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Abstract11

Microbes of nearly every species can form biofilms, communities of cells bound12

together by a self-produced matrix. It is not understood how variation at the cellular13

level impacts putatively beneficial, colony-level behaviors, such as cell-to-cell sig-14

naling. Here we investigate this problem with an agent-based computational model15

of metabolically driven electrochemical signaling in Bacillus subtilis biofilms. In this16

process, glutamate-starved interior cells release potassium, triggering a depolar-17

izing wave that spreads to exterior cells and limits their glutamate uptake. More18

nutrients diffuse to the interior, temporarily reducing glutamate stress and lead-19

ing to oscillations. In our model, each cell has a membrane potential coupled to20

metabolism. As a simulated biofilm grows, collective membrane potential oscilla-21

tions arise spontaneously as cells deplete nutrients and trigger potassium release,22

reproducing experimental observations. We further validate our model by compar-23

ing spatial signaling patterns and cellular signaling rates with those observed ex-24

perimentally. By oscillating external glutamate and potassium, we find that biofilms25

synchronize to external potassium more strongly than to glutamate, providing a26

potential mechanism for previously observed biofilm synchronization. By tracking27

cellular glutamate concentrations, we find that oscillations evenly distribute nutri-28

ents in space: non-oscillating biofilms have an external layer of well-fed cells sur-29

rounding a starved core, whereas oscillating biofilms exhibit a relatively uniform30
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distribution of glutamate. Our work shows the potential of agent-based models to31

connect cellular properties to collective phenomena and facilitates studies of how32

inheritance of cellular traits can affect the evolution of group behaviors.33

Introduction34

Bacterial biofilms are large communities of cells that exist in nearly every envi-35

ronment [10]. They are bound together by an extracellular matrix that provides both36

stability and protection [3, 8, 1]. Biofilms exhibit a variety of emergent behaviors that37

give biofilm-dwelling microbes advantages unavailable to planktonic cells [16, 31, 42].38

For example, cells within biofilms differentiate into heterogeneous phenotypes [22, 45,39

46, 21], divide labor [28, 36], and coordinate behavior via chemical signals [13, 33, 49,40

23]. These group phenomena have led researchers to assert that biofilms represent a41

transition between single-celled and multicellular life [38, 7].42

A striking multicellular behavior is the presence of cell-to-cell electrochemical sig-43

nals that influence metabolism in Bacillus subtilis biofilms [25, 34]. As a biofilm ex-44

pands, fewer nutrients penetrate to the center; most are consumed by exterior cells45

[43, 51]. The paucity of nutrients in the interior raises a problem: if interior cells are46

starved, the integrity of the biofilm is at risk [25]. In vitro B. subtilis biofilms exhibit a be-47

havior that seems to allow them to navigate this challenge. When interior cells become48

starved, they release potassium, depolarizing nearby cells and hampering their ability49

to absorb glutamate. In turn, nearby cells become distressed, release potassium, and50

hyperpolarize, eventually leading to a wave of potassium release. This wave propa-51

gates to the biofilm exterior [34]. It has been hypothesized that glutamate consumption52

among cells in the exterior slows down enough that glutamate can diffuse to the cen-53

ter [25]. Once interior cells have enough glutamate, they cease releasing potassium,54

allowing exterior cells to repolarize and resume consumption, eventually leading to55

stress and another wave of potassium release.56

These repeated waves of potassium release have been referred to as a form of57

microbial “signaling” [34, 29, 11]. Potassium signaling has been proposed to allocate58

nutrients efficiently at the colony level [25, 24], and it is heterogeneous at the cellular59

level. Some cells participate in signaling and hyperpolarize during signaling waves,60

whereas others do not [20]. It is unknown how cellular variation in signaling behavior61

affects biofilm-level properties, such as distributions of nutrients. In order to answer62

this question, we need models that can connect cell-level properties, such as signaling63

state and inheritance of signaling behavior, to colony-level phenomena.64
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Several computational models of B. subtilis signaling behavior have been intro-65

duced to explore hypotheses about the causes and effects of signaling. Zhai and66

colleagues (2019) proposed an agent-based model to explain observations they had67

made about signaling. Their in vitro experiments revealed that a roughly constant pro-68

portion of cells signal each oscillation, that the same cells tend to release potassium69

in repeated signaling waves, and that signaling behavior is weakly heritable—that is,70

daughter cells of signaling cells are more likely than average to participate in signaling71

waves. They modeled signaling as a percolation process in which a cell only signals72

during a depolarization wave if it both has a binary trait that predisposes it to signaling73

and is adjacent to another signaling cell in the biofilm. Using an agent-based model in74

which agents represent individual cells allowed them to test whether signaling in this75

manner would transmit a signal across the biofilm consistently. However, their model76

focused on small sub-regions of the biofilm to match the limitations of their experi-77

mental system—a roughly 35x230 rectangle of cells at the edge of the biofilm, where78

the colony is close to two-dimensional. Their model also did not include nutrient diffu-79

sion or uptake, preventing its use for studying how individual cell behaviors affect the80

distribution of nutrients or growth of the biofilm.81

Other models of B. subtilis depolarization waves are based on systems of differen-82

