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Deep learning model 
for classification and bioactivity 
prediction of essential 
oil‑producing plants from Egypt
Noha E. El‑Attar1*, Mohamed K. Hassan2, Othman A. Alghamdi3 & Wael A. Awad4,5

Reliance on deep learning techniques has become an important trend in several science domains 
including biological science, due to its proven efficiency in manipulating big data that are often 
characterized by their non-linear processes and complicated relationships. In this study, Convolutional 
Neural Networks (CNN) has been recruited, as one of the deep learning techniques, to be used in 
classifying and predicting the biological activities of the essential oil-producing plant/s through their 
chemical compositions. The model is established based on the available chemical composition’s 
information of a set of endemic Egyptian plants and their biological activities. Another type of 
machine learning algorithms, Multiclass Neural Network (MNN), has been applied on the same 
Essential Oils (EO) dataset. This aims to fairly evaluate the performance of the proposed CNN 
model. The recorded accuracy in the testing process for both CNN and MNN is 98.13% and 81.88%, 
respectively. Finally, the CNN technique has been adopted as a reliable model for classifying and 
predicting the bioactivities of the Egyptian EO-containing plants. The overall accuracy for the final 
prediction process is reported as approximately 97%. Hereby, the proposed deep learning model could 
be utilized as an efficient model in predicting the bioactivities of, at least Egyptian, EOs-producing 
plants.

Recently, Artificial Intelligence (AI) has become one of the vigorous science that infiltrated a huge number of 
modern life issues such as chemical engineering, water treatment, and biological domain like genomic and prot-
eomic studies which are especially characterized by complicated and non-linear processes1. Deep learning is one 
of the most promising branches of artificial intelligence with proven power in taking the raw features extracted 
from the extremely large data sets, such as the data produced from genomics, chemistry, and pharmaceutical 
laboratories. Processing these data result in inferred patterns and training process-based predictive models2.

Essential Oils (EOs) are biologically effective organic compounds extracted from different parts of the aro-
matic plants such as flowers, leaves, and barks to name a few3. Due to their wide range of biological activities, 
these natural products are widely used in complementary and alternative medicine (CAM). Replacing the inor-
ganic chemistry by natural alternatives is still hot topic in recent biological area of research. This is because the 
inorganic chemical products may bereave harmful influences when used in health-related industries, such as 
medicine, pharmaceutics, cosmetics, food, and beverages. Therefore, the modern researches head to find the 
alternative natural products, including EOs, due to their greater ability to adapt to alive organs of the human 
body with, sometimes, limited side effects4.

Generally, the bioactivity of the EO-producing plant depends on the chemical structure and EOs content, 
which determine the overall bioactivity of such plant. EOs are, in fact, composed of different combinations of low 
nuclear weight natural blends with complete organic locomotion. According to their structure, these dynamic 
blends can be categorized into some significant pools (e.g. hydrocarbons, oxygenated mixtures, and sulfur or 
conceivably nitrogen). These mixes’ pools are the mystery key for the biological activity of each EO3.
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The biological activities of the EOs may include antiseptics, antimicrobials, antifungals, antioxidant, antitu-
mor, antivirals, and/or anti-inflammatories. Moreover, these activities vary according to the chemical constitu-
tion, which may differ from plant to another according to their geographic location, agriculture conditions, 
climatic or seasonal changes4. Noteworthy, the evaluation of the EOs’ bioactivities cannot be constantly credited 
to one single compound in the EOs mixture. The genuine connections between the EO’s cocktail and its biological 
activities are highly non-linear, especially when considered across variable pools of chemical structures. Hence, 
reliance on traditional techniques in predicting the biological impact for such activity data with this variety of 
structures is a troublesome issue5. Therefore, developing a deep learning-based computational model to categorize 
and predict the biological activities of EOs-producing plants based on their chemical construction’s variations, 
without recourse to in-vitro experiments, could save time and cost.

