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As smoking rates decrease, proportionally more cases with lung adenocarcinoma occur in never-smokers, while aberrant DNA
methylation has been suggested to contribute to the tumorigenesis of lung adenocarcinoma. It is extremely difficult to distinguish
which genes play key roles in tumorigenic processes via DNA methylation-mediated gene silencing from a large number of
differentiallymethylated genes. By integrating gene expression andDNAmethylation data, a pipeline combinedwith the differential
network analysis is designed to uncover driver methylation genes and responsive modules, which demonstrate distinctive
expressions and network topology in tumors with aberrant DNA methylation. Totally, 135 genes are recognized as candidate
driver genes in early stage lung adenocarcinoma and top ranked 30 genes are recognized as driver methylation genes. Functional
annotation and the differential network analysis indicate the roles of identified driver genes in tumorigenesis, while literature study
reveals significant correlations of the top 30 genes with early stage lung adenocarcinoma in never-smokers. The analysis pipeline
can also be employed in identification of driver epigenetic events for other cancers characterized by matched gene expression data
and DNA methylation data.

1. Introduction

As a leading cause of death worldwide, lung cancer is mainly
attributed to smoking in bothmen andwomen [1, 2], of which
the most common histological subtype is adenocarcinoma.
However, as smoking rates decrease, proportionally more
cases occur in never-smokers [3]. Lung adenocarcinoma in
never-smokers shows obvious distinctions in clinical and
molecular mechanism to those cigarette smoking [4]. Both
genetics and epigenetics in cancer genomes have been sug-
gested to account for the development of lung adenocarci-
noma.

As one of the vital epigenetic mechanisms, DNA methy-
lation regulates gene expression without alterations in

DNA sequence [5, 6] and plays key roles in X chromo-
some inactivation, genome stability, chromatin structure,
embryonic development, differentiation, and maintenance of
pluripotency in normal somatic cells [7, 8]. Genome-scale
methylation-profiling techniques have confirmed the exis-
tence of widespread aberrations ofDNAmethylation patterns
in human cancer genome [9–12]. Studies ofDNAmethylation
have suggested that both global DNA hypomethylation and
gene-specific hypermethylation may contribute to the initia-
tion and progression of tumorigenesis, as well as gene body
methylation [13–15]. It is challenging but of great significance
to distinguish genes whose methylation changes are crucial
in cancer occurrence, progression, or metastasis from genes
whosemethylation changesmerely have effects on the process
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of tumorigenesis in cancer research and therapy [13]. Unlike
somatic mutations in the genome, DNA methylation is
inherently reversible and serves as potential drug targets in
cancer intervention [16, 17].

Numerous studies have focused on discovering genes
whose DNA methylation potentially plays key roles in
tumorigenesis of lung adenocarcinoma, including integration
of genome-scale DNA methylation and gene expression [18–
21]. The main idea of these works is to search genes whose
gene expression fluctuations are highly correlated to DNA
methylation changes. However, there is a deficiency derived
on the complexity of the gene expression regulation. Both
genetic and epigenetic alterations can contribute to gene
expression as well as other transcriptional factors in sophis-
ticated manners in complex diseases [22, 23]. In tumors, a
differential gene expression may be induced by an aberrant
DNA methylation in the promoter of the gene but also
may be a consequence regulated by its upstream genes in
regulatory mechanisms. These appeal to a great attention in
uncovering driver DNAmethylations, which playmajor roles
inmethylation-associated gene silencing and drivemalignant
transformation [5, 13]. In this work, we refine the generalized
description of drivermethylation as two properties. (1)Driver
DNA methylation should induce distinctive expressions in
tumors with differential DNA methylation (T-DM) when
compared to expressions in matched adjacent nontumor
(normal) and tumors with nondifferential DNA methyla-
tion (T-NDM), and (2) driver methylation should induce a
distinct regulation module in the network perspective. The
first property guarantees the major role of DNA methylation
in the regulation of gene expression, while the second
property guarantees the functional effects of driver genes on
tumorigenesis.

Focusing on genes differentially expressed among
matched adjacent nontumors (normal), tumors with
aberrant DNA methylation (T-DM), and tumors without
aberrant DNA methylation (T-NDM), we integrate genome-
wide DNA methylation data and gene expression data to
uncover driver methylation events in never-smokers in early
stage lung adenocarcinoma. Differential network analyses
show significant changes of DNA methylation-responsive
modules in network topology across normal, T-DM, and
T-NDM, which imply potential mechanisms of identified
driver genes underlying the tumorigenesis.