tial equations. Martinez-Corral et al. (2018) produced a model of a one-dimensional83

slice of the biofilm, extending from the center to an edge. Ford et al. (2021) extended84

this to two dimensions, simulating a complete biofilm. Both models aimed to capture85

signaling and nutrient patterns at the scale of an entire biofilm. These models explicitly86

simulate nutrient diffusion and metabolism and have signaling operate through mech-87

anisms that depend on internal glutamate concentration, providing powerful and accu-88

rate recreation of biofilm-wide signaling dynamics. However, modeling these complex89

interactions at a larger scale using differential equations comes at the cost of res-90

olution. These models describe phenomena on the scale of the biofilm but do not91

distinguish individual cells. Their advantages are thus opposite those of the agent-92

based model of Zhai and colleagues, but neither can describe the effects of individual93

cell behaviors on broad patterns of nutrient distribution or signaling.94

The model we propose strikes a compromise between the flexibility and resolution95

of the agent-based approach of Zhai and colleagues (2019) and the scalability of ODE96

models. Our approach is agent-based, but the agent-based elements are overlaid97

on a simplified version of the ODE model developed by Martinez-Corral et al. (2019).98

Via this hybrid strategy, our model retains some of the benefits of both previous ap-99
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proaches. Our model enables simulation at the scale of an entire flow-cell biofilm [15,100

35], comprising approximately 51,000 individual cells, each with unique potassium,101

glutamate, membrane potential, and signaling dynamics.102

We validate our model by comparing the behaviors of simulated biofilms with those103

observed in experiments, including signaling patterns at local and colony-wide scales,104

response to various stressors, and growth patterns. We show that many of the distinc-105

tive features of B. subtilis signaling, including waves of depolarization and the fraction,106

identity, and descent of cells that participate in signaling, can emerge naturally from107

our model. We then demonstrate the application of our model by exploring open ques-108

tions regarding synchronization of oscillations among neighboring biofilms [24] and the109

effect of signaling on glutamate distribution.110

Results120

Model overview121

Our model aims to describe an oscillating hyperpolarization-depolarization behav-122

ior observed in B. subtilis biofilms grown in flow cells [25, 34]. In such scenarios, when123

a biofilm grows past a certain size, metabolically stressed interior cells release potas-124

sium ions. The primary source of nitrogen in flow-cell experiments is glutamate [25],125

and cells absorb glutamate via a transporter whose activity depends on membrane126

potential. This transporter is more efficient when the cell is hyperpolarized—that is,127

when there is a greater charge differential between the interior of the cell and the ex-128

tracellular media [44]. By releasing charged potassium ions, stressed cells increase129

their membrane polarization and therefore their ability to absorb nutrients.130

Releasing potassium ions has an additional effect of depolarizing surrounding cells.131

Prindle et al. (2015) hypothesized that when interior cells are extremely stressed and132

release a sufficiently large amount of potassium, they can depolarize surrounding cells133

enough to slow their nutrient uptake. If enough cells release potassium, a chain reac-134

tion can be triggered in which nearby cells become depolarized, undergo metabolic135

stress, and then release ions and hyperpolarize in response. Ion release can be136

thought of as a form of signaling, albeit one that has direct effects on cell physiol-137

ogy. If enough cells signal, it can lead neighboring cells to signal, causing a wave of138

depolarization to spread across the biofilm.139

As the wave of depolarization crosses the biofilm, nutrient absorption across the140
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111

Figure 1: A schematic of our model. (A) shows the cycle of oscillations: growth causing
interior stress, leading to signaling (indicated by cyan cells) and exterior stress, causing slowed
growth and a reduction in stress, and finally back to resumed growth. (B) shows our simulation
process, beginning with a very small cluster of cells, growing it for a period of time without
simulating nutrients, and then growing to full size and running for many iterations with nutrient
and signaling simulation. (C) shows the questions we pursue, including testing the effects of
varying levels of glutamate and potassium, and of suppressing signaling.
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entire colony slows. This eventually allows nutrients to diffuse to the interior of the141

biofilm and thereby reduce metabolic stress. A side effect of reduced nutrient uptake142

is a corresponding reduction in growth [2], particularly in exterior cells where most143

biofilm expansion occurs [25, 47]. After the wave of depolarization reaches the ex-144

terior of the biofilm and nutrients diffuse through the biofilm and reduce stress in the145

interior, growth can resume. Consequently, whereas there is consistently rapid growth146

when the biofilm is small, once it surpasses a threshold size—determined by nutri-147

ent concentration in the media and the biofilm’s shape and density—it transitions to148

periodic growth, with growth pausing when the exterior of the biofilm is depolarized.149

