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ABSTRACT Super-resolution microscopy offers the ability to visualize molecular structures in biological samples with un-
precedented detail. However, the full potential of these techniques is often hindered by a lack of automated, user-independent
workflows. Here, we present an open-source toolkit that automates dSTORM super-resolution microscopy using deep learning
for segmentation and object detection. This standalone program enables reliable segmentation of diverse biomedical images,
even in low-contrast samples, surpassing existing solutions. Integrated into the imaging pipeline, it rapidly processes high-
content data in minutes, reducing manual labor. Demonstrated by biological examples, such as microtubules in cell culture
and the bII-spectrin in nerve fibers, our approach makes super-resolution imaging faster, more robust, and easy to use,
even by nonexperts. This broadens its potential applications in biomedicine, including high-throughput experimentation.
WHY IT MATTERS Super-resolution microscopy is a powerful technology that allows scientists to see the tiny
structures within biological samples in incredible detail. Despite its potential, acquiring state-of-the-art super-resolved
images remains challenging due to the technical expertise, time-intensive procedures, and complex analysis required. In
this study, we present a scalable, open-source software toolkit that automates image acquisition by dSTORM.
Leveraging deep learning for segmentation, our toolkit can accurately identify and target objects within diverse
biomedical samples, even those exhibiting only low contrast. This automation significantly accelerates high-content
super-resolution imaging workflows. By providing an accessible, user-friendly solution, researchers from various
disciplines can harness the power of super-resolution microscopy without requiring extensive specialized training.
INTRODUCTION

In recent years many super-resolution fluorescence mi-
croscopy techniqueshavepushed the resolution limit to
the nanometer scale, which had before been restricted
to electron microscopy. Importantly, these advanced
techniques retain the inherent advantages of fluores-
cence microscopy, which include sample preservation
and target specificity, thus rendering thema valuable in-
strument for investigating biological phenomena with
greater detail than ever before (1,2). These techniques,
such as direct stochastic optical reconstruction micro-
scopy (dSTORM) or stimulated emission depletion,
have shown in numerous instances that the combina-
tion of resolution and molecular specificity holds
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considerable promise for advancing scientific under-
standing (3,4). For example, they have allowed the first
observation of the cytoskeleton in neuronal axons,
showing that it is made up of rings with a subdiffrac-
tional periodicity of 190 nm, and even uncovering subtle
disturbances in patients with polyneuropathy (5–7).
However, they have not yet beenwidely applied in scien-
tific researchor even inmedical routine diagnostics, due
to the demand for technical expertise and knowl-
edge (8,9).

In standard microscopy, all emissions are usually
detected in a simultaneous time window, so that the
optical resolution of 200 nm is the limit. In dSTORM,
the enhanced resolution is achieved by temporally
separating the light emission of thousands of single
fluorophores, which allows the localization precision
to become an order of magnitude higher. It only re-
quires a standard wide-field fluorescence microscope
and open-source software for image processing,
making it in principle relatively accessible and
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cost-effective (10). However, the cost of achieving
image resolutions of 20–50 nm includes not only a
significant increase in acquisition time, extending
from milliseconds to minutes, but also a limitation to
a relatively small field of view (11,12), which is partic-
ularly hampering translational imaging approaches
where the tissue context is key. Moreover, the tempo-
ral separation of the emissions by fluorophore blinking
in dSTORM is typically achieved using strong laser illu-
mination intensities and specialized imaging buffers,
which may require expert knowledge to operate the
microscope (3,13). The analysis of the high-content
image data is also often a bottleneck when large
biomedical images need to be divided into meaningful
segments, and typically requires a high level of
expertise (14) as reported on cancer cell vulnerability
or histopathology studies (15–18).

Fortunately, over the last century, the application of
deep learning has offered an adaptable approach to
the analysis of high-content microscopy data, return-
ing reproducible, high-quality results (19). A variety
of approaches to automated segmentation for various
types of images and microscopy data have been
proposed in this context (19–24). While data-based
adaptation of imaging regions and parameters have
been published previously (25–28), these useful ap-
proaches have not found its way into the acquisition
of high-content super-resolution data.

