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Tissue engineering is an interdisciplinary field that aims to develop biological substitutes for
the replacement, repair, or enhancement of tissue function. The physical and chemical
characteristics of biomaterials exert a profound influence on the biological responses and
the following biofunction. Nanostructured coatings have been widely applied as an
effective surface modification strategy to improve the bioactivity of biomaterials.
Especially, polydopamine and polydopamine-derived nanoparticles are found with
excessive adhesiveness, redox activity, photothermal conversion capacity,
paramagnetism and conductivity other than excellent biocompatibility, and
hydrophilicity. In this article, advances about polydopamine nanoparticles in tissue
engineering applications are reviewed, including the repair of bone, cartilage, skin,
heart, and nerve, to provide strategies for future biomaterial design.
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INTRODUCTION

Tissue engineering (TE) is an interdisciplinary field that aims to develop biological substitutes for the
replacement, repair or enhancement of tissue function. As one of the most important component in
TE, biomaterials (or scaffolds) play the key role of stimulating and regulating targeted cells to
regenerate new tissue. Generally, the physical and chemical characteristics of biomaterials exert
profound influence on the biological responses and following biofunctions. Over the years,
numerous strategies have been introduced to modify biomaterials for better tissue assembly and
functionality. Thereinto, nanoparticles (NPs) have emerged as a powerful tool to increase the
mechanical and biological properties of scaffolds. Moreover, recent researches reported extensive
applications of NPs in drug/gene delivery, cell labeling/pattering, 3D tissue construction, and so on.
Thus, NPs hold an importance position in biomedical field and show considerable potential in TE.

Since the debut in 2007 by Lee and Messersmith’s group (Qiu et al., 2018), polydopamine
(PDA) deposition inspired by natural mussels has been developed as a facile and universal
method for the surface modification of various materials. PDA can virtually deposit onto all
types of materials and form functional coating surfaces. Moreover, the abundant functional
moieties of PDA coatings allow for further modification to introduce bio-molecules or drugs.
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Thus, with the excellent adhesiveness, secondary reactivity,
hydrophilicity and biocompatibility, PDA coatings are
emerging and promising in TE applications.

Compared to the planar PDA coatings, the 3D PDA-NPs
provide larger specific surface area to interact with more cells
and bio-functional molecules. Particularly, PDA-NPs are
found with unique properties such as photothermal
conversion capacity and redox activities other than
adhesiveness and hydrophilicity (Liu et al., 2014). As we
previously reviewed, with PDA-NPs modification, excellent
results have been achieved in photothermal therapy (PTT),
chemical treatment, anti-inflammatory, antioxidant, and so
on (Jin et al., 2020). Our previous work also proved the
reactive oxygen species (ROS) scavenging facility and anti-
inflammatory ability of PDA-NPs in treating
temporomandibular joint osteoarthritis (TMJ-OA) (Wang
et al., 2021). Moreover, various bio-functional NPs (e.g.,
Fe3O4, graphene oxide (GO), TiO2) have been reported
successfully modified with PDA. Those PDA modified NPs
showed excessive biocompatibility and biostability, with
their original characteristics like electrical conductivity,
paramagnetism, or fluorescence unaffected. Thus, PDA
derived NPs have been widely investigated in biosensing,
imaging, and tumor therapy (Jiang et al., 2019; Ye et al.,
2020).

While significant progress has been achieved for multiple
PDA-NPs applications in biomedical field, their applications in
TE are still limited. This review aims at outlining the
developments in the use of PDA-NPs for TE, including the
fields of soft/hard tissue regeneration and biomedical implants
(Figure 1). By doing so, we hope to widen the application of
PDA-NPs in TE, and to enlighten our future thinking of the
biomaterial designing strategies.