2. Materials and Methods

2.1. Data Sets. Both the DNA methylation data and gene
expression data are downloaded fromNCBIGene Expression
Omnibus (GEO) with accession number GSE32867 [18].
The series contains 59 samples with paired genome-scale
DNA methylation profiling and gene expression. Stage I
and stage II are merged as early stage and stages III-IV
are labeled with late stage [18]. After removing noisy data
[18], 22 samples are labeled with “never smoking” and “early
stage” simultaneously. Paired DNA methylation data and
gene expression data of these 22 samples are collected to
further analysis. Probes in gene expression data are firstly

mapped to Entrez gene ID and expression values sharing
same Entrez gene IDs are averaged among samples.

2.2. Schematic Overview of the Analysis Pipeline. The
schematic overview of the analysis pipeline is shown in
Figure 1, and detailed procedures are described in the
following sections.

2.2.1. Candidate Driver Gene Selection. Figure 1(a) shows a
brief schematic overview of this procedure. The difference
matrix is firstly created to measure differences of beta values
of DNA methylation between tumor and normal. The kernel
probability distribution with normal smoothing function is
used to estimate the probability density distribution for each
probe in the difference matrix (Figure 1(a)). The hypothesis
is that the differences of beta values for given probes come
from distributions with the mean 0 and unknown variances.
The cumulative density function (CDF) is used to estimate
the probability of a beta value falling within given interval.
Hypermethylation and hypomethylation are determined by
the upper bound CDF > 0.95 and the lower bound CDF <
0.05, respectively. For each probe, tumors are partitioned into
two groups, tumors with differential methylation group (T-
DM) and tumors without differential methylation group (T-
NDM).

Then, the two-sample 𝑡-test is used to evaluate differential
expression under conditions [24], and 𝑝 values are adjusted
by the procedure introduced by Storey [25]. The mapping
from DNA methylation to gene expression is performed
by shared Entrez gene ID. Probes remain if the mapped
genes are differentially expressed in T-DMwhen compared to
normal and T-NDM (adjusted 𝑝 value < 0.05), which implies
that the differential methylation of given probes in T-DM is
more likely to induce significant expression changes. Probes
mapping to same genes are removed if hypermethylation and
hypomethylation coexist in more than 5 samples. Then sam-
ples in T-DMs and T-NDMs merge, respectively, by shared
Entrez gene ID and serve as T-DM and T-NDM of the gene.

We then search for genes whose expressions are highly
discriminative and consistent in T-DM when compared
to normal and T-NDM. Many types of statistics, such as
Wilcoxon score, Pearson correlation coefficient (PCC), or
mutual information (MI), could be used to score the relation-
ship between gene expression and class labels, and a 𝑇-score
method is used in this work [26]. For a given gene, let 𝑎 be
the gene expression levels across samples with class 𝑐 and the
discriminative score 𝑠(𝑎, 𝑐) is defined as the t-test statistic. To
determinewhether the discriminative level of the gene among
groups is consistent, we permute the class 𝑐 by 1000 times and
obtain a background distribution of the discriminative scores
𝑆
󸀠
(𝑎, 𝑐) derived on the gene expression levels 𝑎 and permuted

class 𝑐󸀠. Genes with significant values (𝑝 value < 0.05) among
groups (normal versus T-DM and T-DM versus T-NDM) are
considered differentiallymethylated and served as candidates
for further analysis.

2.2.2. Detection of DNA Methylation-Responsive Module. To
construct the DNA methylation-responsive module for a
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Figure 1: Schematic overview of the pipeline proposed in this work. (a) Candidate gene selection. Methylation matrix of continuous beta
values is converted into difference matrix and discretized by kernel distribution function, which partition samples into normal, T-DM, and
T-NDM. Probes are mapped to genes after noise filtering and genes passing the consistent test are collected as candidate driver genes. (b)
For each candidate gene, a subset of DM responsive genes is collected and DM responsive modules are constructed by the CLR method.
Candidate driver genes are ranked by differential scores derived on the differential network analysis.

candidate gene 𝑔, we firstly recognize a set of genes whose
expressions are highly discriminative among groups defined
by DNAmethylation profiles of 𝑔.These genes are potentially
responsive to aberrant DNA methylation of 𝑔.

The Context Likelihood of Relatedness (CLR) method
[27] is used to assess regulatory relationships among these
genes. CLR estimates MI for each pair of variables and
corrects the MI via a background-corrected procedure. In
particular, for mutual information 𝐼(𝑋

𝑖
; 𝑋
𝑗
), CLR scores the

relatedness between a pair of variables𝑋
𝑖
and𝑋

𝑗
by the joint

likelihood measurement:

𝑧
𝑖𝑗
= √𝑧
2

𝑖
+ 𝑧
2

𝑗
, (1)

where

𝑧
𝑖
= max(0,

𝐼 (𝑋
𝑖
; 𝑋
𝑗
) − 𝜇
𝑖

𝜎
𝑖

) , (2)

where 𝜇
𝑖
and 𝜎

𝑖
are the mean and standard deviation derived

on the empirical distribution of MI between𝑋
𝑖
and arbitrary

variables 𝑋
𝑘
(𝑘 = 1, 2, . . . , 𝑛) and 𝐼(𝑋

𝑖
; 𝑋
𝑗
) is the mutual

information of𝑋
𝑖
and𝑋

𝑗
.