Therefore we present a user-friendly software toolkit
that enhances the usability of super-resolution micro-
scopy by integrating a deep learning model capable of
segmenting diverse biomedical images directly into
the image acquisition routine. Specifically, we used
the trained deep neural networks (DNNs) to automati-
cally identify suitable dSTORM imaging positions,
enabling faster and more efficient imaging of con-
tent-rich biological samples containing many and/or
large regions of interest to eventually maximize the
number of meaningful images acquired. By using a
fully trained, static model, our toolkit ensures consis-
tent results across different users. Therefore, we
demonstrate our imaging pipeline on various cellular
examples and quantify the robustness of our method.
MATERIALS AND METHODS

Training and application of neural networks

Semantic image segmentation for standalone segmentation and
high-throughput dSTORMwasachievedusingneural networksbased
on our previous implementation (5). All implementations for network
training and data prediction were written in Python 3 using the Py-
torch framework. The base network used for this work was the Py-
torch implementation of DeepLabV3 with a RESNET101 backbone
and randomweights for initialization (29,30). The losswascalculated
using cross-entropy loss and model parameters were updated using
the Adam optimizer (31) with a fixed learning rate of 1e�4 and
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random model weights for initialization. numpy, scikit-image,
andmatplotlibwere used for base and imageoperations and visu-
alization during training (32). Jupyter notebooks with minimal input
requirements are made available to facilitate use by nonexperts (33).

All models were trained on a workstation computer equipped with
GPU with 24 GBmemory (NVIDIA, RTX A5000, Santa Clara, CA, USA).
To increase training speed, all models were trained on the GPU using
the CUDA toolkit from PyTorch (30). The training was also tested on
standard personal computers and cloud services.

Evaluation of the performance of the network in segmentation
tasks was done using two common scores: dice score (DS, 1) for
the foreground, and pixel accuracy (PA, 2) (34) for both foreground
and background. Pixels were counted as foreground, if the activation
of the foreground output layer was higher than the activation of the
background layer. True positives (TPs) were matching positive
pixels in both prediction and annotation, while true negatives
(TNs) were matching negative pixels. False positives (FPs) were
pixels positive only in the prediction, and false negatives (FNs)
were pixels positive only in the annotation

DS : DS ¼ 2 � TP
2 � TP þ FP þ FN

(1)

TP þ TN

PA : DS ¼

TP þ FP þ FN þ TN
(2)

To perform standalone segmentation of high-content microscopy
images,amodeland itsassociatedsettingswere loadedand themodel
was then applied to the image in question, with the settings derived
from the network training process being automatically applied.
dSTORM microscopy

Imaging was performed on a customized standard wide-field micro-
scope (Carl Zeiss AG, Zeiss Observer Z.1, Oberkochen, Germany) and
a 63� oil immersion apochromatic objective. High-power laser diodes
with wavelengths of 405, 488, and 647 nm were used (TOPTICA Pho-
tonics AG, iBeamsmart, Gr€afeling, Germany) for fluorophore excitation
in epi-fluorescence mode. Excitation intensity for wide-field and
dSTORM illumination was further modulated with an optical density
wheel and focusedon the backapertureof theobjective for uniformep-
ifluorescence illumination. Emission light was then collected with an
EMCCDcamera (Andor, Oxford Instruments, Belfast, Northern Ireland).

For imaging experiments, the airtight samples were filled with im-
aging buffer containing 100 mM cysteamine hydrochloride (Sigma-
Aldrich, M6500, St. Louis, MO, USA), 22 mg/mL glucose oxidase
(Roth Chemie GmbH, 60281, Karlsruhe, Germany), 2 M D-glucose
(Sigma-Aldrich, G7528), and 2 mg/mL catalase (Sigma-Aldrich,
C1345) at pH 8.0.

Images were reconstructed either as a batch macro using the FIJI
plugin ThunderSTORM (35,36), or directly in Python using the storm-
analysis package, an implementation of the DAOSTORM algorithm
(37,38). Image resolution was estimated using the Fourier-Ring-
Correlation provided within the storm-analysis package (39).
High-throughput dSTORM with neural networks

Fully automated, high-throughput dSTORM was performed using
software written in Python 3 and the microscope setup as described
above. The graphical user interface was built with widgets and a live
camera feed for jupyter notebook/lab (33).

For automated dSTORM imaging, the microscopy components
were added to m-Manager and controlled via the Python bridge



pycromanager (40,41). For each channel and illumination, individual
configurations were created in m-Manager (42) and then called soft-
ware to separate microscopy components from the software. Cam-
era and laser lines were controlled with pylablib (42).

