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Abstract: The paper proposed a method to improve the anti-oxidation performance of carbon fibers
(CF) at high temperature environment by coating silicon dioxide (SiO2) and silicon carbide (SiC).
The modified sol-gel method had been used to ensure the proper interface between fibers and coating.
We used polydimethylsiloxane and ethyl orthosilicate to make stable emulsion to uniformly disperse
SiC nanoparticles. The modified SiO2/SiC coating had been coated on CF successfully. Compared
with the untreated CF, the coated fibers started to be oxidized around 900 ◦C and the residual weight
was 57% at 1400 ◦C. The oxidation mechanism had been discussed. The structure of SiC/SiO2 coated
CF had been characterized by scanning electron microscope and X-ray diffraction analysis. Thermal
gravimetric analysis was used to test the anti-oxidation ability of CF with different coatings.
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1. Introduction

Since the 1960s, carbon fibers (CF) have been widely used in various fields due to its high
specific modulus, corrosion resistance and electrical conductivity as well as other unique properties.
Instead of using CF alone, people tend to combine it with different matrices to obtain composites that
own excellent strength, low thermal expansion coeffient, and lightweight [1–3]. In the aerospace
area, some parts of planes, spaceships, and some parts of rocket need to resist extremely high
temperature. For example, the rocket fairing is used to protect the rocket and the satellite from
damages caused by heat out of its friction in the atmosphere. Traditional ultra-high temperature
protection materials contain refractory metal, ceramic composites, et cetera [4]. They were either
too heavy, or the mechanical properties were not very good. CF reinforced composites have great
potential to replace them because of lightweight, high-strength and flexibility. The rocket fairing of
Titan rocket (USA) was made from carbon fibers, epoxy resin, and aluminum honeycomb. However,
CF has poor oxidation resistance in the air environment at high temperature. It is important to improve
the anti-oxidation ability of CF to extent its application to make thermal protection parts with excellent
mechanical properties.

Shielding is an effective method to increase the oxidation resistance ability of CF. It can prevent CF
substrate from contacting the oxygen directly. The type of coating can be various, such as metal coating
(Zn, Ni, Cu, Ti, Zr, Ag); oxides coating (SiO2, Fe3O4, Al2O3, TiO2), nitrides coating (BN, TiN), carbides
coating (SiC, TiC, TaC, ZrC, B4C), and composite coating (Al2O3/Y2O3, ZrC–ZrB2–SiC, SiBNC) [5–16].
Among them, ceramic coatings are the most promising coatings due to the fact that they are much
lighter and have better wettability, which can reduce interface diffusion and reaction.

The common ways to fabricate ceramic coatings are vapor deposition, precursor infiltration,
and pyrolysis (PIP), and sol-gel method [17–19]. The chemical or physical vapor deposition can produce
uniform and dense coatings. Moreover, plasma treatment has been used in vapor deposition, which can
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deposit homogeneous, well-adhesive coatings at lower temperature on different substrates [20,21].
To improve the surface roughness, structure, and mechanical properties of CF, hydrogen and oxygen
plasma treatments are applied. The density of functional groups and changes in the carbon bonding
contributed to the enhancement of the adhesion to PEI matrix [22]. Both the morphology and the
structure of coatings are controllable. But, the low deposition rate and the uneconomical cost make
vapor deposition not always practical [23]. In PIP, polycarbosilane (PCS) and polysilazane (PSZ)
are often used as precursor to make SiC coating. However, it is hard for the polymer precursor to
synthesize because of the complex process [24,25]. Sol-gel method is a much more practical and feasible
way to fabricate three-dimensional (3D) composite coating. Besides, the cost of Sol-gel method is
quite economical, and the coating has a low densification temperature (<1000 ◦C) and low shrinkage,
which can reduce drying stress between coatings and matrix. Some reseachers [26–29] mentioned
that the tetraethylorthosilicate (TEOS), vinyltriethoxysilane (VTES) and ethyl alcohol (EtOH) could be
used as raw materials to fabricate SiO2 coating by sol-gel method. However, the best decomposition
temperature they have got is around 800 ◦C. When the temperature is over 600 ◦C, the weight loss is
more than 50%. The anti-oxidation performance of silicon materials coated CF still has great potential
to improve.