CLR employs B-spline smoothing and discretization
method [28] to estimate the MI for a pair of variables. How-
ever, it is time-consuming in this work under diversiform
conditions and permutations. Thus, we use the following
estimationmethod to calculateMI for pair of variables𝑋

𝑖
and

𝑋
𝑗
[29]; that is,

𝐼 (𝑋
𝑖
; 𝑋
𝑗
) = −

1

2

log (1 − 𝜌2) , (3)

where 𝜌 is the PCC of𝑋
𝑖
and𝑋

𝑗
.

An experienced threshold 𝛿 is necessary when CLR is
employed. A larger threshold results in a higher precision
but a smaller size of responsive modules. The size of more
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than 70% modules is less than three when 𝛿 = 4.46, while
the size of 80% modules is larger than 3 when 𝛿 = 4.46 and
approximate ranking lists of top 30 genes are obtained when
𝛿 falls in the interval between 3.96 and 5.46. Thus, we set
𝛿 = 4.46 in this work.

2.2.3. Scoring Candidate Driver Genes by Differential Net-
work Analysis. Differential network analysis reveals dynamic
changes of pathways and potential mechanisms in complex
diseases including cancers [30]. For each candidate gene, we
calculate CLR scores for edges in responsive modules under
normal and T-NDM. Differential scores are calculated to
estimate network differences among groups. The differential
score (DS) is yielded by the following equation:

DS

=

∑
𝑘

𝑖=1
abs (𝑤T-DM

𝑖
− 𝑤

Normal
𝑖
) + ∑
𝑘

𝑖=1
abs (𝑤T-DM

𝑖
− 𝑤

T-TDM
𝑖
)

2𝑘

,

(4)

where𝑤
𝑖
is the CLR score of the 𝑖th edge and 𝑘 is the number

of edges in driver methylation-responsive module. Then
candidate genes are prioritized by DS scores in descending
order.

3. Results

We focus on the detection of differentially methylated genes
which play key roles in tumorigenesis (“driver methylation
gene”) and modules responsive to aberrant methylation of
these genes. Rather than genes with consistent expressions to
DNAmethylation levels inwhole tumors, we detect genes dif-
ferentially expressed and consistent withDNAmethylation in
T-DM when compared to normal and T-NDM.

3.1. Identification of Candidate Driver Genes in Tumorigenesis.
By integrating DNA methylation and corresponding gene
expression data, the samples are partitioned into three groups
(normal, T-DM, and T-NDM) for each gene (Figure 1(a)).
Firstly, we remove genes that are not differentially expressed
in T-DM when compared to normal and T-NDM. Then a
permutation test is performed to determine the significance
of the consistency of gene expression changes in T-DM
when compared to T-NDM. To obtain a significant level
of differences, we randomly permute T-DM and T-NDM
and calculate differences. After 1000 times permutation, a
background distribution of differences is constructed. After
removing genes with the absolute mean beta value less than
0.1, 135 genes remain in the candidate list (see Supple-
mentary File in Supplementary Material available online at
http://dx.doi.org/10.1155/2016/2090286). We perform a func-
tional enrichment analysis using DAVID [31, 32]. Of these
135 genes, 115 are annotated to GO terms including cancer-
related functions such as response to stimulus, development
process, cell differentiation, cell adhesion, cell growth and
cell death, DNA repair, and apoptosis, which imply potential
relationships between cancers and these 135 genes.

3.2. Detection Responsive Modules of Candidate Driver Genes.
Biological network reveals cell’s functional organization [33].
To characterize the functional implications of candidate
driver genes in tumorigenesis, we detect modules responsive
to differential methylation of candidate driver genes (Sec-
tion 2). Totally, 130 of 135modules have at least one edgewhen
the threshold of CLR is set to 4.46, and the mean size of 130
modules is 15.

3.3. Prioritization of Candidate Driver Genes by Differential
Network Analysis. We argue that a driver DNA methylation
can induce not only a distinctive gene expression in T-DM,
but also a distinctive module responsive to the alteration. We
score each candidate driver gene by analysis of the differential
level of the responsive module. Candidate driver genes are
ranked by differential scores in descending order.

We testify the significance of the differential score to a
backgrounddistribution derived from randompermutations.
For a given candidate driver gene, genes are randomly
selected from its possible responsive genes with module size
maintained, and a new module is constructed by CLR with
𝛿 = 4.46 as well as a differential score. A sequence of DS󸀠
consisting of random differential scores is obtained after 1000
times random permutation. Of 135 candidate driver genes,
130 genes pass the test with 𝑝 value < 0.01.