Machine learning (ML) algorithms, especially Artificial Neural Networks (ANN), have been proposed to 
contribute in solving several biological issues in the recent decades6. ANN, in general, can be depicted as a 
numerical model of a particular structure, comprising of some of the single processing components (i.e. nodes 
and neurons), constructed between inter-connected layers. Each entire layer is mainly composed of hidden 
neurons which are responsible for transforming the input values and sending the outputs to the other associ-
ated neurons1. Recently, due to the expansion of the biological information, the fully connected neural network 
would have a huge number of parameters, which needs full processing inside the network layers to deliver the 
desired output. Deep learning approaches have proven their efficiency in the applications whose data are char-
acterized by their large quantities, high dimensionality, and highly structured. Thus, deep learning approaches 
are widely used in image processing due to the nature of the image which contains many thousands of variables 
(pixels) that can be clearly grouped into well- defined objects6. However, deep learning approaches are no longer 
limited to image processing domain, where it is recently considered an attractive solution for some types of text 
classification such as DNA sequences classification problems7. From this standpoint, deep learning can be an 
efficient learning approach for dealing with the complex composition of the chemical compounds and their 
interrelationships with biological activities.

One of the efficient models for the deep learning is the Convolutional Neural Network (CNN). The CNN is 
characterized by two novel types of layers: convolution and pooling layers. These layers are based on using filters 
to convolve the range of the input data to a smaller range, detecting important or specific parts within this range8. 
The CNN usually consists of Input Layer , Convolution Layer (i.e. produces a matrix of dimension smaller than 
the input matrix), ReLU or Rectified Linear Unit . ReLU is mathematically expressed as Max(0, x) (i.e. it means 
that any number below 0 is converted to 0, while any positive number is allowed to pass as it is), Max pooling 
(i.e. passes the maximum value from amongst a small collection of elements of the incoming matrix to the out-
put) and the final output layer (i.e. a fully-connected neural network layer, which makes the output based on the 
activation function), as shown in Fig. 1      9.

This study seeks to classify and predict the biological activities of the Egyptian essential oil-producing plants 
based on their EOs content as an experimental case study. The classification is implemented based on two algo-
rithms: Multiclass Neural Network (MNN) and Convolutional Neural Network (CNN), to evaluate the efficiency 
of both machine and deep learning techniques. The effective algorithm is adopted in developing a biological 
activity prediction model EOs-producing cases cultivated in Egypt. The research skills in this study are organ-
ized as follow; first, presenting the results obtained from implementing the two algorithms; MNN as a machine 
learning algorithm and CNN as a deep learning algorithm, when applied on the Egyptian essential oils dataset. 
Next, these results were discussed and evaluated for the existing dataset and the new untested datasets. Finally 
the methodologies followed in this work are discussed.

Results
Using MNN‑ and CNN‑based algorithms to classify the plants’ EOs bioactivity.  The results 
recorded from the classification process for both MNN and CNN algorithms are summarized in Tables 1 and 2. 
In the CNN and MNN algorithms, the training processes show an overall accuracy of 100% and 99.2%, of correct 
classification of essential oils activity, respectively. Whilst, for the testing stage, the overall accuracy achieved by 
CNN and MNN is 98.13% and 81.88%, respectively.

Figure 1.   Standard Convolutional Neural Network Architecture usually consists of an input layer, convolution 
layer, Max pooling and the final fully-connected neural network layer which gives the output based on the 
activation function9.
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The confusion matrix is the most suitable way to validate the classification performance. Here, the confu-
sion matrix of the MNN and CNN classification is presented in Table 1. It consists of four outcomes of binary 
classifiers: True Positive, False Positive, True Negative, and False Negative. Also, accuracy, precision, recall, and 
F1 score are different metrics that are used for evaluating the classification efficiency based on the values of the 
confusion matrix10. The four metrics for the bioactivities classes have been calculated and documented in Table 2.