First, the desired sample area was split into tiles, which were either
acquired sequentially or through a continuous wide-field scan. Se-
mantic image segmentation of these tiles was performed using neural
networks trained on images from previous experiments, following the
approach described earlier. Each image tile was directly fed into the
network for segmentation, and—for practical reasons—the tile size
used in training matched the camera's field of view. To address seg-
mentation artifacts at tile borders, a second segmentation step was
implemented. This involved creating new tiles by combining adjacent
tiles and applying a center crop. Both segmentation steps and high-
content imaging workflows were parallelized using mulitprocessing.,
enabling faster object identification.

Objects and their respective dSTORM imaging positions were iden-
tified from the segmentation results using scikit-image, where non-
connected foreground pixels were split into individual objects, with
centroids determined as imaging positions (43). To avoid imaging
the same object twice, proximity checks were performed and, when-
ever feasible, closely located objects were imaged within a single field
of view. For objects larger than the field of view, multiple dSTORM im-
ages were acquired at random positions to ensure comprehensive
sampling. Last dSTORM images were acquired at each identified po-
sition. The system supported wide-field acquisition for up to three
colors independently as well as dual-color dSTORM. All imaging ex-
perimentswere executed on a standard personal computer connected
to the microscope equipped with 2 GB of GPU memory.
Periodicity analysis of neural axons

The periodicity of neural axons was analyzed using two methods:
autocorrelation and a pairwise distance-based approach. Autocorre-
lation was applied to manually selected regions of interest using a
custom MATLAB script (The MathWorks, Natick, MA, USA), as
described previously (5). The pairwise distance method was devel-
oped in Python, utilizing the SciPy library (44). In brief, localization
data of individual axons were isolated, a polynomial fit was applied,
and pairwise distances were filtered based on their alignment with
the fitted curve. Periodicity was then determined by correlating the
distance frequencies with simulated sums of normal distributions.
For benchmarking accuracy, dSTORM data sets of neural axons
were generated using the SuReSim software package (45).
Testing samples

SpheroRulers

SpheroRuler samples were prepared as follows: the stock solution
(Idylle, AFA-NAN-1000-647, Paris, France) was sonicated for 2 min
and vortexed for 5 min. Then 2.5 mL of the stock was diluted in 500
mL PBS (Thermo Scientific, J67802-K2), transferred to a four-well plate
(80426, Ibidi), and incubated for at least 2 h to settle on the coverslip.

CHO cells

For CHO samples, 10,000 cells (CHO-K1 ACC 110, DMSZ) were
seeded in a four-well plate and grown in DMEM (Gibco, 41966) for
48 h at 37�C and 5% CO2. Next, cells were washed, fixed in 4% para-
formaldehyde in PBS for 15min, and permeabilized for 5min with 1%
Triton-X (T8787, Sigma). Blocking was done with 500 mL of 5%
bovine serum albumin (A4503, Sigma) and 0.1% Triton-X in PBS
for 30 min. Microtubules were stained with 10 mg/mL mouse anti-
beta-tubulin (T8328, Sigma). Actin filaments were labeled with
0.5 mM Alexa Fluor 647-Phalloidin (Thermo Scientific, A22287, Wal-
tham, MA, USA). On the following day, cells were washed three times
with PBS for 5 min each and then incubated with the secondary an-
tibodies (Alexa Fluor 647 F(ab')2-goat anti-mouse IgG (10 mg/mL,
A-21237, Thermo Scientific). After a further three washing steps,
cell nuclei were stained with Hoechst (Sigma, B2261) (1:3000) for
5 min and then washed three more times.

DRG neuron cultures

The DRGs were dissected from C57BL/6 mice at embryonic day 16
(E16) as described in (46,47). All used culture media were prepared
and named as written in Appeltshauser, Junghof (47). In brief: the
pregnant mice at E16 were killed by cervical dislocation, and the em-
bryos were transferred to ice-cold L-15 medium. Under a dissection
microscope, the spine was opened, and the spinal cord was carefully
removed while ensuring the DRGs remained intact. Subsequently,
each DRG was extracted using microforceps and transferred to
ice-cold L-15 medium. Any nerve roots attached to the DRGs were
removed. Subsequently, the DRGs were transferred to a sterile
PDL/laminin-coated culture dished containing C-medium. After al-
lowing them to settle for 24 h, they were incubated in NB-medium
for 7 days, with medium changes performed every other day. After
day 7, the medium was replaced with C-medium-containing ascorbic
acid and forskolin until day 32. Finally, the cells were fixed with 4%
paraformaldehyde in PBS and stored at 4�C until immunofluores-
cence staining was performed.