We also perform a differential network analysis of respon-
sive modules under different CLR thresholds from 1.96 to
6.96 with step 0.5. Almost all modules obtain significant
differential scores under CLR cutoffs (Supplementary File).
Table 1 lists details of top 30 genes.

4. Discussion

We build two lists as background to testify the accuracy of
the ranked list. The first consists of genes that show absolute
mean fold change larger than 0.2 in T-DM and literature
annotated in lung cancer. Totally, 29 genes are contained
in the first list and denoted as Standard Lit. The other one
comes from Selamat et al. of 76 genes [18]. In fact, this
list is not very suitable because genes in Selamat et al. are
confused with differentiallymethylated genes under smoking
and late stage. Thus, we select genes covered by list from
Selamat et al. and our list. Totally 19 genes are in the list and
denote as Standard Sel. Genes in these two lists are listed in
Supplementary File.

We test the accuracy of our list to Standard Lit and
Standard Sel; Figure 2(a) shows the ROC curves with AUC =
0.686 and AUC = 0.628, respectively, which means that over
half of genes in two standard lists are high-ranked in our list.
Figure 2(b) shows the overlaps of the top 30 genes in our
list to Standard-Lit and Standard-Sel. For Standard-Lit, 12 of
29 genes are overlapped (Fisher exact test 𝑝 value = 0.0018),
while for Standard-Lit, 10 of 29 genes are overlapped (Fisher
exact test 𝑝 value = 2.67𝐸 − 04).

The ranked list is also validated by literature annotation.
Of the top 30 genes, 27 genes are previously reported to be
cancer-relevant, while 17 of them are lung cancer or non-
small-cell lung cancer-related (Table 1).
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Table 1: Top 30 genes ranked by differential score in lung adenocar-
cinoma.

Gene symbola Differential
score

Number of
samples in

T-DM groupb
𝑝 value

FAM107A [34] 16.301 20 7.80𝐸 − 06

SPARCL1 [35, 36] 14.920 20 1.40𝐸 − 07

TRPC6 [37] 14.649 11 <1.0𝐸 − 10

CRYAB [38] 14.508 12 3.84𝐸 − 10

WFDC3 14.483 −14 <1.0𝐸 − 10

EFEMP2 [39] 13.958 20 <1.0𝐸 − 10

MX2 [40, 41] 13.895 −18 2.12𝐸 − 05

PLA2G4C [42] 13.870 −8 <1.0𝐸 − 10

ST6GALNAC5 [43] 13.848 9 <1.0𝐸 − 10

PLAT [44] 13.690 8 2.45𝐸 − 04

TCF21 [45] 13.664 22 <1.0𝐸 − 10

SOX17 [46] 13.368 22 <1.0𝐸 − 10

SH3GL2 [47] 13.300 5 <1.0𝐸 − 10

MAMDC2 [18] 13.274 19 4.54𝐸 − 07

GCNT3 [48] 13.238 −14 <1.0𝐸 − 10

MSR1 [49] 13.144 −16 <1.0𝐸 − 10

PPP1R14D [50] 13.057 −12 <1.0𝐸 − 10

COL5A2 [51] 13.045 19 6.67𝐸 − 04

PTPRH [52] 12.967 −16 8.98𝐸 − 13

HKDC1 [53] 12.961 −20 <1.0𝐸 − 10

CDH13 [54] 12.932 −20 3.34𝐸 − 04

CFI [55] 12.932 5 1.20𝐸 − 04

ARL14 12.880 −12 2.06𝐸 − 04

MMP9 [56] 12.866 7 <1.0𝐸 − 10

CELSR3 12.856 16 4.65𝐸 − 10

CDO1 [57] 12.846 22 <1.0𝐸 − 10

AGR2 [58] 12.836 −22 <1.0𝐸 − 10

S100P [59, 60] 12.828 −10 2.29𝐸 − 04

DOCK2 [61] 12.777 20 2.54𝐸 − 03

TNFRSF1B [62] 12.736 13 <1.0𝐸 − 10

aBold: gene literature annotated to lung cancer.
b
−: Gene hypomethylated in samples.

We also annotate responsive modules of top 30 ranked
genes to KEGG signaling pathways. Among them, responsive
modules for 18 genes are enriched with KEGG signaling
pathways with significance level 𝑝 value < 0.01, which
imply significant relations of these responsive modules to
cancer processes (Table 2) and indicate potential mechanism
changes induced by aberrant DNA methylation. The KEGG
signaling pathways are collected fromMsigDB [63, 64].