SYNTHESIS OF PDA-NPS

Process of PDA Polymerization
PDA was initially found polymerized spontaneously from
dopamine-hydrochloride in the presence of alkaline buffer.
Since then, the mechanism of PDA coating has been
intensively studied. Until now, the mechanistic details remain
elusive due to the complex involvement of numerous
intermediate reactions. Nevertheless, it is now widely
recognized that two steps are involved in the PDA deposition,
including the oxypolymerization and the surface adhesion.
The classical “eumelanin” model believes dopamine is initially
oxidized to dopamine quinone (DQ). Then, the DQ undergoes
cyclization and rearrangement to form intermediates such as
leucodopaminechrome and dopaminechrome. Next, the key
precursors, 5,6-dihydroxyindole (DHI) and indole-quinones
are generated, which can further polymerize to form
oligomers, finally resulting in PDA. Now, researchers
propose that PDA is a complexity of covalent polymer with
small molecules and oligomer components (Della Vecchia
et al., 2013). Lately, with the continuous update of
laboratory techniques, more models were proposed,
suggesting both covalent polymerization and noncovalent
self-assembly played great roles in PDA formation (Liu
et al., 2014; Batul et al., 2017).

Oxygen has always been the most frequently used oxidizer to
initiate the polymerization (Madhurakkat Perikamana et al.,
2015). Recently, researchers reported that, other than
atmospheric oxygen, metallic oxidants (copper, zinc or nickel
ions) and nonmetallic oxidants (sodium periodate, ammonium
persulfate, hydrogen peroxide, etc.) could both start the PDA
coating (Kopec et al., 2020). Specifically, PDA can also be
synthesized by electro-polymerization, exhibiting a higher

FIGURE 1 | Schematic of PDA-NPs in TE application.
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deposition rate compared to the typical self-polymerization
method (Wang et al., 2014). In general, the synthetic rate,
coating thickness and structure, and efficiency of dopamine
utilization during the PDA coating could be optimized by
adjusting the process conditions or the oxidizing methods (Lee
et al., 2019).

To date, the exact mechanism of the robust adhesion capability
of PDA remains complicate. It’s widely accepted that multiple
functional groups including catechol group, amino group,
carboxylic acid group, indole units, and quinone functions
contribute to the mussel-mimicking versatility of PDA. PDA
coats on substrates mostly via covalent binding (Michael-type
addition, Schiff base reactions) or noncovalent binding (hydrogen
bonding, π−π stacking, metal chelating).

Fabrication of PDA-NPs
PDA-NPs are developed based on the PDA coating technology to
extend its utilization potential by polymerizing PDA into
nanoscale particles. Essentially, PDA-NPs share the same
polymerization mechanism as that of PDA coatings, except
that the synthesis of PDA-NPs requires the addition of
polymer inhibitors to control the polymerization speed and
the particles morphology. Water-alcohol mixed solution is the
most commonly used polymer inhibitor in the reaction (Yan
et al., 2013). Well-dispersed PDA nanospheres would be obtained
in the mixed solvents with the volume fractions of ethanol from
25 to 40% (Jiang et al., 2014). Overall, the synthesis of PDA-NPs
can be controlled by tailoring the experimental parameters, such
as dopamine concentration, pH, polymerization time,
temperature, and so on. Here the influence factors are listed
below in Table 1.

To increase the consistency and homogeneity of PDA
polymerization, several methods have been mentioned. Kim
et al. claimed high O2 concentrations in the dopamine
solution lead to highly homogeneous layer deposition on
substrate surfaces with accelerated reaction rate (Kim et al.,

2013). Ponzio et al. found periodate oxidant promoted fast
and homogeneous deposition of PDA with thickness up to
100 nm (Ponzio et al., 2016). Fan et al. reported folic acid
influenced PDA nanostructures via enhancing the π−π
interactions of oligomers (Fan et al., 2015).

Owing to the abundant functional groups (catechol and
phenethylamine), PDA exhibits high positive bioactivity. To
date, PDA has been successfully coated/modified on various
kinds of nanostructures, including the organic and inorganic
NPs, nanotubes (NTs) and nanorods, such as liposomes (Awasthi
et al., 2020), polymeric NPs (Zhu et al., 2016), magnetic NPs
(Oroujeni et al., 2018), silica NPs (Liu et al., 2018), gold NPs (Sy
et al., 2018), carbon NTs (Qu et al., 2017), and so on. Meanwhile,
PDA nanospheres also serve as active and facile templates for
synthesis of hollow or core/shell nanostructures (Yan et al., 2013;
Tran et al., 2019). This part was previously reviewed by our team
in detail (Jin et al., 2020). By template/solvent method, PDA
nano/microcapsules were obtained, exhibiting outstanding
unidirectional loading and release behavior (Yu et al., 2009).
Thus, PDA-NPs provide a versatile platform for multifunctional
biomedical applications. With active hydroxy and amino surface
groups, PDA-NPs gain excessive biofunctions by immobilizing
cells, DNA, proteins, drugs, and minerals.