To lower the formation temperature and to improve the anti-oxidation performance of CF,
modified sol-gel method has been proposed in this paper. The best ratio of TEOS/water has been
discussed. The mechanism of oxidation process and the properties of coated CF at different temperature
environment have been investigated.

2. Experiment

2.1. Preparation of Modified SiC/SiO2 Sol and Emulstion

To remove the protective polymer layer of CF (Wuxi Weppom Composite Materials Company,
Wuxi, China), the fibers were heated at 400 ◦C for 1 h under the nitrogen atmosphere. Then, put the
CF into 75 wt % nitric acid (Shanghai Aladdin Reagent Factory, Shanghai, China) with ultrasonic
treatment for 1 h at 60 ◦C.

In order to explore the optimum proportion of sol, four different samples were prepared under
different ratio of raw materials. The samples had been marked as samples 1–4 with the ratio of ethanol
(Sinopharm Chemical Reagent Company, Shanghai, China), distilled water and TEOS (Shanghai
Aladdin Reagent Factory) being 5:1:1, 5:1:3, 5:1:5, 5:1:7, respectively. Hydrochloric acid had been used
to adjust pH to 3. After stirring the solution for 2 h, the sol had been stood for 10 h at 60 ◦C to obtain
transparent SiO2 sol.

To disperse SiC nanoparticles (50nm, Shanghai Aladdin Reagent Factory) uniformly, homogenizer
(15,000 rpm) was used to prepare SiO2 emulsion. The polydimethylsiloxane (Shanghai Aladdin
Reagent Factory, ~10 mPa.s, neat, s104472), SiO2 sol and distilled water were mixed with the ratio 1:1:1.
5 wt % tween 80 (T104866, Shanghai Aladdin Reagent Factory) had been added into the mixture as
emulsifier. When the SiO2 emulsion became stable, SiC nanoparticles were dispersed into the emulsion
(24 g/200 mL) uniformly.

2.2. Coating Process

CF was immersed into the SiC/SiO2 emulsion separately. After 30 min ultrasonic treatment,
the fiber was pulled out from the sol (10 mm/min) and heated to 600 ◦C (5 ◦C/min) in argon flow
(40 mL/min). After 30 min preservation, the temperature increased to 1200 ◦C with a rate of 4 ◦C/min.
Before naturally cooling down to the room temperature, the sample was preserved at 1200 ◦C for
120 min. Then, repeat the above steps 3 times to increase the thickness of coating.
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2.3. Oxidation

In order to explore the mechanism of oxidation process, SiC/SiO2 coated CF samples were treated
at 800 ◦C, 1000 ◦C and 1400 ◦C for 15 min in the air environment. To evaluate the influence of thermal
shock, the samples were put back to room temperature and cooled down naturally.

2.4. Characterization

The surface morphology of coated CF and oxidized samples were characterized by a
JSM-7800FPRIME Scanning Electron Microscope (SEM) (JEOL, Tokyo, Japan). To analyze the crystal
structure of unoxidized coating and 1400 ◦C treated coating, the X-Ray diffraction (XRD) analysis
(D8 Advance X-ray diffract meter, Bruker Corporation, Ettlingen, Germany) was used. The scanning
was conducted from 2θ angle of 5◦–80◦ at a scan rate of 5◦/min. The NETZSCH STA 449 F3 typed
thermal analyzer (NETZSCH, Selb, Germany) was applied to Thermal Gravimetric (TG) analysis.
It can test the anti-oxidation performance of each sample (both uncoated CF and SiC/SiO2 coated CF)
under the air atmosphere with a constant heating rate of 5 ◦C/min from 25 ◦C to 1300 ◦C.

To test the mechanical property of CF, 10 samples were prepared by the method in this patent [30].
First, CF had been fixed at two sides of a frame. Then, the frame was immersed into 40 wt % epoxy
resin for 5 min. After drying at 110–130 ◦C, the CF was tested through the Instron testing machine
(model-5866, Instron Pty Ltd, Norwood, MA, USA). The testing process was followed by the ISO
standard [31]. The tensile strength was calculated by the equation:

σ =
P− ρ

t
× 106 (1)

σ—tensile strength (MPa); P—failure load (N); ρ—the density of CF (kg/m3); t—linear density of
CF (kg/m).