Our model describes the signaling waves that appear to drive these oscillations150

in growth (Figure 1A). We developed an agent-based model that explicitly simulates151

each cell spatially on a two-dimensional plane. Our model is hexagonal (to mimic the152

approximate 6-neighbor structure of a 2D biofilm [20]), and can be run at the scale of153

an entire flow-cell biofilm, with a radius of approximately 145 cells. We model gluta-154

mate as diffusing into the biofilm from outside and being consumed by cells; uptake of155

glutamate causes a cell’s internal glutamate level to increase. When cells are below an156

individual-specific threshold level of internal glutamate, they release potassium ions,157

allowing faster glutamate uptake.158

Intracellular glutamate (Gi ) and potassium (Ke), extracellular glutamate (Ge) and159

potassium (Ke), and cell membrane potential (V ) are regulated by four equations taken160

from Martinez-Corral et al. (2019) with simplifications (equations S1, S3-S5, see Ta-161

ble S2 for parameter values). Each cell has a signaling threshold, Ti—when a cell’s162

internal glutamate drops below Ti , the cell signals. Ti is treated as a property of the163

cell that remains fixed throughout the cell’s lifespan. Cells pass their signaling thresh-164

old to their offspring, with a certain amount of noise, causing signaling behavior to be165

partially heritable, as observed in vitro [50]. (We use the term “heritable” to refer to166

the correlation between mother and daughter cells, without assuming that the source167

of variation between lineages is genetic, which is unlikely in clonal biofilms.) An illus-168

tration of the potassium, glutamate, and membrane potential for a single cell during a169

signaling wave is shown in Figure S1.170

Although the equations governing biofilm behavior are modeled on those of Martinez-171

Corral et al. (2019), we made modifications for use in an agent-based model. For com-172

putational tractability, we discretized coarsely with respect to time, applying the equa-173

tions every time step (“tick”). A tick represents a period of approximately one minute,174

an interval with respect to which potassium diffuses rapidly (Supplement S3.4.1, [30]).175
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This coarse time grid allowed us to model potassium diffusion simply by averaging it176

across the biofilm each tick. Glutamate diffuses more slowly than potassium [37, 34],177

so we model its diffusion, albeit in a simplified way (described in Supplement S3.1).178

Each tick, basal glutamate in the media (Gm) diffuses into the biofilm and is absorbed179

by cells according to equation S1.180

We initialized biofilms with a small number of cells such that glutamate diffused181

to the center easily. We then allowed them to grow to a radius of approximately 145182

cells (a population of ∼51,000), at which point we stopped growth (Figure 1B). At each183

tick during the growth phase, we selected one-fortieth of the cells on the perimeter184

of the biofilm network, uniformly at random and with replacement, to reproduce. This185

produced growth consistent with the doubling time of B. subtilis (between 45 minutes186

and 6 hours [4, 9, 18]). Each daughter cell was placed in one of the empty nodes187

adjacent to the parent. Its signaling threshold was drawn from a truncated normal188

distribution with — equal to the parent’s threshold, ff (corresponding to the standard189

deviation on a non-truncated normal distribution) of 1, and bounds of [0, 3] (further190

described in Supplement S2). Once growth stopped, we continued the simulation for191

a total of 3000 ticks. This time period corresponds to approximately 48 hours, longer192

than in vitro biofilms have been observed to maintain oscillatory behavior. To replicate193

previous studies and make new predictions, we simulated biofilms under a variety of194

conditions, including reduced and increased basal glutamate, oscillated basal gluta-195

mate and potassium, and a short flood of potassium to depolarize the biofilm (Figure196

1C).197

Model validation198

Patterns of signaling199

We initially explored our model by replicating behaviors and findings from previous200

work. We first examined whether our model produced simulated biofilms in which201

signaling oscillations behave similarly to in vitro observations. At a gross level, videos202

of oscillations in in vitro biofilms and in our simulated biofilms and reveal many similar203

features (videos available as files S5.1 and S5.2).204

Martinez-Corral et al. (2018) observed that oscillations generally begin at a radius205

of 200-350 —m under environmental conditions identical to those in our model (30 mM206

glutamate). We found oscillations to start at a radius of around 110 cells (Figure 2),207

which corresponds to approximately 220-330 —m [39, 48].208
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Zhai et al. (2019) found that near the edge of the biofilm, approximately 43% of209

cells are signaling during the peak of each oscillation. This observation motivated210

their investigation of signaling in terms of percolation theory—43% is near the mini-211

mum fraction of signaling cells that guarantees a signal moving between adjacent cells212

can cross the biofilm, given their other assumptions. Our simulated biofilms behave213

similarly, with approximately 43% of cells in the outer layers of the biofilm signaling at214

the height of each signaling oscillation (Figure 2).215

216

Figure 2: Radius (gray) and fraction of signaling cells (red) in the outer region of a simulated
growing biofilm over time. The radius indicates the distance of the cell farthest from the center.
Growth is limited to a radius of approximately 145 cells. A version with growth to a much larger
size is shown in Figure S2, demonstrating the collapse of oscillations when the biofilm grows
too large.