BIOMEDICAL APPLICATIONS OF PDA-NPS
IN TE

TE requires a series of design and optimization of biomaterials for
better repair, restore or regenerate the damaged tissue. As the
preliminary step in TE, cell adhesion plays a crucial role in
regulating cellular functions. Various researches have reported
the PDA (or PDA-NPs) coatings on scaffolds/implants would
promote cell spreading, proliferation and migration owing to
their outstanding hydrophilicity and biocompatibility (Li et al.,
2017; Jin et al., 2020). Recently, more studies focus on exploring

TABLE 1 | Factors influencing the synthesis of PDA-NPs.

Factors Influence Ref

Monomer
concentration

NPs size increases with increasing dopamine concentrations Ju et al. (2011)

Buffer system Particle size varies in different buffers, smaller in Tris compared to that in phosphate Della Vecchia et al. (2014)

Temperature The reaction rate increases by increasing the temperature, leading to smaller particle size with higher density (Ju et al., 2011; Cho and Kim,
2015)

Reaction time Increasing reaction time would enhance the deposition of dopamine Jiang et al. (2011)

Oxidants Oxidants like sodium periodate or potassium chlorate would speed up the polymerization in alkaline aqueous
media

Wei et al. (2010)

pH Higher pH conditions result in a higher yield of particles with smaller diameters Ho and Ding, (2013)

Metal ion additives Metal ions facilitate dopamine polymerization Wang et al. (2017b)

Free radicals Free radical scavengers inhibit NPs growth while stable free radicals facilitate seed formation. Both decrease
NPs size

Wang et al. (2019b)

Diads in proteins Diads increase PDA formation to obtain biocompatible PDA@protein NPs El Yakhlifi and Ball, (2020)
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other characteristics of PDA-NPs and PDA-derived NPs in TE,
such as differentiation promoting, antibacterial and antioxidant
specialty, as well as photothermal property. Here we exemplified
those applications in Table 2 and reviewed in the following.

Guiding Cell Behavior
Degradable scaffolds and membranes derived from various
polymers show grate advantages in guided TE. Whereas,
limited by the hydrophobic and bioinert nature, synthesized
polymers exhibit poor cell attachment or tissue integration
(Talon et al., 2019).

In the work of Deng et al. (Deng et al., 2019), PDA-NPs were
optimized to coat on the electrospun membrane of
polycaprolactone (PCL) fibers. It turned out that, not only the
cell attachment and proliferation, but also the osteo-
differentiation of human mesenchymal stem cells (hMSCs)
were prominently improved. Additionally, PDA-NPs are
endowed with superior affinity to various kinds of proteins.
Wang et al. (Wang et al., 2016) proved bone morphogenetic
protein-2 (BMP-2) was absorbed on PDA-NPs modified scaffolds
and sustainably released in vitro up to 30d. Thus, PDA-NPs
immobilization accelerated new bone formation in porous
scaffold subcutaneously implanted in vivo. Moreover, a silica
NP coated with PDA (PDA/SiNP) was developed for hemostasis
(Liu et al., 2018). PDA/SiNP showed appropriate hydrophobicity,
and promoted erythrocytes aggregation. It remarkably
accelerated coagulation, proved to be an excellent hemostat in
future hemorrhage treatment.

To conclude, by mimicking the nano-topographical and bio-
chemical clues of extracellular matrix (ECM), biomaterials with
specific properties are capable of guiding cell fate. PDA-NPs
provide promising directions for future materials design.