Of 30 top ranked genes, FAM107A, MAMDC2, SOX17,
TCF21, PTPRH, and CDO1 have been previously reported
with aberrant DNAmethylation in lung cancer [18, 34, 45, 46,
52, 57]. All these genes obtain higher occurrences (𝑛 > 19) in
lung adenocarcinoma.AGR2,CDH13,CRYAB,MX2, SH100P,

Table 2: Functional annotation of driver-responsive network to
KEGG signaling pathways (𝑝 value < 0.01).

Gene symbol Enriched KEGG signaling pathway 𝑝 value
SPARCL1 CYTOSOLIC DNA SENSING 3.22𝐸 − 03

TRPC6

PPAR SIGNALING 9.50𝐸 − 03

P53 SIGNALING 9.50𝐸 − 03

MTOR SIGNALING 7.16𝐸 − 03

NOTCH SIGNALING 6.47𝐸 − 03

EFEMP2 NOTCH SIGNALING 9.70𝐸 − 03

MX2 RIG I LIKE RECEPTOR SIGNALING 9.33𝐸 − 04

PLA2G4C

PPAR SIGNALING 9.50𝐸 − 03

P53 SIGNALING 9.50𝐸 − 03

MTOR SIGNALING 7.16𝐸 − 03

NOTCH SIGNALING 6.47𝐸 − 03

ST6GALNAC5

PPAR SIGNALING 9.50𝐸 − 03

P53 SIGNALING 9.50𝐸 − 03

MTOR SIGNALING 7.16𝐸 − 03

NOTCH SIGNALING 6.47𝐸 − 03

PLAT

TOLL LIKE RECEPTOR SIGNALING 3.09𝐸 − 03
NOD LIKE RECEPTOR SIGNALING 1.16𝐸 − 03

CYTOSOLIC DNA SENSING 9.44𝐸 − 04

JAK STAT SIGNALING 6.99𝐸 − 03

TCF21 FC EPSILON RI SIGNALING 4.89𝐸 − 03

GCNT3 NOTCH SIGNALING 9.70𝐸 − 03

MSR1 NOTCH SIGNALING 9.70𝐸 − 03

PTPRH B CELL RECEPTOR SIGNALING 9.80𝐸 − 03

HKDC1

PPAR SIGNALING 9.50𝐸 − 03

P53 SIGNALING 9.50𝐸 − 03

MTOR SIGNALING 7.16𝐸 − 03

NOTCH SIGNALING 6.47𝐸 − 03

CDH13 ERBB SIGNALING 1.55𝐸 − 03

T CELL RECEPTOR SIGNALING 2.38𝐸 − 03

CFI PPAR SIGNALING 2.90𝐸 − 03

MAPK SIGNALING 3.47𝐸 − 03

ARL14 VEGF SIGNALING 3.93𝐸 − 03

S100P HEDGEHOG SIGNALING 6.47𝐸 − 04

TGF BETA SIGNALING 1.51𝐸 − 03

DOCK2

CHEMOKINE SIGNALING 3.49𝐸 − 05

TOLL LIKE RECEPTOR SIGNALING 4.85𝐸 − 03
NOD LIKE RECEPTOR SIGNALING 3.27𝐸 − 05
T CELL RECEPTOR SIGNALING 5.42𝐸 − 03
B CELL RECEPTOR SIGNALING 2.66𝐸 − 03

TNFRSF1B NOTCH SIGNALING 7.06𝐸 − 03

FC EPSILON RI SIGNALING 1.24𝐸 − 03

and SH3GL2 are reported with aberrant gene expression
[38, 40, 47, 54, 58, 59], while AGR2, CDH13, and MX2 are
of high occurrences in aberrant DNA methylation (𝑛 ≥ 18).
Differential expression of these genes has been reported play-
ing crucial roles in key pathways in tumorigenesis or serving
as potential prognostic targets. With higher occurrences, the
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Figure 2: Comparison of the ranked list to two standard sets denoted by Standard-Lit and Standard-Sel. (a) ROC curves of our ranked list
compared to Standard-Lit and Standard-Sel with AUC equal to 0.686 and 0.628, respectively. (b) Venn diagram showing the overlap of top
30 ranked genes in our list to Standard-Lit and Standard-Sel.

correlation of differential gene expression and aberrant DNA
methylation of AGR2, CDH13, and MX2 have been reported
relevant to lung adenocarcinoma [18].

Alpha B-crystallin (CRYAB) is one of the important
members of the small heat-shock protein family with aber-
rant DNA methylation occurring in 12 of 22 samples. The
upregulated expression of CRYAB is reported relevant to the
poor survival of patients with non-small-cell lung cancer
(NSCLC) [38]. Interestingly, we find a contrary expression
pattern in early stage lung adenocarcinoma in nonsmoking
patients (Figure 3). A decreased expression is observed in
both T-DM (𝑝 value = 8.20𝐸 − 11) and T-NDM (𝑝 value =
7.72𝐸 − 8) when compared to normal, while a relatively
weak difference is also observed between T-DM group and
T-NDM group (mean fold change difference = 0.07, 𝑝 value =
0.15), which implies multiple mechanisms in regulation of
CRYAB, as well as DNA hypermethylation. The responsive
module of CRYAB is highly changed in normal and T-NDM
(DS = 14.508, 𝑝 value = 3.84𝐸 − 10). The similar case is
SH3GL2, deletion of which downregulates tumor growth by
modulating EGFR signaling [47].

