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Coordination of AMPA receptor trafficking by Rab GTPases
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ABSTRACT
Synaptic connections in the brain are continuously weakened or strengthened in response to
changes in neuronal activity. This process, known as synaptic plasticity, is the cellular basis for
learning and memory, and is thought to be altered in several neuronal disorders. An important
aspect of synaptic plasticity is the tightly controlled trafficking and synaptic targeting of the AMPA-
type glutamate receptors, which are the major mediators of fast excitatory transmission in the brain.
This review addresses the role of Rab GTPases in AMPA receptor trafficking in neurons under basal
conditions and during activity-induced synaptic plasticity, especially during long-term potentiation
(LTP) and long-term depression (LTD). We highlight the importance of the tight spatio-temporal
control of Rab activity and suggest that this is critical for proper neuronal functions. We also discuss
how abnormal AMPA receptor trafficking and malfunctioning of Rabs can lead to neurologic
disorders or memory problems.
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Introduction

Overview on Rab proteins

Rab proteins are small monomeric GTPases forming the
largest subgroup of the Ras superfamily. Originally, they
were named as ras genes from rat brain1 but they are ubiq-
uitously expressed in mammalian cells. Up to date almost
70 different Rab proteins have been identified in humans,
playing a central role in the regulation of intracellular
membrane traffic. A particular characteristic of Rab pro-
teins is that they specifically mark different membranes
and play critical role in ensuring the correct delivery of
membrane-bound cargo from the donor to the acceptor
compartment (for recent reviews, see refs. 2-4).

In general, Rab GTPases are molecular switches cycling
between an inactive form bound to GDP and an active
form bound to GTP (see Fig. 1 for an overview of the reg-
ulation of Rab activity). Rab proteins can associate with
membranes due to the posttranslational covalent attach-
ment of prenyl groups to their C-terminus. Once the gera-
nylgeranylation of a Rab protein takes place, a GDP
dissociation inhibitor (GDI) factor chaperones it within
the cytosol. GDIs take part in the delivery of inactive,
GDP-bound Rab proteins to specific membrane

compartments through interactions with membrane-
bound GDI displacement factors (GDFs). GDFs recognize
GDI-Rab complexes specifically and promote GDI release,
thereby facilitating the association of a particular Rab pro-
tein with its target membrane. The activation of the GDP-
bound Rabs is mediated by guanine nucleotide exchange
factors (GEFs), which catalyze the conversion from the
GDP-bound to the GTP-bound form. In certain cases,
membrane-bound GEFs can be sufficient to lead to the
accumulation of Rab GTPases without the involvement of
GDFs. Active, GTP-bound Rab proteins exert their func-
tion through their effector proteins, providing a diverse
array of pathways (see below). As a negative regulator of
Rab signaling, the intrinsic GTP hydrolysis of Rab proteins
is enhanced by GTPase-activating proteins (GAPs) leading
to Rab inactivation. Inactive, GDP-bound Rabs are then
removed from their target membrane and kept soluble in
the cytoplasm by GDIs (reviewed in refs. 5-7).

A diverse set of proteins serves as Rab effectors
including motor proteins, kinases and phosphatases,
tethering factors or sorting adaptors. There is increasing
evidence that each Rab signals through a set of different
effectors, allowing the compartment-specific coordina-
tion of vesicle transport, budding or fusion as well as
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receptor signaling. Generally, Rab5 allows entry into the
early endosome, whereas Rab4 and Rab11 activate the
machinery that is necessary for sorting and recycling
membranes and receptors back to the plasma membrane.
Rab7 specifically marks late endosomes containing cargo
directed toward lysosomal degradation. Regarding secre-
tory transport, Rab1 and Rab2 regulate vesicular traffic
between the endoplasmic reticulum (ER) and the Golgi
complex, and Rab8 is involved in transport processes
from the trans-Golgi network (TGN) toward the plasma
membrane (for detailed overview on general Rab activity
see refs. 2, 3, 7-9).