Staining of the DRG cultures followed the protocol of the CHO cells
outlined above. For better staining, an additional permeabilization step
for 2 h with 3% Triton-X (T8787, Sigma) and 1% bovine serum albumin
(A4503, Sigma) was added after the blocking step. As the primary anti-
body for the cytoskeletal b2-spectrin, a monoclonal mouse anti-b2-
spectrin antibody (5 mg/mL, BD Biosciences, 612563, Franklin Lakes,
USA) was used, and as a neuron marker a rabbit anti-neurofilament
antibody (1 mg/mL, N4142, Sigma). Alexa Fluor 647 donkey
anti-mouse (715-605-150, Jackson ImmunoResearch Laboratories
Inc., West Grove, PA, USA) and Alexa Fluor 488 donkey anti-rabbit
IgG (7.5 mg/mL, 711-545-152, Jackson IR) were used as secondary an-
tibodies. DRG cultures were not stained with DAPI (Thermo Scientific)
to reduce spectral overlap.
Images of teased nerve fibers and H&E sections

Training images of teased nerve fibers stained for neurofascin were
published as part of a previous study, outlining sample preparation
and imaging (5). Digital microscopic tissue images for nuclei
segmentation and their respective annotations were retrieved from
the monnuseg 2018 challenge (48,49).
Statistics and visualizations

All statistical tests were performed using OriginPro 2021b
(OriginLab Corporation, Northampton, MA, USA). For figure creation
biorender icons were used using a publishing license. Icons
retrieved from: BioRender.com/z75b986.
RESULTS

We have developed a fully automated approach to
super-resolution imaging (Fig. 1) that uses deep
learning-based semantic segmentation to identify
suitable regions directly during data acquisition. Typi-
cally, deep learning for image segmentation involves
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FIGURE 1 Integrating deep neural networks
into dSTORM imaging. Automated STORM
applies trained neural networks for the auto-
mated acquisition of super-resolution data.
(A) First deep neural networks were trained
on annotated (Mask) microscopy images
(Img.). (B) After training the network was
applied to previously unknown images as a
standalone segmentation software. (C) In
the second step, we used our trained net-
works for fully automated imaging of
dSTORM. By acquiring a high-content image
and segment, a map of the sample can be
created for dSTORM imaging. Using this
approach the user has only to be present for
5 min, and the rest can be automated. (D) As
an open-source toolkit, our approach can be
combined with image reconstruction and
data analysis routines.
two steps: training and application of the network. In
the first step, we trained the networks using labeled
training data from previous microscopy images
(Fig. 1 A). Here, as the second step, we implemented
the network and software to be used directly for fully
automated super-resolution imaging at the micro-
scope. Thus, we present a new tool for fast, fully
automated high-content dSTORM imaging (Fig. 1 C).
Optionally, the trained networks, could also be used
for the segmentation of various high-content image
data as a stand-alone program (Fig. 1 B).

Unlike the traditional approach where a researcher
selects a location, captures an image, returns, and
repeats the process—potentially taking hours for just
a few images—our implementation of automated
dSTORM acquisition replaces manual labor with
computational power (Fig. 1 C). First, the researcher
places the sample on the microscope and selects a
starting position. The microscope then autonomously
captures a high-content image, segments it using a
trained network, identifies target objects based on
the segmentation, and then images these objects
entirely on its own. This allowed us to spend only a
few minutes at the microscope while obtaining data
that would otherwise take several hours or days to
collect manually. For easy application, the software
was controlled with an easy-to-use graphical user
interface. As a modular open-source toolkit, it was de-
signed for easy extendibility with image reconstruc-
tion and data analysis routines (Fig. 1 D).
Training and evaluation of deep networks for
segmentation of different biomedical microscopy
images

To ensure high-quality automated dSTORM images, it
was critical to identify target objects of interest and
determine imaging positions with high precision.
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Therefore, we developed an implementation of a DNN
for semantic segmentation of microscopy images and
evaluated its segmentationperformanceacross various
microscopy samples using commonscores: DSandPA.
We demonstrate successful segmentation of various
biological samples: fluorescent images of CHO cells
and nuclei representing cell culture, fluorescent images
ofnodesofRanvier inmurinenervefibers fromaspecific
application in a previous study (5), and hematoxylin and
eosin (H&E)-stained sectionsof humancancer tissueas
a representative nonfluorescent tissue sample (Fig. 2).