Antimicrobial Activity
PDA-NPs are now emerging in the field of antibacterial
application, particularly with the wound healing in TE. Fu
et al. (Fu et al., 2021)found that treating PDA-NPs with
ascorbic acid was a simple strategy to obtain reduced PDA-
NPs (rPDA-NPs), which showed improved antioxidative and
antibacterial activity. Thus, the oxidized dextran/chitosan
composite hydrogel incorporated with rPDA-NPs promoted
the healing of infected full-thickness wound in rat dorsal skin.

Simultaneously, researches about NPs modified by PDA as
novel antimicrobial agents have also sprung up. To date, PDA
has been reported successfully coated on various NPs, including
Cu/Ag hybrid metal core (Yeroslavsky et al., 2016), TiO2

nanotubes (Xu et al., 2017), ZnO nanorods (Tavakoli et al.,
2021), GO (Liang et al., 2019a), carbon nanotubes (CNT) (Liang
et al., 2019b) and so on. Li et al. (Li et al., 2017) introduced
enhanced antibacterial ability to Ti implant via designing
hybrid ZnO/PDA/arginine-glycine-aspartic acid-cysteine
(RGDC) nanorod arrays. ZnO/PDA/RGDC nanorods could
effectively kill bacteria through physical puncture without
damaging the osteoblasts (Figure 2).

PDA coating effectively increased the hydrophilicity and
dispersity of NPs while reduced their cytotoxicity. Both
in vitro and in vivo experiments demonstrated composite
biomaterials engineered by PDA modified NPs exhibited
gratifying antibacterial properties. Possible mechanisms can be
attributed to reactive oxygen species (ROS) or adenosine
triphosphate (ATP) depletion, biomolecule interaction and
regulation, and membrane interaction (Slavin et al., 2017;
Jiang et al., 2020). As a result, in the background of antibiotics
resistance, PDA related NPs are promising alternatives for clinical
control and treatment of infection, in addition to the

TABLE 2 | Examples for PDA-NPs application in TE.

Object Form Average size Cell culture Property TE application Ref

PDA-MSNPs Oval shape 120 nm Pancreatic islets Biocompatibility Renal subcapsule islet
transplantation in diabetic mice

Razavi et al.
(2020)

PDA/PCL
fibers

Nanofibers 180–220 nm Human BMSCs Cell differentiation and
biomineralization promotion

Bone defect on mouse skull Deng et al.
(2019)

PDA/HA NPs Nanorods 186 ± 6 nm BMSCs Surface coating for cytokine
adhesion

Ti implants for rat femoral bone
regeneration

Wang et al.
(2017a)

PDA@
ZnO NPs

Nanorods 218 nm (coating of
23 nm)

L929 fibroblasts Antibacterial, hemostatic
potential

In vitro (for wound healing) Tavakoli et al.
(2021)

PDA-NPs Spherical
structure

117.7 nm Rat chondrocytes ROS scavengers Rat TMJ-OA Wang et al.
(2021)

PDA-NPs Spherical
structure

160 nm HGE cells ROS scavengers LPS-induced periodontitis in mice Bao et al.
(2018)

CQD/ZnO-
PDA NPs

Particles 100 nm NIH3T3 cells NIR responsiveness Rat dorsal wound model Xiang et al.
(2019)

PDA-
rGO NPs

Nanosheets 50–200 nm Rat cardiomyocytes Electric conductivity In vitro constructing cardiac
microtissue

Li et al. (2021)

Fe3O4@
PDA NPs

Spherical
structure

55–60 nm Human umbilical cord
MSCs

Paramagnetic responsiveness Sciatic nerve chronic compression
injury model in rats

Liu et al.
(2021)
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antimicrobial biomaterials and dressings construction (Alves
et al., 2019).

In addition, PDA NPs possess excellent capacity for loading
drugs i.e., antibiotic. Batul et al. (Batul et al., 2020) investigated an
in-situ polymerization method to load gentamicin into PDANPs.
The antibiotic loaded PDA-NPs are very promising for the long
term drug release microbial infection treating.

Antioxidant and Anti-inflammatory Activity
The overproduction of ROS is related to cellular dysfunction and
hindered tissue recovery. To protect neurons from the oxidative
stress-induced damage, Battaglini et al. (Battaglini et al., 2020)
proposed to use lipid coated PDA-NPs (L-PDNPs) as
neuroprotective agents. L-PDNPs were proved effective in
reducing ROS accumulation and resisting mitochondrial
morphological alteration.