Using a CNN‑based algorithms to build a prediction model for the EOs bioactivity.  In accord-
ance with the completion of the classification process, the CNN algorithm show high accuracy for the training 
and testing processes. This is due to its capabilities in dealing with the huge number of data and focusing on the 
high impact features in the dataset. Thus, the biological activity prediction model has been built based on the 
CNN proposed algorithm. The overall accuracy for predicting the biological activities for previously unknown 
Egyptian essential oils components has been recorded as approximately 97%. The concluded metrics values 
and the discrimination outcomes of the proposed CNN prediction model are reported in Tables 3 and 4, and in 
Fig. 2.

Table 1.   The confusion matrix values for MNN and CNN algorithms in testing stage.

Bioactivity class
Classifiers

True positive True negative False positive False negative

MNN CNN MNN CNN MNN CNN MNN CNN

Antiviral 50% 97.7% 94.4% 98.2% 5.6% 1.8% 50% 2.3%

Antiwormal 100% 100% 98.3% 98.5% 1.7% 1.5% 0 0%

Anti-inflammatory 90% 100% 80% 100% 20% 0% 10% 0%

Anticancer 85.7% 94% 96.2% 93.3% 3.8% 6.7% 14.3% 6%

Antioxidant 75.9% 98.4% 80.6% 98.6% 19.4% 1.4% 24.1% 1.6%

Antimicrobial 78.8% 97.4% 66.7% 97.3% 33.3% 2.7% 21.2% 2.6%

Antifungal 81.3% 98% 86.4% 99.2% 13.6% 0.8% 18.8% 2%

Cytotoxic activity 58.3% 96.6% 93.8% 98.7% 6.3% 1.3% 41.7% 3.4%

Table 2.   The accuracy and relevance metrics for MNN and CNN algorithms in testing stage.

Bioactivity class
Metrics

Average 
accuracy Precision Recall F1 score

MNN CNN MNN CNN MNN CNN MNN CNN

Antiviral 0.72 0.99 0.9 0.98 0.5 0.99 0.64 0.99

Antiwormal 0.99 0.99 0.98 0.99 1 1 0.99 0.99

Anti-inflammatory 0.85 1 0.82 1 0.9 1 0.86 1

Anticancer 0.9 0.94 0.96 0.93 0.86 0.94 0.9 0.94

Antioxidant 0.78 0.99 0.8 0.99 0.76 0.98 0.78 0.98

Antimicrobial 0.73 0.97 0.7 0.97 0.79 0.97 0.74 0.97

Antifungal 0.84 0.99 0.86 0.99 0.812 0.98 0.83 0.99

Cytotoxic activity 0.76 0.98 0.9 0.99 0.58 0.97 0.71 0.98

Table 3.   The confusion matrix values for the predicting model.

Bioactivity class
Classifiers True positive True negative False positive False negative

Antiviral 98% 96.3% 3.7% 2%

Antiwormal 100% 98.3% 1.7% 0%

Anti-inflammatory 100% 100% 0% 0%

Anticancer 97% 94.7% 5.3% 3%

Antioxidant 100% 95% 5% 0%

Antimicrobial 94% 93.5% 6.5% 6%

Antifungal 100% 96.6% 3.4% 0%

Cytotoxic activity 94% 93.1% 6.9% 6%
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Discussion
Adopting the idea of using AI, especially machine learning and deep learning algorithms, has become a vital 
topic in medical and biological problem solving. EOs are considered as one of the well-known natural products 
which have medical-relevant use and biological-defense activities against several types of viruses, bacteria, and 
cancer11. However, the lack of the complete information about their intrinsic chemical variability and their func-
tion makes it difficult to confirm its consistent activities4.

Many researchers have adopted the AI in EO’s researches aiming to reduce the in-vitro procedures and to 
make reasonable predications of the experiment results. For instance, Ragno et al. (2020) have developed an 
unsupervised machine learning algorithm to cluster the EOs and to identify the EOs that have strong ability in 
inhibiting bacterial growth of all bacterial strains12. Moreover, Artini et al. (2018) have exhibited a binary clas-
sification model based on ML to classify the essential oils activities from different Mediterranean plants against 
pseudomonas aeruginosa13. Similarly, Daynac et al. (2015) have used the fast artificial neural networks (FNN) 
to predict the antimicrobial activity of 49 EOs against four types of pathogens. The FNN algorithm predicted 
more than 70% of the antimicrobial activities within a 10 mm maximum error range4.