The Young’s modulus was calculated by the equation:

E =
∆P− ρ

t
× L

∆L
× 10−9 (2)

E—Young’s modulus (GPa); ∆P—The change of load value (N); ρ—the density of CF (kg/m3); t—linear
density of CF (kg/m); L—the length of the sample (mm); and, ∆L—The change of length of the
sample (mm).

The fracture elongation was calculated by the equation:

ε =
∆Lb

L
× 100% (3)

ε—the fracture of elongation; L—the length of the sample (mm); ∆Lb—elongation at break.

3. Result and Discussion

3.1. Microstructure Analysis of Coatings

Table 1 presents the coating properties of different water/TEOS ratio. Figure 1 shows that the
XRD diffraction patters of coating between 15◦ and 30◦ is wide. It can be deduced that the main
component of the coating is amorphous SiO2. The curve of line (a) is wider and more obvious than
other three lines. It means that the formation rate is the fastest with the ratio 1/3. When combined with
the appearance and performance results that were shown in Table 1, it can certify that best water/TEOS
ratio to fabricate SiO2 coating is 1/3. The main reactions of the sol-gel system were as follows.

Hydrolytic reaction:
Si(OR)4 + 4H2O→ Si(OH)44ROH (4)



Materials 2018, 11, 350 4 of 12

Condensation reaction:

2Si(OH)4 → Si(OH)3–O–Si(OH)3 + H2O (5)

Polymerization:
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To analyze the surface morphology of the coatings, SEM experiments were conducted on 
uncoated CF and SiO2 coated CF. Figure 2a shows that the grooves were formed at the surface of 
uncoated CF. Because, after removing the protective layer of CF, concentrated nitric acid could 
increase the surface roughness and specific area of CF, enhancing the interface effect between SiO2 
coating and CF. The generation of carboxylic acids, hydroxyl groups, and lactones functionalities 
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Table 1. Result of samples with different water/TEOS ratio.

Sample Number Water/TEOS SiO2 Coating

Sample 1 1/1 The thickest coating with no cracks. The surface is not uniform.
Sample 2 1/3 Thinner than Sample 1, and the surface is uniform.
Sample 3 1/5 The surface is not uniform, and cracks appear.
Sample 4 1/7 It cannot form SiO2 coating.

Among them, R stands for –C2H5. The products of the reactions are colloidal particles with
different size and structure. A three-dimentional network of xerogel can be produced after dehydration.
The property of xerogel is related to the temperature, solvent, pH and the ration of water and TEOS.
TEOS cannot dissolve in water, but it can dissolve in EtOH and react with water in it. When the water
is much more than the TEOS, it will take a long time to form sol. Instead, when the water is much less
than the TEOS, sol can be form very quickly (less than 40 min). However, the stability of such sol is
poor, and stratification could happen in the few hours. So, the SiO2 sol was prepared with the best
water/TEOS ratio.
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Figure 1. X-ray diffraction (XRD) analysis of silicon dioxide (SiO2) coating with different Water/TEOS
ratio (a) 1/3; (b) 1/1; (c) 1/5; (d) 1/7.

To analyze the surface morphology of the coatings, SEM experiments were conducted on uncoated
CF and SiO2 coated CF. Figure 2a shows that the grooves were formed at the surface of uncoated
CF. Because, after removing the protective layer of CF, concentrated nitric acid could increase the
surface roughness and specific area of CF, enhancing the interface effect between SiO2 coating and CF.
The generation of carboxylic acids, hydroxyl groups, and lactones functionalities contributed to the
increasing of adhesion strength [32]. Figure 2b presents the surface morphology of SiO2 coated CF.
Since the SiO2 coating had covered the grooves; the surface of CF was uniform and smooth. However,
some aggregations could be seen at the surface of the coating, since the emulsion particles were
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aggregated and may not spread uniformly before the heating process. SiC/SiO2 coated CF are shown
in Figure 1c. The SiC nanoparticles had been coated onto CF successfully. The surface of SiC/SiO2