The network training for standalone image segmenta-
tionandautomatedsuper-resolution imagingwasbased
on representative annotated samples of the bioimage
data sets to be analyzed. The number of annotated ob-
jects required for successful network training varied
based on the homogeneity of the objects and the sam-
ple. Due to theuse of image augmentation in the training
scripts, a relatively small amount of training data was
sufficient. In most cases, labeling just 10–25 objects
was adequate, and the annotation process took only a
fewminutes to complete. In caseswhere objects shared
similar features, such as the DAPI-stained nuclei shown
in Fig. 2, A–C, successful training was achieved using
only a single annotated nucleus (Fig. 2 A).

While neural networks usually require thousands of
training iterations to adapt effectively, our experi-
ments showed rapid adaptation within just a few iter-
ations, with only minimal improvements observed
thereafter, as shown by high DSs within a few training
iterations (Fig. 2 B). Therefore, we limited the training
to fewer iterations, resulting in remarkably fast
training times of just 3 min.

The network trained on just one nucleus was then
applied to segment a high-content image covering
nearly 2 billion pixels (Fig. 2, C and E) and achieved a
pixelwise DS of 95.94% In addition, the DNN allowed
to easily retrieve metric data, such as the size



FIGURE 2 Segmentation of different microscopy images yields high-quality predictions. Deep neural networks were trained on minimal
amounts of training data, reaching high DSs. (A) A singular DAPI-stained CHO cell was used for the training of the network and its annotation
(green). (B) The DS on the training data increased quickly at the first iterations of the networks and later improved only marginally. (C) Appli-
cation of the network on previously unknown data allowed segmentation of large high-content image data of DAPI-stained nuclei. (D) In addi-
tion to recognition, DNNs allow us to easily retrieve metric data, such as the size distribution of n¼ 14,281 nuclei detected within the image in
(C). (E) Segmentation of nuclei (orange, nucleus; black, background). Intensity is scaled based on the network's confidence that the pixel is part
of a nucleus. (F) Our implementation of DNN successfully segmented various types of microscopy images. Upper row, images; middle row,
ground truth; lower row, binary segmentation output. From left to right: nodes of Ranvier in mice teased nerve fibers stained for pan-neuro-
fascin (DS¼ 87.79%). Scale bar, 15 mm. CHO cells stained for actin (DS¼ 95.58%). Scale bar, 25 mm. Segmentation of the nuclei in H&E-stained
sections of human cancer tissue (DS ¼ 75.83%). Scale bar, 50 mm.
distribution of the n ¼ 14,281 nuclei detected within
the image in Fig. 2, C and D.

For the whole cultured CHO cells stained for actin,
a DS of 94.96% was reached, for the nodes of
Ranvier in murine nerve fibers stained for pan-neuro-
fascin a DS of 87.79% was reached, and for the
nuclei in the H&E section a DS of 75.83% was
reached (Fig. 2 F).
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For samples with a pronounced class imbalance,
such as seen for the DAPI cells (nucleus vs. back-
ground: 9.6 vs. 90.4%) or the nodes of Ranvier (node
vs. background: 1.3 vs. 98.7%), the corresponding PA
of 99.17 or 99.60% was even higher. A metric of
particular importance for automated imaging was
the reliable detection of each individual object. In
both DAPI-stained nuclei and Ranvier nodes, 100% of
all objects were detected, with 93.67 and 86.67% of
individual objects having a DS of at least 75%.
Integration of deep learning allows for fully
automated acquisition of high-content super-
resolution data

Next, we designed an intuitive, user-friendly software
toolkit that makes use of trained neural networks for a
fully automatedacquisitionofsuper-resolutiondSTORM
data. Our software guides themicroscope to scan a pre-
defined largeareaof thesample, performssegmentation
on the entire image using the deep learning models,
translates the segmentation results into meaningful
dSTORM imaging positions, and acquires dSTORM im-
ages at these specific positions (Fig. 3 A).

This can dramatically improve efficiency, for
example, using our approach to image the 14,218
nuclei shown in Fig. 2 C at their individual locations,
rather than tiling the entire sample, reduces the total
number of images required from 194,002 to just
14,218. This represents a 13.6-fold reduction when us-
ing a 25 � 25 mm tile size.