Rab proteins in neurons

In neurons, elaborated axonal and dendritic branching
generates an extreme surface to volume ratio and an enor-
mous flux of membrane traffic, with a need of tightly con-
trolled and activity-dependent delivery of vesicles toward
specific membrane compartments. Up to date, approxi-
mately 20 Rab proteins have been identified to play impor-
tant regulatory roles during normal neuronal functions,
including axonal outgrowth, synaptic vesicle recycling,
vesicular transport to and from the Golgi complex and
postsynaptic functions (extensively reviewed in refs. 9-12;
Table 1 summarizes data on Rab interactors identified in
neuronal cells). So far, the role of only a few Rab proteins
and their corresponding GEF, GAP or effectors have been
identified during AMPAR vesicular trafficking (interactor
proteins are highlighted together with their proven impor-
tance in AMPA receptor trafficking in Table 1). In this
review we provide an overview on different trafficking
routes of AMPAR and how these are coordinated by small

GTPases of the Rab family. We also discuss how malfunc-
tioning of Rabs and abnormal AMPAR trafficking can
contribute to neurologic disorders or memory problems.

AMPA receptors and neuronal plasticity

In the central nervous system, most excitatory transmis-
sion is mediated by the AMPA-type ionotropic gluta-
mate receptors (AMPARs). Upon binding glutamate that
is released from the presynaptic-terminals, AMPARs
open and become permeable to NaC, KC and – depend-
ing on the subunit composition – to Ca2C ions, leading
to membrane depolarization. The number and the prop-
erties of the available AMPARs at the postsynaptic mem-
brane determine the extent of excitatory postsynaptic
currents (EPSCs) formed within the dendritic spines. It
is now widely accepted that the amount and composition
of AMPA receptors within the postsynaptic density
(PSD) of dendritic spines determine synaptic efficacy
and affect the excitability of the neuron (reviewed in
ref. 13).

AMPA receptors are tetrameric structures composed
of 4 types of subunits, namely GluA1, GluA2, GluA3 and
GluA4. The GluA1, GluA2, and GluA3 subunits are
expressed during embryonic development, whereas the
GluA4 subunit is mainly present in the late postnatal
development and in adults.14 Most AMPARs in the brain
contain the GluA2 subunit co-assembled with GluA1 or
GluA3, while receptors with GluA4 subunit show a more
restricted and developmentally regulated expression. The
logistics of the delivery, retention and removal of indi-
vidual AMPARs with defined subunit compositions at
specific synapses is highly complex and fundamentally
influences both Hebbian and homeostatic plasticity
(reviewed in ref. 15). The most studied forms of Hebbian
plasticity in the brain are long-term potentiation (LTP)
and long-term depression (LTD), which lead to the long-
lasting increase and decrease of synaptic strength,
respectively. Homeostatic plasticity, however, regulates
synaptic activity in a way to keep neuronal activity
within a limited range to preserve the stability of neuro-
nal circuits. These mechanisms depend on the number
of AMPARs at synapses, which is determined according
to the relative rates of exocytosis and endocytosis at the
postsynaptic membrane. Although it is highly likely that
similar molecular machinery is involved in regulating
AMPAR trafficking during Hebbian and homeostatic
plasticity,16 some aspects of AMPAR endocytosis clearly
differ between events leading to homeostatic scaling or
during LTD.17 We will discuss the role of Rab proteins
during activity-dependent regulation of AMPAR traf-
ficking only in relation to LTP and LTD as most of the
available data deal with these events.