Another interesting case is S100P, which has been
reported as a key gene in tumor progression in both initial
stage and advanced stage in lung adenocarcinoma [60]. The
gene shows distinctive expressions among normal, T-DM,
and T-NDM. There are nearly no changes existent in gene
expression between normal and T-NDM, while in T-DM,
upregulation is observed, which implies that the upregulation

of S100P may be an important step in the early stage of lung
adenocarcinomas.

Also some genes are relevant to cancers but lung cancer
from literature study (COL5A2 [51], SPARCL1 [35], EFEMP2
[39], MSR1 [49], and DOCK2 [61]). APARCL1 and DOCK2
have shown downregulation in types of cancer [36, 61], while
both of them show downregulated gene expressions in T-DM
with high occurrences of DNA hypermethylation. Similar to
CRYAB, EFEMP2 shows contrary expression patterns in our
observation compared to which in gliomas [39]. EFEMP2 has
high occurrences of DNA hypermethylation and downregu-
lated gene expression in totally 20 samples, while 2 samples in
T-NDM show little differences when compared to matched
normal. COL5A2 also shows T-DM specific upregulation
of gene expression and DNA hypermethylation with high
occurrences.

We show the responsive module of MSR1 in Figure 4(a)
as a representation of responsive modules of cancer-related
genes. All these genes exhibit significant changes in respon-
sive modules in T-DM when compared to normal and T-
NDM.

Besides cancer-related genes, three genesARL14,CELSR3,
and WFDC3 are also observed in our list. These three genes
show T-DM specific expression changes (Figure 3), and reg-
ulatory correlations in responsive modules show significant
differences in T-DM when compared to normal and T-NDM
(Figures 4(b)–4(d)) which also imply potential roles of the
three genes in the tumorigenesis of lung adenocarcinoma.
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Figure 3: Genes show consistently significant changes in gene expression and DNA methylation in T-DM (red diamond) when compared
to normal (green star) and T-NDM (blue plus). Results indicate different distributions of gene expression with altered DNA methylation in
three groups of top ranked genes.

All top 30 genes show significant changes in responsive
modules in T-DM, while detailed information of the top 30
genes and responsive modules are listed in Supplementary
File.

5. Conclusions

By integration of gene expression andDNAmethylation data,
we analyzed 22 matched lung adenocarcinoma/nontumor
lung pairs for nonsmokers in early stage lung adenocarci-
noma. By focusing on differences in gene expression patterns
and responsive modules derived from T-DM compared to
those in normal and T-NDM, we proposed a pipeline by
employing a differential network analysis strategy. Totally,
135 candidate genes are analyzed, and top 30 genes are well
studied in this work. All 135 genes are differentially expressed
in T-DM when compared to matched normal and T-NDM,
while 130 of them show significant changes in regulatory
correlations of responsive modules. Literature mining of
top 30 genes indicates a high proportion of lung cancer-
relevant genes, which implies potential risks of these genes to

disturb functions and pathways via differential methylation
mechanisms, and further drives the tumorigenesis of lung
adenocarcinoma in early stage. In conclusion, we provide a
bioinformatics pipeline to identify driver genes with aberrant
DNAmethylation by fully considering differential expression
and network changes in T-DM, normal, and T-NDM. The
analysis pipeline can also be employed in identification
of driver genes with aberrant DNA methylation of other
cancers characterized by paired gene expression and DNA
methylation.
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M. Vingron, “Variance stabilization applied to microarray data
calibration and to the quantification of differential expression,”
Bioinformatics, vol. 18, no. 1, pp. S96–S104, 2002.

[25] J. D. Storey, “A direct approach to false discovery rates,” Journal
of the Royal Statistical Society, Series B: Statistical Methodology,
vol. 64, no. 3, pp. 479–498, 2002.

[26] E. Lee,H.-Y. Chuang, J.-W.Kim, T. Ideker, andD. Lee, “Inferring
pathway activity toward precise disease classification,” PLoS
Computational Biology, vol. 4, no. 11, Article ID e1000217, 2008.

[27] J. J. Faith, B.Hayete, J. T.Thaden et al., “Large-scalemapping and
validation of Escherichia coli transcriptional regulation from a
compendium of expression profiles,” PLoS Biology, vol. 5, no. 1,
article e8, 2007.

