifi-
cant antitumour activity [263]. However, in vivo and in
vitro studies done later did not provide insights into the
anticancer potential of secoisolariciresinol and matairesinol
[264, 265].

6. Chemical Modifications of PP in Nature
and Synthetic Analogues

The most important impediment to the successful develop-
ment of natural PP as clinical therapy against CRC is their low
bioavailability. To overcome the problem towards reaching
therapeutic concentrations of PP and increasing efficacy,
many researchers tried to produce a number of synthetic ana-
logues through structural modifications. Increase in potency
in vitro and bioavailability in vivo has been observed in
many studies. Some selected reports concerning chemical
modifications of PP applied against CRC are represented in
Table 3.

7. Combination of Polyphenol
with Chemotherapy/Radiotherapy
and Other PP

Emerging evidence suggests that a single-agent approach
is probably less likely to be very effective in the manage-
ment cancer. The rationale for recommending a multidrug
regimen is to attack cancer cells through multiple targets
and diverse mechanisms of actions with reduced toxicity,
ultimately leading towards improved clinical outcomes.With
that aim, PP have been investigated with chemotherapy
and radiotherapy in various cancer models. For example,
curcumin given in combination potentiated the cytotoxic
effects of doxorubicin, 5-FU, and paclitaxel in prostate
cancer cells [266]; enhanced the antitumour activities of
cisplatin, doxorubicin, and Taxol in HA22T/VGH hepatic
cancer cells, HeLa cells, or CAOV3 and SKOV-3 ovarian

cancer cells [267, 268]; sensitized multiple myeloma cells to
vincristine andmelphalan [269]. Similar evidence is available
in literature for resveratrol, EGCG, quercetin, genistein,
proanthocyanidin, and daidzein in various types of cancer
with different classes of chemotherapeutic drugs [169, 270–
273]. A few studies also have been conducted against CRC
where it has been observed that PP in combinationwith other
chemotherapeutic drugs produced synergism, for example,
curcuminwith 5-fluorouracil againstHCT-116 andHT-29 cell
line, resveratrol metabolites and oxaliplatin in SW-480 and
SW-620 cell lines, genistein with 5-fluorouracil in HT-29 cell
line [274–277]. Outcomes of some other combination studies
already have been mentioned in describing the effect of
individual PP. Like chemosensitization, PP also have shown
the potential of radiosensitization in various cancers, but
investigations of the same effects against CRC is very scarce
[278–281]. In one study quercetin has been shown to increase
chemoradiosensitivity against colorectal cancer in xenograft
mouse model [109].

Plenty of evidence exists in literature regarding the
benefits of the effect of one polyphenol combined with
another polyphenol against different types of cancer. Com-
bination of resveratrol with black tea polyphenols resulted
in a synergistic tumour suppressive response in mouse skin
tumour [282]. Resveratrol showed better chemopreventive
response when combined with curcumin by maintaining
adequate zinc and modulating Cox-2 and p21 level in
mouse model of lung cancer [283]. Combination of genistein
with resveratrol reduced the most severe grade of prostate
cancer in SV40 Tag-targeted probasin promoter rat model
[284]. EGCG in combination with curcumin synergistically
inhibited oral premalignant epithelial cells [285]. Quercetin
and resveratrol in combination with ellagic acid showed
synergism against leukaemia [286]. However, studies on the
effect of combination of pure polyphenols against CRC are
not numerous. Curcumin showed synergistic antitumour
effects in combination with resveratrol in one report of
colon cancer model in SCMID mice [287]. Combination
of epicatechin and EGCG also exhibited synergistic out-
come against HT-29 cancer cells. There are few reports in
literature related to the beneficial effects of plant extracts
or juices that possess mixture of polyphenols against CRC
[288, 289].

Bioprospecting and molecular pharmacology studies
have shown that PP can modulate the survival pathways
induced by cancer cells, carcinogens, and chemotherapeutics.
The possible mechanisms of chemoresistance are shown in
Figure 7.

In Section 5, we have considered the molecular mech-
anisms by which PP would produce anticancer action in
CRC. It is thought that PP have the ability to effectively
modulate the various mechanisms of chemoresistance. For
example, EGCG and quercetin can directly inhibit PI3/AKT
pathway, NF𝜅𝛽 pathway, EGFR family pathway, and IAP fam-
ily pathway and increase p53 (Figure 4). Similarly curcumin
can inhibit Bcl-2 family pathway, EGFR family pathway, and
NF𝜅𝛽 pathway (Figure 6).
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Table 3: Important synthetic polyphenols studied against CRC.

