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A B S T R A C T

The genus Microbacterium is composed of high GC content, Gram-positive bacteria of the phylum Acintobacteria
known for their antibiotic production. Microbacterium species commonly colonize agricultural rhizospheres and
more infrequently have been found to colonize and infect human tissues as well. Here we report the
3,696,310 bp draft genome (chromosome and plasmids) sequence assembled at the scaffold level from 232
contigs of Microbacterium sp. strain AISO3, isolated from polluted San Jacinto River sediment in Channelview,
Texas. The nucleotide sequence of this genome was deposited into NCBI GenBank under the accession
NHRF00000000.

Specifications

Organism/cell
line/tissue

Microbacterium sp.

Strain AISO3
Sequencer or

array type
Illumina Miseq

Data format Draft genome (Scaffolds)
Experimental

factors
Bacterial strain

Experimental
features

Whole genome analysis and gene annotation of
AISO3

Sample source
location

San Jacinto River sediment near the Battleship
Texas Historic Site in Channelview, Texas

GPS coordinates 29° 45′ 20.916″ N, 95° 5′ 25.2564″ W

1. Direct link to deposited data

https://www.ncbi.nlm.nih.gov/nuccore/NHRF00000000.

2. Experimental design, materials and methods

Polluted sediment containing a heterogenous mixture of poly-
chlorinated dioxins, furans, biphenyls, petroleum hydrocarbons, and

agricultural waste was collected from the Battleship Texas Historic Site
in Channelview, Texas along the banks of the San Jacinto River [1].
Selective media was prepared to screen for microorganisms within this
sample with the capacity to tolerate, degrade and/or metabolize orga-
nophosphate compounds. For this purpose utilized Carbon Selective
Media (CSM) which has a composition of 2 mM NTA, 0.8 mM
MgSO4·7H2O, 0.17 mM CaNO3, 0.018 mM FeSO4·7H2O, 20% v/v
Phosphate Buffer. A total of 5 mL of CSM media was aliquoted into
culture tubes with 100 μg/mL ethyl paraoxon as a screening agent.
These tubes were prepared fresh each week for each new subculture set
for a period of five weeks. The culture was then diluted into minimal
media with glycerol added as a supplementary carbon source and
plated onto an agar plate with 100 μg/mL ethyl paraoxon. A single
orange colored bacterium was isolated from the agar plate and shipped
to Genewiz (South Plainfield, NJ), where library construction and
whole genome sequencing of the bacterium was performed as described
below.

Samples were visually inspected upon receipt and genomic DNA was
extracted from bacterial colonies using the PureLink Genomic DNA
extraction kit as per manufacturer's protocols. The resulting genomic
DNA was quantified using both the Nanodrop and the Qubit 2.0
Fluorometer (Life Technologies, Carlsbad, CA, USA). A total of
50–60 ng of each sample was run on a 0.6% agarose gel to check for
quality. The Illumina Nextera XT library preparation, clustering, and
sequencing reagents were used throughout the process following the
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manufacturer's recommendations (Illumina, San Diego, CA, USA). DNA
libraries were analyzed on the Agilent TapeStation (Agilent
Technologies, Palo Alto, CA, USA) and quantified using the Qubit 2.0
Fluorometer.

The DNA libraries were quantified by real time PCR (Applied
Biosystems, Carlsbad, CA, USA), and multiplexed in equal molar mass.
DNA libraries were multiplexed and loaded on an Illumina MiSeq in-
strument according to manufacturer's instructions (Illumina, San Diego,
CA, USA). Sequencing was performed using a 2 × 250 paired-end (PE)
configuration (Table 1). Sequence reads were checked for quality using
Fastqc [2] and filtered using BBTools [3] with minimum Phred score of
20. Paired-end reads were assembled into contigs with the Spades
3.10.1 program [4]. The Mash program [5] was used for species iden-
tification using k = 21 and sketch size of 1000 against the Mash Refseq
(release 70) database. Fasta files for the five top bacterial hits sorted by

distance were downloaded from RefSeq database and used to calculate
the Mash distance. The resulting distance file from the previous step
was imported into R using the reader package [6]. Finally, the
Ggdendrogram [7] package was used to create a dendrogram plot
through hclust function output using UPGMA method (Fig. 1). The
Quast program [8] was used to calculate assembly statistics using
scaffold mode. Preliminary reference based annotation using PATRIC
[9] web resources was carried out to identify conserved pathways. Final
de novo annotation was performed through the NCBI Prokaryotic Gen-
omes Automatic Annotation Pipeline (http://www.ncbi.nlm.nih.gov/
genomes/static/Pipeline.html) and the Rapid Annotation System
Technology (RAST) server [10,11].

3. Data description

Microbacterium species are versatile, ubiquitous microorganisms
capable of thriving in both endaphic and aquatic environments. More
commonly known for their role in plant promotion, Microbacterium has
also recently emerged as a rare opportunistic human pathogen [12–16].
The draft genome of Microbacterium sp. AISO3 includes 232 contigs
with a GC content of 69.82%, consists of 3,478,976 bp and 2 plasmids
totaling 217,334 bp. Combined, the draft genome and plasmid of AISO3
contains approximately 3623 gene sequences, 3563 coding sequences
including 62 pseudogenes, 8 rRNA genes, 48 tRNAs, and 4 noncoding
RNA (ncRNA) genes. The closest neighboring genome to strain AISO3 is
Microbacterium sp. TS-1 (See Fig. 1). An overview of genome subsystem
features (Fig. 2) shows a microorganism that has not only retained high
metal resistance similar to other Acintobacteria and plant promoting
rhizosphere bacteria, but also the capacity for opportunistic patho-
genicity through a combination of virulence and antibiotic resistance
factors including multidrug efflux, β-lactamase activity, Type VII se-
cretion systems, and a Mycobacterium-like virulence operon. In addi-
tion, Microbacterium sp. AISO3 notably encodes for a greater number of
motility, chemotaxis, and carbohydrate metabolism genes than other

Table 1
Microbacterium sp. AISO3 genome statistics.

Assembly statistics

platform Illumina MiSeq (2*250) paired end
total raw reads 3,125,578
total filtered reads 2,847,047
genome size (bp) 3,696,310
Contigs (≥200 bp) 230 (chromosome) +2 (plasmids)
Contigs ≥500 bp) 55
Largest contig 598,210
N50 294,906
L50 4
Average coverage 282.44

Annotation statistics
GC content (%) 69.82 (chromosome) +68.33(plasmid)
total genes 3623
coding genes 3563
rRNAs 8
tRNAs 48

Fig. 1. Dendogram of Microbacterium sp. AISO3 and the five closest neighboring genomes.
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representative Microbacterium strains (Table 2) [17,18].
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Table 2
Number of genes identified in representative Microbacterium species. Categories in which
the greatest number of genes was identified in strain AISO3 are indicated in bolded text.

Category Strain AISO3 Strain BH-3-3-3 Strain TS-1
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Protein metabolism 190 225 143
DNA metabolism 88 69 56
RNA metabolism 86 78 55
Aromatic metabolism 17 51 16
Membrane transport 132 100 121
Cell signaling 22 31 16
Cell mobility/chemotaxis 49 8 42
Stress response 74 69 72
Respiration 40 48 40
Cell division/cell cycle 23 22 20
Miscellaneous 30 32 27
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