[28] C. O. Daub, R. Steuer, J. Selbig, and S. Kloska, “Estimating
mutual information using B-spline functions—an improved
similarity measure for analysing gene expression data,” BMC
Bioinformatics, vol. 5, no. 1, article 118, pp. 1–12, 2004.

[29] C. Olsen, P. E. Meyer, and G. Bontempi, “On the impact
of entropy estimation on transcriptional regulatory network
inference based on mutual information,” Eurasip Journal on
Bioinformatics and Systems Biology, vol. 2009, Article ID
308959, 2009.

[30] T. Ideker and N. J. Krogan, “Differential network biology,”
Molecular Systems Biology, vol. 8, article 565, 2012.

[31] D. W. Huang, B. T. Sherman, and R. A. Lempicki, “Bioin-
formatics enrichment tools: paths toward the comprehensive
functional analysis of large gene lists,” Nucleic Acids Research,
vol. 37, no. 1, pp. 1–13, 2009.

[32] D. W. Huang, B. T. Sherman, and R. A. Lempicki, “Systematic
and integrative analysis of large gene lists using DAVID bioin-
formatics resources,” Nature Protocols, vol. 4, no. 1, pp. 44–57,
2009.

[33] A.-L. Barabási and Z. N. Oltvai, “Network biology: understand-
ing the cell’s functional organization,” Nature Reviews Genetics,
vol. 5, no. 2, pp. 101–113, 2004.



10 BioMed Research International

[34] D. Pastuszak-Lewandoska, K. H. Czarnecka, M. Migdalska-Sęk
et al., “Decreased FAM107A expression in patients with non-
small cell lung cancer,” Advances in Experimental Medicine and
Biology, vol. 852, pp. 39–48, 2015.

[35] Y. Xiang, Q. Qiu, M. Jiang et al., “SPARCL1 suppresses metas-
tasis in prostate cancer,” Molecular Oncology, vol. 7, no. 6, pp.
1019–1030, 2013.

[36] P. Li, J. Qian, G. Yu et al., “Down-regulated SPARCL1 is
associated with clinical significance in human gastric cancer,”
Journal of Surgical Oncology, vol. 105, no. 1, pp. 31–37, 2012.

[37] A. F. Pla and D. Gkika, “Emerging role of TRP channels in cell
migration: from tumor vascularization to metastasis,” Frontiers
in Physiology, vol. 4, article 311, 2013.

[38] H. Qin, Y. Ni, J. Tong et al., “Elevated expression of CRYAB
predicts unfavorable prognosis in non-small cell lung cancer,”
Medical Oncology, vol. 31, no. 8, article 142, 2014.

[39] L. Wang, Q. Chen, Z. Chen et al., “EFEMP2 is upregulated in
gliomas and promotes glioma cell proliferation and invasion,”
International Journal of Clinical and Experimental Pathology,
vol. 8, no. 9, pp. 10385–10393, 2015.

[40] M. Watanabe, N. Komeshima, S. Nakajima, and T. Tsuruo,
“MX2, a morpholino anthracycline, as a new antitumor agent
against drug-sensitive and multidrug-resistant human and
murine tumor cells,” Cancer Research, vol. 48, no. 23, pp. 6653–
6657, 1988.

[41] K. Kobayashi, M. Nishioka, T. Kohno et al., “Identification of
genes whose expression is upregulated in lung adenocarcinoma
cells in comparison with type II alveolar cells and bronchiolar
epithelial cells in vivo,”Oncogene, vol. 23, no. 17, pp. 3089–3096,
2004.

[42] C.Hartmann, L. Johnk,H. Sasaki, R. B. Jenkins, andD.N. Louis,
“Novel PLA2G4C polymorphism as a molecular diagnostic
assay for 19q loss in human gliomas,” Brain Pathology, vol. 12,
no. 2, pp. 178–182, 2002.

[43] P. D. Bos, X. H.-F. Zhang, C. Nadal et al., “Genes that mediate
breast cancer metastasis to the brain,”Nature, vol. 459, no. 7249,
pp. 1005–1009, 2009.

[44] G. Buccheri and D. Ferrigno, “Lung tumour markers in oncol-
ogy practice: a study of TPA and CA125,” British Journal of
Cancer, vol. 87, no. 10, pp. 1112–1118, 2002.

[45] L. T. Smith, M. Lin, R. M. Brena et al., “Epigenetic regulation
of the tumor suppressor gene TCF21 on 6q23-q24 in lung and
head and neck cancer,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 103, no. 4, pp. 982–
987, 2006.

[46] D. Yin, Y. Jia, Y. Yu et al., “SOX17 methylation inhibits its
antagonism ofWnt signaling pathway in lung cancer,”Discovery
Medicine, vol. 14, no. 74, pp. 33–40, 2012.