In our recent work (Wang et al., 2021), PDA-NPs were found
act as ROS scavenger by both directly reacting with ROS and
indirectly reducing ROS production via increasing the efficiency
of mitochondrial oxidative phosphorylation (Figure 3). Meanwhile,
PDA-NPs downregulated the repression of proinflammatory
cytokines in chondrocytes and relived the inflammation of
cartilage and subchondral bone in the rat TMJ-OA model. The
charming antioxidative and anti-inflammatory dual ability of PDA-
NPs holds great potential for future ROS-responsive biomaterial
and biosystem design (Sui et al., 2020).

Promoting Biomineralization and
Osseointegration
Biomineralization generates lays of calcium phosphate (CaP)
crystals on substrates, and induces osteogenesis during bone

FIGURE 2 | Ti implants modified with ZnO/PDA/RGDC nanorods balance the bacteria−osteoblast competition through selective physical puncture (Li et al., 2017).

FIGURE 3 | PDA-NPs showed antioxidative and anti-inflammatory dual ability in the rat TMJ-OA model (Wang et al., 2021).
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regeneration. PDA has been proved efficient in facilitating
hydroxyapatite (HA) formation on scaffolds owing to the
plentiful catecholamine groups of its structure (Ghorbani
et al., 2019b). Wang et al. (Wang et al., 2017a) used PDA-NPs
and HA nanorods to prepare hierarchical micro-/nano-
structured coating on Ti implants. In vivo evaluation showed
improved osseointegration around Ti bars implanted in the bone
marrow cavity of rats.

Previously, our work (Wang et al., 2019) with PDA coating on
different implants also proved enhance osteointegration and
accelerated new bone formation via PDA coating. Moreover,
we found that focal adhesion kinase (FAK) and p38 signaling
pathways played important roles in the osteogenic differentiation
of BMSCs stimulated by PDA coatings.

Ghorbani et al. (Ghorbani et al., 2019a) found that using
microwave irradiation would accelerated HA mineralization on
PDA spheres. Meanwhile, the mineralized PDA spheres
promoted cell adhesion and spreading better than pure PDA.

Near-Infrared (NIR) Irradiation
Responsiveness and Thermal Therapy
PDA-NPs possess excellent photothermal conversion property
that could efficiently convert NIR light into heat. Both Han and
Tao et al. (Han et al., 2016; Tao et al., 2021) used PDA-NPs to
prepare NIR light stimuli-responsive hydrogels. Enhanced
elasticity, biocompatibility, tissue-adhesiveness, and more
importantly, bacteria-killing ability by photothermal effect
were achieved in the composite hydrogels, showing promising
future as wound dressings to accelerate skin tissue repair.
Moreover, Liang et al. (Liang et al., 2019a) used hyaluronic
acid (HA)-graft-dopamine and PDA decorated-reduced GO
(rGO) to prepare adhesive and photothermal composite
hydrogels. NIR irradiation enhanced the antibacterial
performance of these hydrogels, achieving better healing
outcomes compared to the commercial films in the mouse
wound model (Figure 4).

Interestingly, Huang et al. (Huang et al., 2017) found PDA-
NPs worked as artificial microparasols to mimic melanosomes for

protecting epidermal keratinocytes from UV damage. Thus,
PDA-NPs showed potential in developing novel natural
melanin replacement therapies in diseases (e.g., skin cancer,
vitiligo, and albinism).

Recently, plenty researched have reported new designs of
biomaterials for tumor thermal ablation therapy using the
feasible PDA/PDA-NPs platform. Tan et al. (Tan et al., 2016)
constructed a novel PDA-NP loading ionic liquids to work as
microwave susceptible agent. The NPs showed excellent
microwave heating efficiency and were quite potential for
tumor microwave thermal therapy. More investigations are
expected in the future biomaterial design considering the
photothermal or microwave thermal conversion capacity of
PDA-NPs.