Egypt is one of the biggest countries in the world in exporting the high-quality raw material of more than 
150 medicinal and aromatic plants. The variety and massiveness of aromatic plant species in Egypt, stemming 
from the climatic conditions in its environment, may stimulate the accumulation of high concentrated secondary 
metabolites. This makes the Egyptian aromatic plants are considered between the most promising sources for 
many biologically active compounds14. Thus, there is an imperious need to extend the scientific knowledge base 
of the aromatic species in Egypt by the modern AI methodologies using machine and deep learning.

The experimental study, here, is applied on the Egyptian case for the essential oils. The data were collected 
from several peer researches article including in-vitro experiments. For each case, the in-vitro experiment may 
only focus in analyzing the chemical composition of the EO, or apply one or more of EOs on a specific infection 
type (e.g. bacteria, viruses, or cancer). This encouraged the authors, here, to experiment the machine and deep 
learning algorithms in predicting the biological activities for some of the Egyptian essential oils-producing plants. 
The training and testing processes are conducted on a novel dataset of EOs-producing plants from Egypt, that 
are collected and manipulated by authors from peer reviewed scientific researches11–55. The resulting dataset 
consists of a sample of one hundred and twenty (120) plants. The total chemical compounds extracted from 
this dataset are 573 compounds. In the proposed experimental case, the biological activities of the essential oils 
are classified according to eight categories of bio-activities (anticancer, antioxidant, antimicrobial, antifungal, 
antiviral, anti-wormal, anti-inflammatory, and cytotoxic activities).

In order to classify the EO’s according to their biological activities, two classification models rely on the super-
vised learning are constructed; the first one is based on the Multiclass Neural Network (MNN) (i.e. the Multiclass 
N.N module in Azure). The second model depends on the Convolutional Neural Network (CNN) and it has 
been implemented by Python and executed as a module on the open source Azure Machine learning studio56. 
Figure 3 presents an inclusive flowchart for the proposed methodology stages. The two proposed supervised 
learning algorithms are applied on nearly 68,760 values that represent the percentage of chemical compounds 
concentrations in the EO’s dataset on study. The training process for both MNN and CNN algorithms is done on 
60% of the dataset, whilst the remaining 40% is divided between the testing and the prediction processes. That 
means the actual size for the training, testing, and validation processes are 45,840, 11,460, and 11,460 values, 
respectively. Figure 4 shows a sample for the EOs dataset stored in azure format.

In the proposed MNN algorithm, the training model runs a sequence of binary classifiers and trains each to 
decide a separate classification outcome according to the softmax activation function results. The architecture of 
the proposed MNN is a fully connected layers network with one hidden layer contains 50 nodes, and an output 
layer with 8 nodes each one represents an output class. The outputs of the hidden layer Ohi and the output layer 
Ok are calculated by Eq. 1 and 3 respectively57.

where

(1)Ohi =
1

1+ e−zhi
∀i = 1, . . . . . . , 50

Table 4.   The accuracy and relevance metrics for the predicting model.

Bioactivity class
Metrics Average accuracy Precision Recall F1 score

Antiviral 0.97 0.96 0.98 0.97

Antiwormal 0.99 0.98 1 0.99

Anti-inflammatory 1 1 1 1

Anticancer 0.96 0.95 0.97 0.96

Antioxidant 0.98 0.95 1 0.98

Antimicrobial 0.94 0.94 0.94 0.94

Antifungal 0.98 0.97 1 0.98

Cytotoxic activity 0.94 0.93 0.94 0.94
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Figure 2.   The discrimination outcome of the developed CNN for predicting the biological activities for a new 
essential oils’ dataset.
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where

In general, MNN proves its efficiency when the total amount of data is limited. Hereby, more significantly, 
another efficient classification model based on the CNN is created. The proposed CNN is developed in such a 
way to handle the ambiguity and inconsistency that appeared in the chemical compositions values which could 
not be fully treated with the MNN. One of the mysterious characteristics in the essential oil(s) is that, they may 
contain some chemical compounds that have no biological influence activity, and this may be due to the incon-
sistency among these compounds. Thus, a number of compounds/oils that have no effect in a certain EO’s pool 
may be found, but they may show a clear influence if they are found with other compounds in another EO pool58.