217

218

219

220

221222

In experimental time-lapse images of biofilm signaling, the interior and exterior of223

the biofilm oscillate approximately in antiphase, with the interior exhibiting much higher224

polarization (Supplement S5.1, Figure 3A). In vitro, the division between the interior225

and exterior (defined by oscillation) appears sharp (Figure 3B). In our simulations,226

we observed the same boundary (Supplement S5.2 and Figures 3D and S3). The227

difference in polarization can also be observed by comparing the vertical axes for228

inner and outer cells in Figure 3, panels A and C.229

Single-cell signaling behavior241

Larkin et al. (2018) found a bimodal distribution of cell-level membrane potentials242

during signaling peaks. Cells that had recently signaled had substantially more nega-243

tive membrane potentials than those that had not. The membrane potential distribution244
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230

Figure 3: Comparison between in vitro observations of oscillations in the interior and exterior
of the biofilm (A, B), and our simulations of the same (C, D). In the in vitro observations,
time is given in hours and the y-axis shows the average Thioflavin-T (ThT) intensity in each
region. ThT is a stain used to detect membrane polarization; polarized cells absorb it and
exhibit fluorescence [19, 34]. Note that the interior has much higher ThT intensity than the
exterior. (B) is an in vitro fluorescence image of a signaling biofilm (cyan represents ThT
intensity; the square is a cell loading trap) and (D) is snapshot from our model, both with the
boundary between inner and outer cells highlighted (yellow). In (C) and (D) cyan represents
cell membrane polarization.
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during signaling peaks was also bimodal in our simulations, and we used the bimodal-245

ity to define signaling vs. non-signaling cells, classifying those on the more highly246

polarized mode as signaling (Figure S4).247

At the individual-cell level, signaling behavior is consistent across oscillations: cells248

that signal in a given wave are more likely to participate in other waves of signaling. To249

characterize this consistency, we used in vitro lineage tracing across two oscillations,250

again focusing only on exterior cells. We found that across a pair of oscillations, 33% of251

cells signaled in both waves (compared with ∼18% expected if signaling participation252

is independent between waves), 47% did not participate in either signaling wave, and253

20% switched their signaling behavior between waves (with roughly half going either254

direction). These proportions are inconsistent with the null hypothesis that cell-level255

signaling behavior is independent between waves (Fisher’s exact test p < 10−24). We256

then measured pairwise consistency in our simulations to compare with our in vitro257

findings. In our simulations, we observed similar behavior, with 37% consistently sig-258

naling, 52% consistently not signaling, and 11% switching (Table 1).259

Observed Simulated

Signaling Fraction 0.43 ± 0.02 0.43 ± 0.012
Signaler Recurrence 0.60 ± 0.1 0.58 ± 0.023
Non-signaler Recurrence 0.78 ± 0.1 0.69 ± 0.023
Consistent Signaling Fraction 0.38 ± 0.03 0.37 ± 0.005
Consistent Non-signaling Fraction 0.50 ± 0.03 0.52 ± 0.008
Inconsistent Fraction 0.12 ± 0.02 0.11 ± 0.004

Table 1: A comparison between individual-cell behaviors observed in vitro and those predicted
by our simulations. All simulated values are for exterior cells only. Signaling fraction and recur-
rence rates are from Zhai et al. (2019). Signaling fraction is the maximum proportion of cells
simultaneously signaling during each oscillation. The recurrence rates are the probabilities that
a daughter cell will exhibit the same signaling state as its parent in a given oscillation. Errors
for observed results are standard errors. Zhai and colleagues do not give error rates for their
calculations, so these are estimates. Errors for all simulated results are standard deviations.
Consistency fractions are based on data from Larkin et. al (2018), with errors estimated as for
a binomially distributed observation. For the signaling fraction and pairwise recurrences, these
are across 20 runs. The rest are across five. Table S1 is an extended version of this table with
data from inner cells and the total population, additional measures, and a description of the
standard error estimation.

In our simulations, we also examined consistency across many waves of signaling260

and across an entire signaling oscillation, not just looking at a snapshot of signaling261

during the peak. Figure 4 shows cellular signaling consistency across 30 oscillations,262

with 5 replications. We found that 50% of cells consistently signaled (> 90% of the263
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time), 44% consistently did not signal (< 10% of the time), and 6% were inconsistent,264

with a smaller mode at 50% participation among cells that signaled inconsistently.265

Note that this adds up to more than the mean of 43% signalers observed at oscillation266

peaks. This is due to the fact that more than 43% of cells signal each oscillation, but267

some signal before and some after each peak.268

269

Figure 4: Histogram of the average number of signaling peaks during which cells signaled. Ap-
proximately 250,000 cells were tracked across 30 oscillations, and each bar in the histogram
represents the number of cells that signaled in a proportion of signaling waves in the corre-
sponding range. Peaks at one and zero indicate that most cells were consistent in signaling or
not signaling (respectively).

270

271

272

273

274275

Finally, Zhai et al. (2019) found that signaling behavior appears heritable—the276

daughter cells of cells that participate in signaling are more likely to participate in sig-277

naling themselves. In our model, the signaling thresholds of individual cells are noisily278

inherited, and this inheritance aligns with the observations of Zhai and colleagues. For279

example, with our selected values for signaling threshold inheritance, approximately280