Parent PP Synthetic analogue Activity Ref.

Pterostilbene 3-Hydroxy-pterostilbene
In terms of IC50 values, synthetic analogue found to be
more sensitive against 3 CRC cell lines. In vivo study
also proved its greater activity.

[137]

Resveratrol

3, 5, 4-Trimethoxystilbene,
3, 3, 4,
5-tetramethoxystilbene

Inhibited HT-29 cell growth. [138]

Digalloyl resveratrol Inhibited HT-29 cell growth more effectively than gallic
acid and resveratrol. [139]

Flavone 3, 4, 5, 5,
7-Pentamethoxyflavone

More active compared to tricin and apigenin in
APCMin/+ mice model. [140]

Curcumin

Dimethoxycurcumin

In HCT-116 cell lines, dimethoxycurcumin is more
potent in terms of ability to kill cancer cells by
apoptosis, less extensively metabolized in microsomal
systems, and more stable in vivo compared to curcumin.

[141]

Curcumin difluorinated At higher concentration synthetic analogue showed
greater potency than curcumin in HCT-116 cells. [142]

EF31 and UBS109
Both analogues showed significant antitumour activity
in colorectal xenograft model possibly via inhibition of
NF-𝜅B and cell cycle progression at G0/G1 phase.

[143]

GO-Y030, FLLL-11, and
FLLL-12

All of the analogues exhibited 4 to 20 times greater
activity than curcumin against SW480, HT-29, and
HCT116 cell lines but with minimal toxicity against
normal cell line.

[144]

EGCG Peracetylated EGCG

Administration of the synthetic analogue was more
effective than EGCG in preventing the shortening of
colon length and the formation of aberrant crypt foci
and lymphoid nodules in mouse.

[145]

Procyanidin
dimer

[3-O-Galloyl]-(−)-
epicatechin-(4𝛽,8)-
(+)catechin-3-O-gallate

Compared to parent compound synthetic analogue
showed increased cytotoxicity against twelve different
cell lines including two colorectal cell lines.

[146]

Catechin
and/or
epicatechin

(2R, 3S)-3 , 4, 5,7-
tetrahydroxyflavone-3-yl
decanoate,
(2R, 3S)-3 , 4, 5,7-
tetrahydroxyflavone-3-yl
octadecanoate

Both of them exerted greater cytotoxicity in HCT-116
cells than catechin. [147, 148]

Genistein

4-O-(3,4-Di-O-acetyl-𝛼-L-
arabino–hexopyranosyl)
genistein, 7-O-(2,3,4,6-
tetra-O-acetyl-𝛽-D-
galactopyranosyl)-(1→4)-
(6-O-acetyl-hex-2-ene-𝛼-
D-erythro-
pyranosyl)genistein,
7-O-(2,3,5-tri-O-benzyl-𝛽-
D-
arabinofuranosyl)genistein
and 7-O-(4,6-di-O-acetyl-
hex-2-ene-𝛼-D-
erythropyranosyl)genistein

The derivatives showed greater cytostatic and cytotoxic
effect than genistein in Colo-205 cell lines. [149]

Epicatechin
3-O-(3,4,5-
trimethoxybenzoyl)-(−)-
epicatechin

Synthetic analogue showed IC50 values at 33 𝜇M against
Caco-2 cell lines and greater activity compared to
epicatechin.

[150]
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Table 3: Continued.

Parent PP Synthetic analogue Activity Ref.

Naringenin

6-C-(E-phenylethenyl)-
naringenin

6-C-(E-phenylethenyl)-naringenin suppressed CRC
without any toxicity by inhibiting cyclooxygenase-1. [151]

5-Hydroxy-2-(4-
hydroxyphenyl)-4-
oxochroman-7-yl
thiophene-2-carboxylate,
5-hydroxy-2-(4-
hydroxyphenyl)-4-
oxochroman-7-yl
2-methylbenzoate,
5-hydroxy-2-(4-
hydroxyphenyl)-4-
oxochroman-7-yl
isobutyrate,
7-(allyloxy)-5-hydroxy-2-
(4-hydroxyphenyl)
chroman-4-one and
5-hydroxy-2-(4-
hydroxyphenyl)-4-
oxochroman-7-yl phenyl
carbonate

All of the derivatives gave lower IC50 values compared
to naringenin in HCT-116 cell lines. [152]

Chrysin

5,7-dimethoxy-8-
iodochrysin,
8-bromo-5-hydroxy-7-
methoxychrysin and
5,7-Dihydroxy-8-
nitrochrysin

These three derivatives among twelve prepared
analogues showed prominent activity against CRC
compared to chrysin.