Electric Conductivity for Enhanced Tissue
Regeneration
PDA displays water-dependent semiconductor-like
optoelectronic property. More recently, its conductivity is
explained by a chemical disorder model, including a dynamic
component of reversible intermolecular interactions perturbing
π-electron systems (Liu et al., 2014; Pezzella et al., 2015). More
importantly, PDA provides a versatile platform for suitable
substrates to tuning their electronic properties.

The conductivity of polymers shows beneficial effects on the
repair and regeneration of damaged tissues (Chen et al., 2021). Li
et al. (Li et al., 2021) used PDA to prepare reduced GO (rGO),
making graphene nano-sheets to be conductive and disperse
more easily. Gelatin methacrylate (GelMA) hydrogels
incorporated with PDA-rGO nanocomposites facilitated the
fast maturation of cardiomyocytes, acting as an ideal candidate
for cardiac TE application.

Paramagnetic Responsiveness to Promote
Tissue Repair
Recent strategies in TE now gradually recognize the magnetic
responsiveness of scaffolds in an external magnetic field. Co-

FIGURE 4 | Adhesive injectable composite HA-DA/rGO hydrogels with photothermal antibacterial activity promoted skin regeneration in mouse wound healing
(Liang et al., 2019a).
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deposit of Fe3O4 NPs and PDA on the surface of titanium
scaffolds was found to enhance the osteogenic differentiation
of MSCs and new bone formation in vivo with a static magnetic
field (Huang et al., 2020).

Furthermore, magnetic NPs are employed in disease diagnose
and treatment (Jia et al., 2020). Ouyang et al. (Ouyang et al., 2019)
prepared a novel magnetic resonance contrast NPs with PDA
coating which were cartilage-specific and magnetic resonance
imaging (MRI) contrast. The composite NPs could protect
chondrocytes from apoptosis and inflammation via TLR-2/NF-
κB/Akt signaling, and are quite potential for future OA treatment.

CONCLUSION AND OUTLOOK

Inspired bymussel adhesion, PDA and PDA-NPs coatings exhibit
excellent biocompatibility, hydrophilicity and adhesiveness. With
abundant moieties, PDA-NPs can virtually functionalize any
inert biomaterial surfaces to provide specific platforms for
stem cells. By adjusting synthesis parameters or the oxidizing
methods, the diameter and morphology of PDA-NPs can be
optimized to achieve better physical and chemical properties.

During the last decade, researchers focused more on the
characteristics of antimicrobial effect, antioxidant/anti-
inflammation activity, conductivity, NIR and magnetic
responsiveness of PDA-NPs and PDA derived NPs. A broad
spectrum of TE applications using PDA related NPs has been
reported in both soft and hard tissue defects model, including the
bone, cartilage, skin, heart, nerve, dental tissue and so on.

As our knowledge about the features of NPs and PDA increases,
new intelligent biomaterials with sequential biofunctions can be
synthesized to meet specific needs during biomedical applications,
for example, for the wound healing of diabetic patients or the
elderly. In addition, the range of TE application could also be
widened considering the fluorescent property of PDA-NPs, as well
as their potentials in the construction of 3D engineered tissues via
magnetic cell patterning/seeding.

However, future challenges still stand in front. As we know,
PDA-NPs have been proved biocompatible with multiple human

and mouse cells. Neither any dysfunction nor morphological
change was found in kidney, spleen, lung, liver or heart
1 month after PDA-NPs injection into rats (Hauser et al.,
2020). PDA-NPs are believed biodegradable by H2O2 and free
radical generated by animal body. Still, more detailed
investigation and complete evaluation are required to
reach the thorough understanding of PDA-NPs
degradation. So far, well-designed preclinical and clinical
trials about PDA-NPs in TE haven’t been reported. The
biosafety and long-term toxicity should be examined in
human bodies. Another further breakthrough lies in the
accurate interpretation of the PDA polymerization process.
By figuring out the structural determinants of the dark
brown coating, we would be able to adjust the color of PDA-
NPs coatings for better wearing experience, especially in wound
dressings. In this way, it is expected to propel the development
of PDA-NPs derived hybrid materials forward from labs to
practical and clinical use.
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