58% of daughter cells of signaling cells signal themselves, and approximately 69%281

of daughter cells of cells that do not participate in signaling also do not participate,282

close to the observations of Zhai et al. (Table 1). Further exploration of the effect of283

cell-level threshold on signaling appears in Supplement S2 and Figure S5. To main-284

tain comparability to the findings of Zhai and colleagues, we measured concordance285
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of signaling status for each mother-daughter pair during a peak of signaling (though286

different measures are given in Table S1).287

Responses to media perturbations288

B. subtilis biofilm oscillation experiments have taken place within a strictly con-289

trolled environment, where glutamate, as the only nitrogen source in the media, acts290

as a limiting nutrient. Liu et al. (2015) showed that, in such an environment, oscilla-291

tions can decrease or stop in response to an increase in basal glutamate (the level of292

glutamate in the media surrounding the biofilm). Martinez-Corral et al. (2018) further293

found that oscillations would begin at a smaller biofilm size if basal glutamate were294

reduced, and showed that depolarization during biofilm growth can cause a wave of295

signaling. Figure 5 shows the results of simulations intended to replicate these findings296

in our model. By increasing basal glutamate, we weakened oscillations (Figure 5A). By297

drastically increasing potassium to depolarize the biofilm, we caused an initial peak of298

signaling (Figure 5B), and by lowering basal glutamate, we triggered early oscillations299

(Figure 5C).300

Applications and predictions313

Oscillation synchronization between adjacent biofilms314

In addition to reproducing previously observed experimental results, our model can315

make predictions that motivate new experiments. Liu et al. (2017) found that two316

biofilms that are adjacent to each other will shift their oscillations to synchronize, but317

they did not identify a mechanism for this synchronization. Two molecules whose ex-318

ternal concentrations are likely affected by depolarization waves are glutamate and319

potassium. To test whether our model could replicate synchronization and explore its320

explanation, we imposed external oscillations of both glutamate and potassium within321

our simulations. Our model parameters include basal levels of glutamate and potas-322

sium, so we simulated the effect of signaling in an adjacent biofilm by oscillating basal323

glutamate and basal potassium separately (Figure 6). Glutamate oscillations do lead324

the biofilm to synchronize, but only if the magnitude of glutamate oscillation is substan-325

tially greater than we would expect to be caused by a neighboring biofilm (Figure S6).326

In contrast, signaling oscillations change rapidly to be synchronized if basal potassium327

is oscillated even at relatively low magnitude. Our model therefore replicates the syn-328

chronizing behavior observed by Liu et al. (2017) and predicts that it is more strongly329

driven by neighboring biofilms’ effects on potassium than those on glutamate.330
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301

Figure 5: Effects of environmental conditions on signaling. (A) Increasing basal glutamate from
30 mM to 35 mM from ticks 100 to 300 in a biofilm that has been stably oscillating caused a
depression in oscillation magnitude. (B) Depolarizing a growing biofilm by increasing basal
potassium from 8 to 300 mM for five ticks (indicated by the gold band) caused a wave of
signaling. This mimicked the methodology from Martinez Corral et al. (2018). (C) By growing
a biofilm in a reduced-glutamate environment (Gm = 20 mM) we caused oscillations to begin
at a much smaller population size. The radius for this biofilm levels off earlier because the
oscillations will collapse if the biofilm grows to full size (Figure S2). Note that signaling rates
in this figure are for the entire biofilm, not just outer cells, and are therefore sometimes higher
than those reported elsewhere.
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331

Figure 6: A comparison to determine whether the synchronization observed between adjacent
biofilms is affected by (A) glutamate or (B) potassium ions. We oscillate basal glutamate (violet)
by (−0.07, 0.1) mM and basal potassium (gold) by (−0.07, 0.06) mM following the trajectories
of glutamate among exterior cells and external potassium respectively, taken from one of our
simulations. After 400 ticks we accelerated the basal oscillation by a quarter period. Each solid
red line indicates a different simulation. Glutamate oscillations do not appear to have a strong
effect. However, when potassium is changed, the biofilm’s oscillations rapidly shift in response
and remain closely synchronized across replicates.
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Threshold effects341

In our model, the propensity of a cell to signal is determined by its stress threshold.342

If a cell’s internal glutamate falls below its stress threshold, then the cell will signal. The343

results described above were simulated using thresholds distributed over a truncated344

normal distribution, with a mode on the parental-cell threshold, lower bound of 0, upper345

bound of 3, and ff of 1. To explore the effects of this distribution, we tested the signaling346

patterns and internal glutamate of biofilms across a variety of threshold bounds. We347

found that the distribution bounds must fall within a certain range in order for signaling348

to remain stable (Figures 7G, S7). If the maximum bound is too low, then signaling349

occurs, but only at very low levels (Figure 7A and D). There are never enough signalers350

to starve the exterior and trigger a wave of signaling, so only the interior cells signal. If351

the minimum bound is too high, then signaling collapses (Figure 7C and F). Too many352

cells signal simultaneously, and signaling is uncoordinated. All cells become stressed353

enough to signal and at any given time half or more are signaling. Between these354

regimes, the biofilm exhibits stable oscillations (Figure 7B and E).355

It has been proposed that potassium signaling promotes an even distribution of glu-356

tamate across the biofilm, plausibly improving the survival rate of interior cells [25, 34].357

We tested this idea by tracking the distribution of glutamate across cells in simulations358

that either did or did not include signaling behavior. By comparing the mean internal359

glutamate of cells across oscillations, we can see the effect of signaling. Without any360

signaling, exterior cells obtained substantial glutamate, but interior cells did not, with361

more than 10,000 (approximately 20% of all cells) reaching zero glutamate (Figure 7I).362