coated CF was rough and laminar. There were some small bulges that were spreading along the
CF as the SiC nanoparticles had been embedded into SiO2 coating. Figure 2d was the cross-section
morphology of coated CF. The coating was compact and uniform. Displacement can be found at the
interface between coating and CF. The coating had been moved to the left side of the picture because of
the external force when the CF was cut off. The protrusion and concave can fit together on the whole.
Therefore, it can be deduced that the coating was originally attached on CF closely. It can be found
that the coating was compact and uniform. The whole coating is about 0.23 µm in thickness, and there
was little aggregation at the surface of the coating. Energy Dispersive Spectroscopy (EDS) analysis had
been used to further analyze the elements distribution of composite coating. Figure 3 shows that Si, O,
and C were dispersed evenly on the surface of the fiber. Because of the existence of SiC nanoparticles,
O element was not as concentrated as Si and C elements.

Figure 4 shows the band diffraction peaks of SiC/SiO2 coated CF. Around 2θ = 22◦, the peak was
broad and wide, which reflects the existence of amorphous SiO2. The formation temperature is not
high enough to make SiO2 emusltion to transit to crystal. At 35◦, 41◦, 60◦, and 71◦, the diffraction peaks
were corresponded to the ß-SiC. On the one hand, it proves that SiC nanoparticles had embedded into
the coating successfully; on the other hand, it can extrapolate that the nanoparticles and the coating
only had physical bonding instead of chemical reactions.
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3.2. Mechanical Property of Coated CF

The mechanical property was tested following the method described in reference [30,31].
The results were shown in the Table 2. It could be observed that there are little differences in the
mechanical property of coated CF and uncoated CF as coating only affected the roughness of CF’s
surface, because the coating only affected the roughness of CF’s surface. From the XRD analysis
(Figure 4), it proves that the interfacial bonding between the coating and CF is physical bonding.
The strength of ceramic is higher than CF. Besides, the ceramic coating may cover some surface defects
and limit their influence on the crack initiation [33]. So, before oxidation, the coated CF owned higher
strength than the uncoated CF. When the temperature was at 800 ◦C, the mechanical property of coated
CF only decreased 15%. However, when the temperature was at 1000 ◦C, the mechanical property
of coated CF decreased rapidly, especially the modulus. Since the coating was partly damaged and
the stiffness of coated CF had been reduced, it became much easier for the fiber to be deformed by
external force. While the temperature was over 1400 ◦C, the fibers became soft and brittle. CF had
been seriously damaged and the cracks of the coating could be seen directly at the surface of CF.
The mechanical property of coated fibers slumped quickly. Based on the above results, the mechanical
property of SiC/SiO2 coated CF will decrease after oxidation. However, when the temperature was
lower than 1400 ◦C, the strength and the modulus of coated CF were in the acceptable range so the CF
could stay in the right shape.

Table 2. Mechanical property of different CF.

Sample Strength
MPa

Young’s Modulus
GPa

Fracture
Elongation %

Standard
Deviation of

Modulus

Uncoated CF 2745 223 1.75 5.98
SiO2 coated CF 2980 207 1.40 4.24

SiC/SiO2 coated CF 3098 210 1.43 5.12
800 ◦C treated SiO2 coated CF 2455 132 1.22 3.35

1000 ◦C treated SiO2 coated CF 1832 101 1.16 4.31
1400 ◦C treated SiO2 coated CF 1102 67 0.65 4.89

3.3. Anti-Oxidation Performance

SiC/SiO2 coated CF were treated at 800 ◦C, 1000 ◦C and 1400 ◦C in the air environment for 15 min.
Figure 5a shows the SEM image of the SiC/SiO2 coated CF heated at 800 ◦C for 15 min. The fibers
stayed in the right shape and there were no cracks or pores at the surface, which means that the
SiC/SiO2 coating had protected fibers well. From Figure 5b, the surface of 1000 ◦C treated SiO2 coated
CF was more coarse and little cavities could be found due to the gas that had broken through the
coating and some SiC nanoparticles had been peeled off from the coating. However, these cavities did
not penetrate the coating, so the oxygen could not react with CF directly. The coated CF had acceptable
mechanical property for such an environment, indicating that 1000 ◦C can be the proper temperature
in the real application. Figure 5c presents the surface morphology of coated CF after 15 min 1400 ◦C
treatment. It can be found that pores and cracks were distributed on the coating. The diameter of pores
could be over 1 µm, which indicated that the coating had been seriously damaged. It can be deduced
that the gas was formed inside the coating due to the edge of the pores was convex. By penetrating
into the coating, oxygen could react with CF, leading the rapid oxidation of the fibers. Combine with
XRD results (Figure 6). It can be concluded that although higher temperature had contributed to
the formation of crystalline SiO2 at the surface of the coating, the inner oxidation still destroyed the
anti-oxidation ability of the coating due to the gas formation.
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Figure 6. XRD analysis of SiC/SiO2 coated CF with 1400 ◦C treated for 15 min.