First, we demonstrate that super-resolution micro-
scopy is possible even in dense or large samples
using object localization by deep learning. To show
that themicroscope isable toperformdSTORMimaging
autonomously, we tested it on several types of speci-
mens with different shapes and properties (Fig. 3). In
all experiments, the user only needed to position the
sample, after which up to hundreds of images were
autonomously acquired, depending on the sample type
and experimental conditions. First, to visualize the cyto-
skeleton formed by bII-spectrin rings in neural axons
with super-resolution microscopy, we employed the
multicolor capabilities of the software which allows
the use of separate colors for object identification and
dSTORM imaging. Since bII-spectrin is present in most
cultured cells and is not specific to neural axons, single
staining might not provide sufficient specificity. To
address this and validate the effectiveness of our
method in dense samples, we applied double immuno-
fluorescence staining, neurofilament to specifically
identify axons, and bII-spectrin to visualize the cytoskel-
eton with dSTORM. Second, we conducted a large high-
content scan (Fig. 3B), followedby image segmentation
(Fig. 3C,green) and localizationof imagingpositions, us-
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ing neurofilament, a reliable neuron marker, in one color
channel. Subsequently, dSTORM imaging was per-
formed on a separate channel stained for bII-spectrin
at the identified positions. Using this approach, we
wereable to resolve the subdiffractional periodicorgani-
zation of the bII-spectrin rings that conventional imag-
ing methods are unable to resolve (Fig. 3 D).

Next, we tested a different, small ring-like structure.
We used SpheroRulers and achieved a reliable identifi-
cation and revelation of their ring-like appearance in
two-dimensional imaging, as opposed to the filled-cir-
cle appearance observed in conventional wide-field
imaging (Fig. 3 E). For objects larger than the micro-
scope's field of view, such as the CHO cells in our
study, random sampling and stitching options for
dSTORM were implemented. The dSTORM images
shown in Fig. 3 F display images taken at such random
sampled positions within a segmented cell cluster. By
incorporating deep learning, we fully automated the
acquisition of dSTORM images, which revealed
subdiffraction-limit structures in the samples, demon-
strating capabilities that are not achievable with con-
ventional resolution methods.
Automated STORM achieves similar resolution and
high accuracy compared with conventional dSTORM

Next, we assessed the resolution achieved by our
method and compared the measurements with previ-
ously reported results to validate accuracy.

First, we calculated the average resolution achieved
during the automated acquisition of dSTORM images
of SpheroRulers, a widely available testing sample.
Here, we calculated the resolution using Fourier-ring
correlation across all images acquired with automated
dSTORM in a single experiment, 63 images in total,
and achieved an average resolution of 34.14 5
8.97 nm, thus a super-resolution comparable with con-
ventional dSTORM.

To validate the acquired images in terms of accuracy,
we measured the periodicity of the periodically orga-
nized bII-spectrin rings in neural axons using the previ-
ous gold standard of autocorrelation (5), by manually
selecting small ROIs in the axons (Fig. 4 B). Here, we
measured a mean value of 190 nm (IQR: 180–200 m)
retrieved from n ¼ 1017 peak-to-peak distances, corre-
sponding to previously published data (50) and thus
showing that the methods achieve highly accurate
results.
The software as an open-source tool kit can be
extended with advanced image analysis routines

The introduction of automated high-content data
acquisition presents the challenge of managing and



FIGURE 3 Automated STORM acquisition for high-content dSTORM data. By integrating deep learning into the acquisition routine of super-
resolution imaging, super-resolved images can be acquired completely autonomously. (A) Acquisition followed an automatic four-step proto-
col: high-content image acquisition, followed by semantic image segmentation, followed by object identification and lastly dSTORM imaging.
(B and C) For imaging of bII-spectrin in neural axons, the axons were identified in separate color channel stained for neurofilament. (B) The
high-content image shows plenty of neural axons in a DRG-neuron culture. Scale bar, 100 mm. (C) The DNN was able to segment these axons
for later automated imaging (green overlay). (D) Four out of 256 autonomously acquired dSTORM images of bII-spectrin at the identified axons
are shown. Super-resolution images reveal the periodic organization of the cytoskeleton from one experiment. (E) Autonomously acquired
dSTORM images of dye-coated microspheres (SpheroRulers) visualize the resolution gain in comparison to a standard wide-field image (upper
left). (F) Two autonomously acquired dSTORM images of microtubules in CHO are shown, which were acquired at random positions within a
segmented cell cluster in high-content imaging.
analyzing large, complex data sets, which is why our
software is open-source and can be easily extended
with additional image reconstruction and analysis
tools. Here, we show one exemplary extension tool
for the analysis of periodic structures without manual
ROI selection that outperforms the previous gold stan-
dard shown above.