[121]

Nobiletin
or/and
tangeretin

5-hydroxy-6,7,8,3,4-
pentamethoxyflavone,
5-hydroxy-3,6,7,8,3,4-
hexamethoxyflavone, and
5-hydroxy-6,7,8,4-
tetramethoxyflavone.

All synthetic analogues showed lower IC50 values than
nobiletin and tangeretin. [94]

8. Current Status of PP in Clinical Trials
Related to CRC

Following the discovery of significant anticancer potential of
curcumin, resveratrol, EGCG, and genistein seen in studies
related to in vitro and in vivo rodent model, the compounds
entered into clinical trials for efficacy and toxicity study in
human model. Many of the reported Phase I, Phase II, and
Phase III studies further validated the potential of using PP
against CRC. Benamouzig and Uzzan provided a summary
of 21 clinical trials conducted by 2016 related to the use of
curcumin against CRC in their review [243]. Similarly 17
clinical trials on resveratrol have been reviewed elsewhere
[290]. Few other chemotherapeutics and chemoprevention
clinical trials conducted on PP have been summarized by
Vinod et al. [169]. Table 4 represents the recently completed
or ongoing clinical trials on PP against CRC, which have not
been covered by others.

9. Future Perspective and Directions

From our study we have found that curcumin, resveratrol,
quercetin, luteolin, apigenin, EGCG are themost investigated

polyphenols against CRC. In terms of in vitro cytotoxicity
these polyphenols gave average IC50 value around 15–60𝜇M
against different colorectal cancer cell lines, which is compar-
atively larger than clinically used anticancer drugs. Moreover
some results from single administration of curcumin or
resveratrol produced contradictory evidence against in vitro
and in vivo model data. It would be unwise to be overop-
timistic and battle against CRC with a single polyphenol
only. Rather the strength of polyphenols can be exploited
by combining them with clinically used chemotherapeutic
drugs to reduce dose related side effects of chemotherapy
and overcoming drug resistance. Therefore, we can search
among polyphenols for the ones that give synergistic effect
with chemotherapeutic drugs or with other phytochemicals.
In our laboratory we have been working with curcumin,
resveratrol, EGCG, quercetin, capsaicin, 6-gingerol, genis-
tein in combination with cisplatin and oxaliplatin against
different CRC cell lines. In many cases we found synergism
(unpublished data) like others [291]. Chemical modifications
of natural PP can be continued to improve their activity and
bioavailability.

Another area of research that could be explored is related
to exploiting ability of PP to interact with stem cells in
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Figure 7: Mechanisms of chemoresistance (adapted from [169]).

CRC. Cancer stem cells are multipotent cells that possess
self-renewal capacity and high proliferative capacity and
lead to metastasis through migration. Although cancer stem
cells represent less than 2.5% of the tumour mass, they
may be responsible for the resistance to cancer therapies
and relapse in CRC [292]. Wnt/𝛽-catenin, Hedgehog, and
Notch have been identified to play pivotal roles in cancer
stem cells self-renewal. Presently researchers are targeting
the hallmark stem cell-like properties of tumour cells to
overcome cancer. A number of phytochemicals have also
been investigated against cancer stem cells in several studies.
Curcumin suppressed mammosphere formation along serial
passage in breast cancer, and the effect of curcumin on breast
cancer stem/progenitor cells was seen to bemediated through
its potent inhibitory effect onWnt/𝛽-catenin signalling [293].
Genistein also reduced breast cancer stem cells by inhibiting
AKT and increasing PTEN [294]. Likewise, resveratrol inhib-
ited pancreatic cancer stem cell characteristics in human and
mouse model by inhibiting EMT [295]. In pancreatic cancer
model quercetin decreased ALDH1 activity, induced apop-
tosis, and reduced the expression of proteins implicated in
EMT in vitro, while it inhibited stem cell-derived xenografts
in vivo, reducing the expression of proliferation, stemness,
and angiogenesis related genes [296]. However, very little has
been studied to modulate the stem cells by PP in CRC.