Figure 7 is the TG analysis of CF with different coatings. The results show that SiC/SiO2 coating
can effectively improve the anti-oxidation ability of CF in the air environment. Uncoated CF began to
lose weight when the temperature was over 400 ◦C. The TG curve of uncoated CF started to decrease
rapidly and decomposed completely around 850 ◦C. The SiC/SiO2 coated CF started to lose weight at
900 ◦C. Around 1400 ◦C, the residual weight of SiC/SiO2 coated CF was more than 57%. Moreover,
the mass loss of coated CF was smaller, which means the oxidation rate of coated CF is slower than
uncoated CF. When compared with the temperature of other silicide coatings that were fabricated
with the traditional sol-gel method, the decomposition temperature of SiC/SiO2 coated CF had been
improved significantly.
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3.4. Oxidation Mechanism of Coated CF

Figure 8 is the sketch of the cross-section of CF. It shows the oxidation mechanism of coated CF.
From other report [34], the coating of thermal protection system should have a high melting point,
low density, thermal shock resistance, and low thermal conductivity. Besides, the thickness of coating
should be considered based on the purpose of the CF. To ensure the acceptable mechanical property of
CF, the coating cannot be too thick.
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When it comes to the samples that we prepared, both SiO2 and SiC had relative high melting
points and SiC had similar coefficient of thermal expansion that makes them perfect to be used
as thermal protection materials. From the mechanical test, it can be deduced that the thickness of
SiC/SiO2 coating was appropriate. While the temperature increased, the silicon dioxide layer will
be formed at the surface of the coating. The glass layer can protect the inner coating by preventing
oxygen from penetration. When the temperature was lower than 1000 ◦C, the CF stayed in the
right shape. Only small pores would be formed at the surface of the coating due to part of SiC
nanoparticles reacting with oxygen to form CO2 and CO. However, once the temperature was over
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1000 ◦C, the accumulated gases could lead cracks and pores in the coating. When oxygen contacted
with CF, a large amount of gases destroyed the integrality of the coating. Besides, the coefficients
of thermal expansion were different between the coating and CF substrate. With the temperature
increased, thermally grown oxides could be formed at the interface of the coating and CF substrate,
which leads to higher interface stress and a decrease in the strength of interfacial bonding. Some part
of the coating might be peeled off from the CF. What’s more, all of the samples were put back to the
room temperature as soon as the oxidation finished. The planar cracks could be formed by the thermal
shock. Although SiC nanoparticles have great oxidation resistance potential, while the temperature
is high enough, the activation energy of the particles can cause cracks along the interface. Once the
oxygen came in the inner coating, SiC nanoparticles can form CO and CO2, which would damage the
coating and accelerate the oxidation speed of CF.

4. Conclusions

This study proposed a modified sol-gel method to fabricate SiC/SiO2 coating at the surface of
CF. The coating can improve the oxidation resistance ability of CF at high temperature environment.
The best TEOS/water ratio to make SiO2 sol had been determined. Attributed to the SiC/SiO2 coating,
the anti-oxidation performance of CF had been increased. The residual weight of coated CF was more
than 57% when the temperature was 1400 ◦C. The mechanical property of SiC/SiO2 coated CF only had
little differences between uncoated CF when the temperature was lower than 1000 ◦C. In the future,
to reach better anti-oxidation ability of coated CF, a new method should be developed to increase the
interface strength between coating and the CF and lower the formation temperature of coating.
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