However, in simulated biofilms that signal, glutamate is much more evenly distributed363

across the biofilm, with zero cells having no glutamate (Figure 7H). Any amount of364

signaling produced substantially fewer starving cells (Figures 7A-C and S8), but only365

stable oscillations resulted in no starved cells. This suggests that potassium signaling366

does promote even distribution of glutamate by slowing growth and allowing glutamate367

to diffuse to interior cells, potentially increasing the stability of the biofilm during peri-368

ods of high metabolic stress.369

Discussion388

We introduced a computational model of metabolic signaling in B. subtilis biofilms.389

Previous models of this behavior have either been small in scope, only able to exam-390

ine local behaviors of cells and omitting nutrients, or large in scope but unable to study391

heterogeneity in cell-level behavior [50, 11]. We have developed a model that bridges392

15

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 21, 2024. ; https://doi.org/10.1101/2024.12.20.629727doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.20.629727
http://creativecommons.org/licenses/by-nc-nd/4.0/


370

Figure 7: The effects of signaling threshold range on oscillations patterns and glutamate distri-
bution. (A) shows the fraction of signalers over 200 ticks for a biofilm with low thresholds [−0.3,
2.6]. (Cells with stress thresholds ≤ 0 never signal; more negative values of the lower bound
lead to more cells that never signal.) (D) displays the corresponding internal glutamate levels
averaged across time for all cells in the biofilm. Seventeen cells starved—had less than 10−5

mM internal glutamate on average after the end of biofilm growth. (B) and (E) display the same
for a range of [0, 3], and (C) and (F) for [0.4, 3.3]. (G) shows a phase diagram of the region
of maximum and minimum signaling thresholds in which we observe stable oscillations. The
region of stable oscillations produces oscillations with a range of more than 20% between the
lowest level of signalers and the highest (eg. (B)). Minimal signaling indicates a low average
level of signaling (as seen in (A)), and the region of uncoordinated signaling produces results
like in (C). The trajectories for the simulations used to produce this phase plot are in Figure S7.
(H) is the time-averaged internal glutamate for the biofilm in (B), dark purple indicating higher
internal glutamate. (I) is the same, except for a biofilm with no signaling, leading to the interior
10,911 cells starving. Versions of (H) for the other two boundary conditions can be found in
Figure S8.

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386387 16

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 21, 2024. ; https://doi.org/10.1101/2024.12.20.629727doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.20.629727
http://creativecommons.org/licenses/by-nc-nd/4.0/


this gap, allowing the examination of the effect of cell-level behaviors on broader sig-393

naling patterns and the concentration of nutrients across the biofilm. We were able394

to replicate both individual-cell and biofilm-scale observations from previous work and395

new experiments, including oscillation and growth patterns, signaling in interior and396

exterior cells, and synchronization between neighboring biofilms. We also found sup-397

port for the hypothesis that signaling results in a more even distribution of glutamate,398

which may extend the lifespan of a biofilm during periods of stress.399

Previous models of B. subtilis signaling have adopted various assumptions about400

the effects of signaling on individual cells and the biofilm. On one hand, the models of401

Prindle and colleagues (2015), Martinez-Corral and colleagues (2018, 2019), and Ford402

and colleagues (2021) encoded assumptions that imply that signaling will increase403

glutamate uptake for the signaling cell both by directly increasing the cell’s ability to404

absorb glutamate, and suppressing glutamate absorption for neighboring cells.405

On the other hand, the models in Larkin et al. (2018) and Zhai et al. (2019) priori-406

tized the observation that hyperpolarized cells experience slower growth [24], although407

more recent work has suggested that the slow growth of hyperpolarized cells may be408

an artifact of ThT staining itself inhibiting growth [14]. Larkin and colleagues hypoth-409

esized signaling to be costly to the individual cell but beneficial to the biofilm as a410

whole, as it promotes a more even distribution of glutamate. Further, they noticed that411

the fraction of cells that signal in a given wave was close to the minimum number of412

cells necessary for the signaling wave to propagate across the exterior of the biofilm as413

predicted by percolation theory [41] (where signalers are randomly distributed among414

non-signalers and a signal is propagated by direct contact between two signaling cells).415

They interpreted this observation as being consistent with the idea that signaling cells416

act altruistically, sacrificing their own growth to promote the integrity of the biofilm.417

In our model, we adopt assumptions similar to those of Prindle et al. (2015) and418

Martinez-Corral et al. (2019) that lead to signaling typically increasing the glutamate419

uptake of the signaling cell. At the same time, we replicate the heterogeneity in sig-420

naling behavior, the fraction of signaling cells, and the individual-level consistency of421

signaling across waves emphasized by Larkin et al. (2018) and Zhai et al. (2019).422

Thus, the individual-cell-level signaling patterns observed by the latter studies—and423

particularly a fraction of signaling cells near the percolation-theory threshold for sig-424

nal transmission—can be attained without an explicit trade-off between individual-level425

growth and group-level glutamate distribution. However, like Larkin et al. (2018) and426