Instead of image-based autocorrelation, which is
the gold standard for determining periodic structures
(5), we created an algorithm that is directly based on
Biophysical Reports 5, 100201, June 11, 2025 7



FIGURE 4 Automatic acquisition reaches a
high resolution and gives accurate results.
(A) Fourier ring correlation was performed on
SpheroRulers to calculate average resolution.
Here, one exemplary correlation plot is shown.
As a threshold for resolution estimation, 1/7
was used (red). (B) To check the accuracy of
our software we measured the experimental
periodicity of neural axons to compare it
with prescribed values using autocorrelation.
Left: manual chosen ROI is shown as an over-
lay over a dSTORM image of a neural axon.
Histogram of the retrieved peak-to-peak dis-
tances in autocorrelations from one experi-
ment shows a median periodicity of 190 nm
(IQR: 180–200 m), n ¼ 1017 spacings.
the localization data calculating the periodicity from
the pairwise distances between individual emitters,
as multiples of the periodicity should appear more
often than other distances. An exemplary dSTORM im-
age and all pairwise distances of one emitter are
shown in Fig. 5, A and B. By applying a spline fit to
the axons, we enhanced the prominence of the peaks
FIGURE 5 Extending automated imaging with complex image analysi
developed an extension, which is not dependent on ROI selections or s
(B) Scatterplot of all detected emitters in a cropped region of (A) (blue), o
gram of all pairwise distances of all emitters of image (A) (blue). Filtered
represent the periodic arrangement of the emitters (orange). The peaks
odicities can be deciphered with high significance (autocorr. vs. pairwi
means ¼ 197.2 vs. 200.1 nm; d ¼ 210 nm, means ¼ 208.4 vs. 210.9 nm
229.1 vs. 230.3 nm. (E) The periodicity can be retrieved with high
densities (ld) (autocorr. vs. pairwise dist.): ld ¼ 10% means ¼ 256.7
means ¼ 188.2 vs. 190.8 nm; ld ¼ 75%, means ¼ 188.2 vs. 190.6 nm; ld

8 Biophysical Reports 5, 100201, June 11, 2025
representing true periodicity, as shown by the red
arrows in Fig. 5 C. Subsequently, we extracted the
periodicity by correlating the data with adapted
sums of normal distributions. Last, we benchmarked
the routine on identical simulations against the
previous gold standard autocorrelation. First, we
checked if different periodicities were measured
s of neural axons. For faster extraction of axonal periodicities, we
traight regions. (A) dSTORM image of bII-spectrin in neural axons
verlaid with all pairwise distances of one emitter (orange). (C) Histo-
by a spline fit to the course of the axon pronounces the peaks, which
are marked with red arrows. (D) Simulated axons with different peri-
se dist.): d ¼ 190 nm, means ¼ 187.7 vs. 190.5 nm; d ¼ 200 nm,
; d ¼ 220 nm, means ¼ 217.5 vs. 221.7 nm; d ¼ 230 nm, means ¼
accuracy even in challenging conditions such as low labeling

vs. 224.2 nm; ld ¼ 25%, means ¼ 200.7 vs. 200.8 nm; ld ¼ 50%,
¼ 100%, means ¼ 187.1 vs. 190.6 nm.



correctly (Fig. 5 D). Here, the algorithm measured the
periodicity correctly in all cases with a mean-squared
error of just 1.3 nm, which was significantly lower
than measured with autocorrelation (1.3 vs. 10.7 nm,
p < 0.001). The algorithm also distinguished the
different periodicities from each other (p < 0.0001).
The pairwise distance algorithm was also superior in
continuously reducing the labeling density, where it
correctly measured two out of five periodicities even
with a labeling density as low as 10% (Fig. 5 E).
DISCUSSION

This work introduces a user-friendly software toolkit
for the automated acquisition of super-resolution
dSTORM data. Our implementation successfully seg-
ments a range of microscopy images, delivering high
segmentation accuracy. Furthermore, we show that
these deep learning segmentation algorithms can be
used to acquire high-quality high-content dSTORM
data, which can be integrated with analysis tools
that outperform existing standard methods.

While dSTORM offers a superior resolution of
around 50–20 nm compared with about 250 nm for
standard wide-field microscopy (3,12,51), it is time-
consuming for two key reasons. First, capturing each
image can take minutes to hours. Second, identifying
new imaging positions is difficult due to fluorophore
bleaching or off-switching near the imaging area
(52). These challenges limit the use of dSTORM for
large samples and high-content screens, which are in
research areas such as cancer cell vulnerability
studies or histopathological studies (15–18). In our
approach, we achieved super-resolution, while
improving the imaging process efficiency and drasti-
cally reducing user hands-on time. By performing
one high-content screen and identifying impositions
upfront, we streamlined the imaging process, elimi-
nating the need to search for new positions. This ef-
fect is particularly beneficial when objects of interest
are rare and easily missed. In addition, having a
high-content image as a reference makes the process
more systematic and facilitates follow-up analysis.