The problem in this study is categorized as multi-label classification problem, where the essential oils can have 
multiple activities (i.e. outputs) at the same time. Thus, in regards with the proposed dataset, the CNN could 
produce eight output labels for each essential oil (i.e. the eight biological activities), where an essential oil may 
have all of these activities or some of them. The output labels have been encoded in the form of a one-hot encoded 
vector with multiple ones in it, as a special form of the one-hot encoding method. For instance, the Essential 
oil “Pluchea dioscoridis” is known with its activities as antimicrobial, antioxidant, and anticancer, so its label 
will be [0,0,0,1,1,1,0,0] for the target vector [Antiviral, Antiwormal, Anti-inflammatory, Anticancer, Antioxidant, 
Antimicrobial, Antifungal, and Cytotoxic Activity]. Table 5 shows a sample of the CNN training results on the 
dataset where it documents the score probabilities that outcome from the sigmoid activation function. These 
score values refer to predicted biological activities labels for a number of Essential oils.

(2)Zhj =
∑n

j=1
xj .wj + b∀j = 1, . . . . . . , n

(3)Ok =
eOhk

∑L
k=1e

Ohk
∀k = 1 . . . . . . 8

(4)Ohk =
∑50

i=1
ohi .wi

Figure 3.   An inclusive flowchart for the proposed methodologies stages.

Figure 4.   Sample for the Essential oils dataset imported by Azure. The Picture is  taken from the Azure 
machine learning studio (classic) platform, https​://studi​o.azure​ml.net/.

https://studio.azureml.net/
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Conclusion
Developing a computational model based on deep learning for classifying and predicting the EOs’ biological 
activities without resorting to in-vitro experiments is the challenge of this study.

Due to the efficacy of the EOs as antiseptics, antimicrobials, antifungals, antioxidant, antitumor, antivirals, 
and anti-inflammatories, they have a great attention from the health concerns industries, such as medicine, phar-
maceutics, cosmetics, and others. However, there is a significant challenge in deciding the relevance between the 
chemical compounds that form the EO and its biological activities through the traditional in-vitro experiments. 
In this study, two classification models are implemented to classify and predict the biological activities of 120 
types of Egyptian essential oils as an experimental study case. This experiment has been implemented based on 
two types of supervised learning algorithms, Multiclass Neural Network and Convolutional Neural Network 
in order to evaluate the efficiency of both machine and deep learning techniques. The comparison between the 
accuracy and relevance metrics for both MNN and CNN algorithms in the testing stage showed that the CNN 
outperformed the MNN as it scored an accuracy rate 98.13%, while the MNN recorded 81.88%.

Method
The model of the CNN, which is utilized in this experiment, comprises of a three-layers fully connected network 
with two convolution layers and two pooling layers followed by one hidden layer as shown in Fig. 5. The input 
information for the proposed CNN is a 2D matrix of [120 × 573] that represents “the number of essential oils and 
the numbers of their chemical compounds, respectively”. The following sequential layers start with a convolu-
tion layer which applies a convolutional process to the input matrix. The output of each node in the convolution 
layer is the result of a convolution operation by each filter. The next layer is the pooling layer which is used to 
compress information and generalize features to reduce the overfitting of the training data. In this experiment, 
the local max-pooling, which produces the maximum value from small divided regions in the input matrix, is 
used. The convolution and pooling outputs are calculated by the following equation;

where Ol
k is the output vector of the lth layer with kth kernel, alk is the input vector, wl

k is the weight of the 
convolution/pooling filter, and blk is the bias coefficient.

During the CNN learning process, seven hyper-parameters are tuned (convolution filter size (k), number of 
filters (f), stride size (s), pooling size (p), number of nodes in the hidden layer, and the activation function). The 

(5)Ol
k =

∑

alk ∗ w
l
k + blk

Table 5.   A sample of the Score Probabilities for the CNN Training Process.