Zhai et al. (2019), our results are consistent with the idea that cell-level heterogene-427
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ity is important. In our model, a particular amount of variation in propensity to signal428

is necessary to achieve synchronized oscillations. In the presence of such variation,429

the cells with the highest propensity to signal hyperpolarize first. Once enough cells430

participate, a wave of signaling occurs, relieving glutamate stress and suppressing431

further signaling. Under this hypothesis, the participating fraction of cells may be near432

the level predicted by percolation theory because once that level is reached, stress is433

relieved and further signaling is not required.434

The observation that a requisite level of variation in signaling propensity is neces-435

sary to produce coordinated waves of signaling in our model raises further questions.436

What could be the source of variation in signaling propensity, and how could this vari-437

ation be maintained? In vitro biofilms observed to participate in signaling are typically438

clonal, so variation in signaling behavior is unlikely to be genetic in well-studied cases.439

Yet signaling behavior is observed to be heritable, in the sense that daughter cells are440

more likely to participate in signaling waves if their mother cell signals. One specula-441

tive possibility is that the regulatory network controlling potassium channel expression442

[27] results in multi-generational epigenetic inheritance of signaling [45, 32]. What-443

ever the source of the variation, on the basis of current observations, if the apparent444

individual-level cost of signaling is in fact an artifact of ThT staining [14], cells with445

a proclivity to signal might be expected to increase in frequency within the biofilm,446

taking up more glutamate than their neighbors, dividing more quickly, and potentially447

transmitting (non-genetically) their elevated propensity to signal to their offspring. De-448

pending on how propensity to signal is realized and transmitted, such a process could449

lead to a decline of variation in propensity to signal, or at least to a decline of heritable450

variation, if continued long enough and if there are no forces generating new heritable451

mutation (analogous to mutation). (Our model contains such a force, as random de-452

viations from a parent cell’s signaling threshold are partially inherited by offspring.) In453

our model, if too many cells signal, oscillations cease to be coordinated, and the distri-454

bution of internal glutamate—while much more even than in the complete absence of455

signaling—leaves some cells at the interior of the biofilm starved of glutamate. Thus,456

our model raises a possibility that is almost the reverse of the one raised by Larkin457

et al. (2018) and Zhai et al. (2019)—if signaling improves glutamate uptake for the458

signaling cell and reduces glutamate uptake for its neighbors, we might think of the459

cells that do not signal, rather than the ones that do, as acting altruistically, giving up460

their access to glutamate so that interior cells are not starved. There remain other461

possibilities—there may in fact be a cost of signaling to the individual, the increase in462

glutamate uptake from signaling may be dependent on the signaling state of a cell’s463
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neighbors, or any of a number of others. In our current implementation, reproduction464

is not dependent on internal glutamate, so we do not explore such questions, but they465

are important for future theoretical and experimental work.466

Another area of future study involves extending our model to predict how other467

processes are altered by emergent electrochemical signaling. For example, the ex-468

pression of some genes has been proposed to be regulated by ion-responsive kinases469

[12]. By coupling cellular potassium flux to gene expression in our model, we could470

predict patterns of gene expression heterogeneity that would arise due to signaling. In471

addition, other cell phenotypes are regulated by nutrient conditions, notably matrix pro-472

duction and sporulation [26]. By modeling the response of genetic circuits that control473

the differentiation into these phenotypes [5], we could predict how the altered distribu-474

tion of nutrients in signaling biofilms in turn alters the distribution of matrix producers475

and spores [46, 40, 6]. Our model may prove valuable to understanding the feedback476

between cellular phenomena and emergent nutrient conditions within biofilms, a topic477

of recent interest [17].478

Overall, our work shows that combining agent-based and diffusion-based models479

can account for the emergence of community-level properties from interactions of indi-480

vidual cells. Doing so allows us to study the effect of signaling behavior on the biofilm481

as a whole, and on individual cells, taking into account heterogeneity among cells.482

That so many of the collective and cell-level signatures of B. subtilis biofilm signal-483

ing can be observed in a simple model hints at a relatively simple set of principles484

governing in vitro signaling behavior.485

Methods486

Model development487

Our model is a network agent-based model, where cells are simulated as individual488

“agents,” each with their own set of rules for interacting with each other and their envi-489

ronment. Cells are placed on a network, where each cell is on a node and can interact490

with its neighbors. In the context of biofilms, neighbors are adjacent cells. During each491

unit of time (a “tick,” representing 1.2 minutes in this model) every cell performs actions492

according to their governing equations, and the environment is updated. We model the493

biofilm as hexagonal, matching observations by Larkin et al. (2018) that cells in these494

biofilms have a modal value of 6 immediate neighbors.495
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To determine which interactions to include and how cells should behave, we fol-496

lowed the model from Martinez-Corral et al. (2019). Their model is an ODE system497

describing a one-dimensional cross-section of a B. subtilis biofilm. We simplify their498

equations to be tractable for an agent-based model, leaving us with 4 equations (S1,499