10. Conclusion

As oxidative stress is an inescapable part of aerobic life, it
can be said that cancer with its origin in mutations is a
disease of living even though it evokes death sentence in
many minds. However, as nature creates problems, it also
provides solutions. As tumour active polyphenols have been
a part of human diet for thousands of years, but without any
adverse side effect, it is thought that selected tumour active
polyphenols or their derivatives in combinationwith targeted
therapymay provide an affordablemeans of overcoming drug
resistance and reducing side effects in colorectal cancer and
indeed in many other cancers.

Abbreviations

ABCB1: ATP-binding cassette subfamily B
member 1

AKT: Protein kinase B
AMPK: 5AMP-activated kinase
AP-1: Activator protein-1
Apaf-1: Apoptotic protease activating factor 1
APC: Activated protein C
Bax: Bcl-2-associated X protein
Bcl-2: B-cell lymphoma 2
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Table 4: Recent clinical trials on PP against CRC.

Polyphenol Study description (patients) Institution and status

Curcumin

A Phase II, randomized, double blind, placebo controlled
trial for the effectiveness of holistic turmeric
supplementation on polyp burden among patients with
FAP (40)

Tel Aviv Sourasky Medical
Center, Israel; started February
2017

Curcumin Early Phase I, curcumin in combination with 5-FU in
chemoresistant metastatic colorectal cancer (14)

Baylor Research Institute, USA;
started March 2016

Curcumin Randomized Phase II trial studies in treating patients with
FAP (44)

Johns Hopkins University USA;
completed in 2017 but results
have not been published yet

Curcumin Phase I, pharmacokinetic trial of curcuminoids (24)
University of Michigan Cancer
Center, USA; completed but no
publication

Curcumin
Phase I, microarray analysis to identify genes that are
modified by curcumin that could be used as biomarkers
(40)

University of North Carolina,
USA; completed but no
publication

EGCG Phase I, chemopreventive effects in patients with curative
resections (50)

The University of Texas Health
Science Center at San Antonio,
USA; started January 2017 and
recruiting

EGCG Green tea extracts for the prevention of colorectal
adenomas and colorectal cancer (176)

Seoul National University
Hospital, South Korea;
completed and found favourable
outcome for the
chemoprevention [153]

Genistein Phase I/II, incorporation of genistein in FOLFOX
treatment regimen against metastatic CRC (13)

Sofya Pintova, Icahn School of
Medicine at Mount Sinai in
collaboration with DSM
Nutritional Products, Inc., USA;
completed January 2017 but
result has not been published yet

BCRP: Breast cancer resistance protein
CASP3: Caspase-3
Cdc2: Cell division cycle protein 2
CDK4: Cyclin-dependent kinase 4
c-Fos: Protooncogene
CHOP/GADD 153: Homologous protein/growth arrest-

and DNA damage-inducible gene 153
cIAP: Cellular inhibitor of apoptosis

protein
Cox-2: Cyclooxygenase-2
CRC: Colorectal cancer
CTGF: Connective tissue growth factor
Cyt-c: Cytochrome complex
DcR3: Decoy receptor 3
DR5: Death receptor 5
ECM: Extracellular matrix
EGFR: Epidermal growth factor receptor
EMT: Epithelial-mesenchymal transition
ERK: Extracellular signal-regulated kinases
FAP: Familial adenomatous polyposis
GADD153: Growth arrest- and DNA

damage-inducible gene 153
HIF-1: Hypoxia-inducible factor-1
Hsp70: Heat shock protein 70
IAP: Inhibitor of apoptosis

ICAMs: Intercellular cell-adhesion molecule-1
IGF-1R: Insulin-like growth factor 1 (IGF-1)

receptor
IKK: I kappa B kinase
IL-8: Interleukin 8
ILs: Interleukins
INOS: Inducible nitric oxide synthase
IRS-1: Insulin receptor substrate 1
IRS-2: Insulin receptor substrate 2
JAK: Janus kinase
JNK: C-Jun N-terminal kinases
PGE2: Prostaglandin E2
KRAS: Kirsten rat sarcoma
LOX: Liquid oxygen
LRP: Lipoprotein receptor-related protein
MALAT1: Metastasis associated lung

adenocarcinoma transcript 1
MAPK: Mitogen-activated protein kinase
MEK: Mitogen-activated protein kinase
miR-34a: MicroRNA 34a
MMPs: Matrix metalloproteinases
MRP1: Multidrug resistance-associated

protein 1
mTOR: Mammalian target of rapamycin
Myc: Myelocytomatosis
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NADPH: Nicotinamide adenine dinucleotide
phosphate