Eos name
Score probabilities Antiviral Antiwormal Anti-inflammatory Anticancer Antioxidant Antimicrobial Antifungal Cytotoxic activity

Citrus deliciosa var. tangarina—fina clem-
entine—peels 0.9888 0.0014 0.0032 0.0001 0.9854 0.9981 0.9983 0.9966

Citrus deliciosa var. tangarina—fina clem-
entine—leaves 0.9999 0.9986 0.0005 0.0003 0.9992 0.9984 0.9983 0.0013

Citrus deliciosa var. tangarina—Nour 
Clementine—peels 0.9465 0.0022 0.3243 0.0002 0.9894 0.9854 0.9684 0.7711

Citrus deliciosa var. tangarina—Nour 
Clementine—leaves 0.9999 0.0013 0.0641 0.0002 0.9995 0.9997 0.9996 0.0003

Citrus deliciosa var. tangarina—Spinosa 
Clementine—peels 0.8294 0.0795 0.0001 0.0003 0.8291 0.9294 0.9993 0.6654

Citrus deliciosa var. tangarina—Spinosa 
Clementine—leaves 0.9977 0.0015 0.0320 0.0084 0.9968 0.9982 0.9961 0.0049

Citrus deliciosa var. tangarina—Thornless 
Clementine—peels 0.9991 0.0007 0.0931 0.0034 0.9987 0.9999 0.998 0.2611

Citrus deliciosa var. tangarina—Thornless 
Clementine—leaves 0.9999 0.0020 0.0134 0.0082 0.9999 0.9998 0.9996 0.0007

Callistemon comboynensis 0.9975 0.0037 0.1375 0.0011 0.9947 0.9955 0.9945 0.0031

Cupressus sempervirens L
Semperuirens L 0.8982 0.0011 0.0004 0.0012 0.9947 0.9967 0.0002 0.0035

Cuminum cyminum 0.8923 0.9747 0.9384 0.0005 0.9297 0.9997 0.7909 0.0001

Ocimum basilicum L. (sinai ) 0.0004 0.0005 0.0883 0.9977 0.9991 0.9990 0.9089 0.0003

Tagetes minuta L 0.4107 0.0011 0.0034 0.0253 0.5146 0.7167 0.6179 0.1418

Achillea fragrantissima 0.0004 0.0003 0.0003 0.0007 0.0008 0.0013 0.0001 0.9985

Pluchea dioscoridis 0.0052 0.7622 0.0054 0.9863 0.9931 0.9991 0.8932 0.9915

Myrtus communis—leaves 0.0022 0.9887 0.0554 0.0018 0.0003 0.0021 0.0023 0.0028

Myrtus communis—fruits 0.0007 0.6754 0.0001 0.0005 0.0013 0.0023 0.0011 0.0004

Eugenia supraxillaris—leaves 0.001 0.9998 0.3451 0.0075 0.0050 0.0075 0.0065 0.0032

Eugenia supraxillaris—fruits 0.9955 0.7865 0.0003 0.0003 0.9995 0.9934 0.0273 0.8539



8

Vol:.(1234567890)

Scientific Reports |        (2020) 10:21349  | https://doi.org/10.1038/s41598-020-78449-1

www.nature.com/scientificreports/

numbers of iterations for the learning process are specified around 100. Table 6 displays the values of the assumed 
hyper-parameters and the output layer dimensions. The individual layer dimension can be calculated by8;

Finally, the sequence of the convolutional and pooling layers ends with a fully connected feed-forward neural 
layer that uses a “sigmoid” activation function. The sigmoid function is selected in the proposed CNN imple-
mentation because its function depends mainly on converting each score of the final node to a probability 
value between 0 to 1, independent of what the other scores are. So, the input could be classified into multiple 
independent classes (Suppl Information).

Data availability
The complete data set is available in the supplementary file (sup-file). The dataset is formatted to be suitable to 
be processed by Azure ML modules.
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