S3-S5) that describe potassium uptake and release, glutamate uptake and consump-500

tion, membrane potential, and the interactions between potassium, glutamate, and501

membrane potential.502

Initialization and growth503

To initialize the model, we “grow” the biofilm, drawing each layer from the previous504

one. We begin by making a hexagon of 7 cells (6 outer and one center cell). These505

have signaling thresholds (the level of internal glutamate they can drop to before they506

will signal) randomly drawn from a uniform between 0 and 3. We then grow the biofilm507

to a radius of 50 cells while all external variables remain static: we ignore diffusion,508

metabolism, and signaling during this period. Each tick we randomly select one-fortieth509

of the cells on the perimeter of the biofilm network, with replacement, to reproduce.510

Each daughter cell (j) is a clone of its parent (k), except that its signaling threshold is511

drawn from a truncated normal with bounds of 0 and 3 in most of the work reported512

here, and with ff of 1 and — equal to the parent’s signaling threshold. The cell is placed513

in one of the empty nodes adjacent to the parent, with probability proportional to the514

number of neighboring cells each empty node has.515

Once this initial phase of growth is complete, we begin to simulate potassium and516

glutamate behavior. Each tick, we update potassium via equation S4, simulating ab-517

sorption, signaling, and diffusion. Simultaneously, we update glutamate via equations518

S1 and S3, simulating metabolism and absorption and using the algorithm described519

in Supplement S3.1 to approximate diffusion. We calculate the change in membrane520

potentials for each cell based on the results from the potassium calculations (equation521

S5). We continue growth at a rate of one-fortieth of the perimeter per tick until the522

network occupies 75% of the maximum size of ∼68,000 cells.523

Model validation524

We validated our model by replicating previous experiments by other researchers.525

As a control, we ran the model 20 times under default conditions (using the parameters526

given in Table S2). Each run recorded a variety of data, with 5 of the runs recording527

individual signaling and glutamate data for every cell during each tick. These runs528
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were used to gather summary statistics including signaling rate, recurrence rates and529

growth trajectories.530

Perturbations531

To test the effect of increased glutamate, basal glutamate was increased to 35 mM532

from 30 mM for 200 iterations in a biofilm that had already been growing for 2600533

iterations. To test potassium shock, we increased basal potassium from 8 mM to 300534

mM for 5 ticks in a growing biofilm, beginning at 750 ticks. We also simulated a biofilm535

with basal glutamate at 20 mM, limiting its growth to a radius of approximately 90 cells.536

The results from these perturbations are shown in Figure 5.537

Oscillation synchronization538

To explore the effect of a neighboring biofilm signaling in proximity to our simulation,539

we oscillated basal glutamate and potassium. To replicate the magnitude of change540

a signaling biofilm would cause in the surrounding media, we used the trajectory of541

external potassium and that of internal glutamate among exterior cells from a normal542

run of our model. These oscillated around their means by (−0.35, 0.32) mM and543

(−0.36, 0.48) mM respectively. We then scaled these by 0.2 to represent the effect544

of distance, for a final oscillation of (−0.07, 0.06) mM for potassium and (−0.07, 0.1)545

for glutamate. We oscillated each for 400 ticks, then skipped the oscillating molecule546

forward by a quarter period and simulated for another 400 ticks. These results are547

given in Figure 6. We also replicated these with more extreme scaling. Glutamate548

was oscillated by 200% scaling (−0.72, 0.96) and potassium by 5% (−0.018, 0.016).549

These results are reported in Figure S6.550

Experiments551

Biofilms experiments were performed in a microfluidic device (CellASIC ONIX2552

B04-F plate, Millipore Sigma, Burlington, MA, USA) as described in previous work553

[34, 20]. Cells (Bacillus subtilis strain NCIB3610, Bacillus Genetic Stock Center) were554

streaked on LB agar plates, incubated overnight at 37◦C, grown in liquid LB medium,555

resuspended in liquid msgg medium for additional growth, and loaded into the mi-556

crofluidic plate. The composition of msgg was 5 mM potassium phosphate (pH 7.0),557

100 mM MOPS (pH 7.0), 2 mM MgCl2, 700 —M CaCl2, 50 —M MnCl2, 100 —M FeCl3,558

1 —M ZnCl2, 2 —M thiamine HCl, 0.5% (v/v) glycerol and 0.125% (w/v) monosodium559

glutamate. After cell loading into the microfluidic plate, biofilms were grown under flow560
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at 30◦C and Thioflavin-T (ThT) was added to the media for imaging cellular membrane561

potential after 12 hours of growth [34]. Biofilms were imaged in phase contrast and562

fluorescence with a 4X, 0.13 NA objective on an Olympus IX-83 microscope (Evident563

Scientific, Waltham, MA, USA).564

Time traces of ThT were extracted from time-lapse movies using a machine learning-565

based segmentation approach implemented in Python, which applies a Random For-566

est classifier, provided by the Scikit-learn library, trained on manually segmented biofilm567

images to perform segmentation using the ThT fluorescence channel. In the ThT568

traces of Figure 3, we subtracted slow accumulation of ThT post hoc to make oscilla-569

tion traces stationary.570

Pairwise signaling consistency calculations given in Tables 1 and S1 were calcu-571

lated by tracing the signaling states of approximately 300 cells across a 2 hour period572

that included two oscillations.573

Code availability574

Code used to generate the simulations and figures that appear in this manuscript575

is available at https://github.com/Muldero/AgentBasedBsubtilis.576
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