[47] S. Dasgupta, J. S. Jang, C. Shao et al., “SH3GL2 is frequently
deleted in non-small cell lung cancer and downregulates tumor
growth by modulating EGFR signaling,” Journal of Molecular
Medicine (Berlin, Germany), vol. 91, no. 3, pp. 381–393, 2013.

[48] N. E. Reticker-Flynn and S. N. Bhatia, “Aberrant glycosylation
promotes lung cancer metastasis through adhesion to galectins
in the metastatic niche,” Cancer Discovery, vol. 5, no. 2, pp. 168–
181, 2015.

[49] Y. Chen, C. Sullivan, C. Peng et al., “A tumor suppressor
function of the Msr1 gene in leukemia stem cells of chronic
myeloid leukemia,” Blood, vol. 118, no. 2, pp. 390–400, 2011.

[50] K. Lokk, T. Vooder, R. Kolde et al., “Methylation markers of
early-stage non-small cell lung cancer,” PLoS ONE, vol. 7, no.
6, article e39813, 2012.

[51] H. Fischer, R. Stenling, C. Rubio, and A. Lindblom, “Col-
orectal carcinogenesis is associated with stromal expression of
COL11A1 and COL5A2,” Carcinogenesis, vol. 22, no. 6, pp. 875–
878, 2001.

[52] T. Sato, K. Soejima, E. R. I. Arai et al., “Prognostic implication
of PTPRH hypomethylation in non-small cell lung cancer,”
Oncology Reports, vol. 34, no. 3, pp. 1137–1145, 2015.

[53] G.-H. Li and J.-F. Huang, “Inferring therapeutic targets from
heterogeneous data: HKDC1 is a novel potential therapeutic
target for cancer,” Bioinformatics, vol. 30, no. 6, pp. 748–752,
2014.

[54] K. O. Toyooka, S. Toyooka, A. K. Virmani et al., “Loss of expres-
sion and aberrantmethylation of the CDH13 (H-cadherin) gene
in breast and lung carcinomas,” Cancer Research, vol. 61, no. 11,
pp. 4556–4560, 2001.

[55] M. Okroj, Y.-F. Hsu, D. Ajona, R. Pio, and A. M. Blom,
“Non-small cell lung cancer cells produce a functional set
of complement factor I and its soluble cofactors,” Molecular
Immunology, vol. 45, no. 1, pp. 169–179, 2008.

[56] D. Schveigert, S. Cicenas, S. Bruzas, N. Samalavicius, Z. Gudle-
viciene, and J. Didziapetriene, “The value of MMP-9 for breast
and non-small cell lung cancer patients’ survival,” Advances in
Medical Sciences, vol. 58, no. 1, pp. 73–82, 2013.

[57] J. Wrangle, E. O. Machida, L. Danilova et al., “Functional
identification of cancer-specificmethylation of CDO1, HOXA9,
and TAC1 for the diagnosis of lung cancer,” Clinical Cancer
Research, vol. 20, no. 7, pp. 1856–1864, 2014.

[58] M. Alavi, V. Mah, E. L. Maresh et al., “High expression of AGR2
in lung cancer is predictive of poor survival,” BMC Cancer, vol.
15, no. 1, article 655, 2015.

[59] B. Bartling, G. Rehbein, W. D. Schmitt, H.-S. Hofmann, R.-
E. Silber, and A. Simm, “S100A2-S100P expression profile
and diagnosis of non-small cell lung carcinoma: impairment
by advanced tumour stages and neoadjuvant chemotherapy,”
European Journal of Cancer, vol. 43, no. 13, pp. 1935–1943, 2007.

[60] G. Rehbein, A. Simm, H.-S. Hofmann, R.-E. Silbar, and B.
Bartling, “Molecular regulation of S100P in human lung adeno-
carcinomas,” International Journal of Molecular Medicine, vol.
22, no. 1, pp. 69–77, 2008.

[61] H. Nishihara, M.Maeda, A. Oda et al., “DOCK2 associates with
CrkL and regulates Rac1 in human leukemia cell lines,” Blood,
vol. 100, no. 12, pp. 3968–3974, 2002.

[62] X. Guan, Z. Liao, H. Ma et al., “TNFRSF1B +676 T>G polymor-
phism predicts survival of non-Small cell lung cancer patients
treated with chemoradiotherapy,” BMC Cancer, vol. 11, article
447, 2011.

[63] M. Kanehisa, Y. Sato, M. Kawashima, M. Furumichi, and M.
Tanabe, “KEGG as a reference resource for gene and protein
annotation,” Nucleic Acids Research, vol. 44, no. 1, pp. D457–
D462, 2016.

[64] A. Subramanian, P. Tamayo, V. K. Mootha et al., “Gene set
enrichment analysis: a knowledge-based approach for inter-
preting genome-wide expression profiles,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 102, no. 43, pp. 15545–15550, 2005.