NF-k𝛽: Nuclear factor
kappa-light-chain-enhancer of activated B
cells

P-450: Cytochromes P450
P53: Phosphoprotein p53
PARP: Poly (ADP-ribose) polymerase
PDCD4: Programmed cell death protein 4
P-gp: P-glycoprotein 1
PI3K: Phosphoinositide 3-kinase
PP: Polyphenols
PTEN: Phosphatase and tensin homolog
RECK: Reversion-inducing-cysteine-rich protein

with kazal motifs
ROS: Reactive Oxygen Species
SIRT1: Sirtuin 1
TCF: Transcription factor
TGF𝛽: Transforming growth factor beta
TGF𝛽R1/2: Transforming growth factor beta receptor

I
TIMP3: Metalloproteinase inhibitor 3
TNF-𝛼: Tumour necrosis factor alpha
TRAIL-R1: Tumour necrosis factor-related

apoptosis-inducing ligand-receptor 1
TRAIL-R2: Tumour necrosis factor-related

apoptosis-inducing ligand-receptor 2
TSP1: Thrombospondin 1
uPAR: Urokinase receptor
xIAP: X-linked inhibitor of apoptosis protein
ZEB1/2: Zinc-finger E-box-binding homeobox 1

and 2.
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[42] F. Gossé, S. Guyot, S. Roussi et al., “Chemopreventive prop-
erties of apple procyanidins on human colon cancer-derived
metastatic SW620 cells and in a rat model of colon carcinogen-
esis,” Carcinogenesis, vol. 26, no. 7, pp. 1291–1295, 2005.

[43] J.-T. Hwang, J. Ha, I.-J. Park et al., “Apoptotic effect of EGCG
in HT-29 colon cancer cells via AMPK signal pathway,” Cancer
Letters, vol. 247, no. 1-2, pp. 115–121, 2007.

[44] M. Y. Hong, R. S. Chapkin, L. A. Davidson et al., “Fish oil
enhances targeted apoptosis during colon tumor initiation in
part by downregulating Bcl-2,” Nutrition and Cancer, vol. 46,
no. 1, pp. 44–51, 2003.

[45] H.-N. Koo, H.-J. Jeong, S.-H. Hong, J.-H. Choi, N.-H. An,
andH.-M. Kim, “Highmolecular weight water-soluble chitosan
protects against apoptosis induced by serum starvation in
human astrocytes,”The Journal of Nutritional Biochemistry, vol.
13, no. 4, pp. 245–249, 2002.

[46] C. B. Thompson, “Apoptosis in the pathogenesis and treatment
of disease,” Science, vol. 267, no. 5203, pp. 1456–1462, 1995.

[47] M. Hollstein, K. Rice, M. S. Greenblatt et al., “Database of p53
gene somaticmutations in human tumors and cell lines,”Nucleic
Acids Research, vol. 22, no. 17, pp. 3551–3555, 1994.

[48] N. Ahmad, D. K. Feyes, A.-L. Nieminen, R. Agarwal, and H.
Mukhtar, “Green tea constituent epigallocatechin-3-gallate and
induction of apoptosis and cell cycle arrest in human carcinoma
cells,” Journal of the National Cancer Institute, vol. 89, no. 24, pp.
1881–1886, 1997.

[49] H. Mukhtar and N. Ahmad, “Mechanism of cancer chemo-
preventive activity of green tea,” Proceedings of the Society for
Experimental Biology andMedicine, vol. 220, no. 4, pp. 234–238,
1999.

[50] S. Okabe, Y.Ochiai,M.Aida et al., “Mechanistic aspects of green
tea as a cancer preventive: Effect of components on human
stomach cancer cell lines,” Japanese Journal of Cancer Research,
vol. 90, no. 7, pp. 733–739, 1999.

[51] G.-Y. Yang, J. Liao, K. Kim, E. J. Yurkow, and C. S. Yang,
“Inhibition of growth and induction of apoptosis in human
cancer cell lines by tea polyphenols,” Carcinogenesis, vol. 19, no.
4, pp. 611–616, 1998.
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