In summary, automated dSTORM acquisition
facilitates the efficient and systematic collection of
high-content super-resolution images with minimal
user involvement. Although each dSTORM image in
our software still took several minutes to achieve
high resolution, this posed no significant inconve-
nience as the user intervention was only necessary
during the initial setup. The microscope could then
operate autonomously, allowing imaging to proceed
during nights and weekends.

Higher-throughput super-resolution could poten-
tially be achieved by modifying the image acquisition
process itself. However, while such techniques can
expedite individual acquisition, they often come at
the cost of reduced resolution and may introduce
additional technical or computational complexities
(53–56). In our approach, the resolution could theoret-
ically also be affected by the prolonged use of a single
imaging buffer and by preselecting imaging positions
before STORM imaging, which may result in imaging
already prebleached regions due to scattered
light. While both effects could reduce fluorophore per-
formance, we still achieved super-resolution. In sum-
mary, automated dSTORM acquisition facilitates the
efficient and systematic collection of high-content su-
per-resolution images with minimal user involvement,
striking a balance between throughput and image
quality.

Open source is crucial for ensuring reproducibility
in scientific research, as it allows others to access,
verify, and build upon existing work. The software
described here was developed and tested on a stan-
dard wide-field microscope with particular additional
components. However, it was based on two platforms
(pylablib and micromanager) that support a wide
range of different devices and components (40–42).
This allows for straightforward adaptation of the
setup to the requirements of individual research
groups or cost-effective construction of a custom
setup. Our software was designed as an open-source
toolkit that can be modularly extended, thereby
enabling users to readily customize and extend its
functionality to align with specific research require-
ments. In our case, we developed a Python extension
to measure axonal periodicity, which proved to be
highly accurate. In addition to extension also key parts
of the software could be exchanged. For even faster
acquisition but at the cost of its resolution, the
STORM acquisition could, e.g., be exchanged by su-
per-resolution radial fluctuations (57). In summary,
we present an open-source toolkit for automated
acquisition of super-resolution data, that can be
extended to fit different goals.

With the success of super-resolution approaches,
bias in data analysis (58,59) remains a challenge.
Bias and reproducibility are frequently discussed in
deep learning, as neural networks rely entirely on
their training data, which may not always be free of
bias (14,19,60). This is important to consider when
selecting training data for fully automated imaging
of super-resolution data, as it has to be an accurate
representation to make sure all desired objects are de-
tected and imaged (61). Conversely, our methodology
for the automated acquisition of dSTORM data re-
moves human bias in object selection. Once a network
has been trained and evaluated by experts, it consis-
tently identifies the same objects, regardless of the
Biophysical Reports 5, 100201, June 11, 2025 9



user, which ensures that the same objects are imaged,
e.g., when multiple researchers are working together
or in a multicenter context. It also allows for nonex-
perts to perform the dSTORM imaging with expert-
level object selection and therewith offers interesting
options for diagnostic routines.

In conclusion, this work introduces a user-friendly
DNN solution for the segmentation of microscopy
images, paired with a toolkit for the automated
acquisition of dSTORM super-resolution data. The
toolkit is freely available, customizable, and scalable,
enabling adaptation to data sets of varying sizes or
diverse imaging setups. In conclusion, this work
introduces an easy-to-use DNN solution for the
segmentation of microscopy images, paired with a
toolkit for automated imaging of dSTORM super-res-
olution data. The toolkit is freely available for others
to modify, customizable, and scalable to be adapted
for biomedical data of various sizes or diverse
imaging setups. By integrating super-resolution mi-
croscopy into high-content analysis workflows for
large samples, this approach has the potential to
make imaging even more accessible, supporting a
wide range of state-of-the-art studies across multi-
ple research fields.
DATA AND CODE AVAILABILITY

The source code and jupyter notebooks for training and
application of neural networks, automated dSTORM acquisition,
image reconstruction, and data analysis including exemplary
testing data can be retrieved from Zenodo: https://doi.org/10.
5281/zenodo.14690875. Further raw data including dSTORM
data and simulations will be available upon request by any quali-
fied researcher.
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