Figure 1. Life-cycle of Rab proteins. Inactive, GDP-bound Rab is
chaperoned within the cytoplasma by GDP dissociation inhibitor
(GDI). Membrane-associated GDI displacement factor (GDF) rec-
ognizes the Rab–GDI complex and mediates the insertion of the
Rab into the target membrane through its prenyl tails (red wavy
lines) resulting in release of the GDI into the cytosol. The activa-
tion of GDP-bound Rab is mediated by the guanine nucleotide
exchange factor (GEF), which mediates the exchange of GDP with
GTP. Active, GTP-bound Rab exerts its function through its effec-
tor protein(s). Intrinsic GTP hydrolysis of Rab is enhanced by the
GTPase-activating protein (GAP) leading to Rab inactivation. Sub-
sequently, inactive, GDP-bound Rab is removed from the mem-
brane and kept in the cytoplasm by GDI.
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Rab proteins regulating AMPAR trafficking
under basal conditions

Already in the ER, AMPA receptors assemble as dimers,
which then form heterotetrameric structures leaving the
ER. The assembly of the tetramer and the exit from the

ER is controlled by a RNA editing step in the GluA2 sub-
unit: the Q/R editing in the pore loop blocks tetrameric
assembly and retains the GluA2 protein at the ER
whereas the unedited subunits immediately assemble
and traffic to their postsynaptic target via the Golgi com-
plex (Fig. 2A, enlarged neuronal soma). On the other

Figure 2. (For figure legend, see page 6.)
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hand, GluA1, which lacks the ER retention motif found
in GluA2, is rapidly exported from the ER. The RNA
editing also contributes to the functionality of the recep-
tors because Q/R edited GluA2 subunits are imperme-
able to Ca2C ions (reviewed in ref. 18).

AMPA receptor trafficking from the neuronal cell
body to the synapse is also controlled by other mecha-
nisms such as interaction with auxiliary proteins includ-
ing the stargazing/transmembrane AMPAR regulatory
proteins (TARPs)19 or the cornichon family.20 The
length and phosphorylation of the intracellular C-termi-
nal domains of AMPA receptors have been considered
as further critical determinants of trafficking. Long-tailed
AMPAR subunits (GluA1 and GluA4) were reported to
rapidly proceed from the ER to the synapse whereas the
short-tailed subunits (GluA2 and GluA3) are trafficked
more slowly. Recent data, however, questioned the
importance of the C-terminal tail, especially during the
regulation of the GluA1 transport (reviewed in ref. 13;
see also refs. 21, 22). Among Rab proteins, so far only
Rab39B has been identified to regulate AMPAR exit
from the ER toward the Golgi complex23 (see Table 1).
Rab39B localizes to the Golgi and interacts with protein
interacting with C-kinase 1 (PICK1), which is necessary
for GluA2 transport from the ER to Golgi compartment
by selectively binding GluA2/GluA3 heterodimers.
Silencing of Rab39B in hippocampal neurons leads to a
decrease in surface GluA2 density and an increase in
Ca2C ion permeable GluA1 AMPAR subunits, elevating
miniature EPSC amplitudes. Importantly, Rab39B is not
involved in activity-dependent AMPAR recycling and
endocytosis as Rab39B knock down did not influence
LTD.

Surface AMPA receptors can be delivered to the
plasma membrane along different trafficking pathways,
such as the de novo exocytotic pathway originating from

the Golgi apparatus and from recycling pathways involv-
ing early and recycling endosomes. Under basal condi-
tions, AMPARs are known to shuttle between internal
and surface compartments, with a steady-state of contin-
uous exocytosis and endocytosis24-26 (see the enlarged
spines in Fig. 2B). Golgi outposts located in dendritic
branch points as well as local protein synthesis from
mRNA can also participate in the de novo exocytotic
pathway (reviewed by ref.27). Interestingly, local protein
synthesis is primarily involved during long-term changes
in activity, leading to homeostatic scaling.13

AMPAR delivery to the plasma membrane from the
trans-Golgi network (TGN) or from the Golgi outposts
located within the dendritic shaft is regulated principally
by Rab8.28,29 Although mainly trans-Golgi network
(TGN)-localized, Rab8 is also found in close proximity
to the postsynaptic plasma membrane and the postsyn-
aptic density29 and has been indicated to direct the Golgi
to plasma membrane delivery of AMPARs during de
novo exocytotic pathway under basal conditions25 as
well as during activity-dependent stimuli.28 Although
real-time observations promote the findings that
AMPARs are inserted extrasynaptically to the plasma
membrane, followed by lateral diffusion to the postsyn-
aptic regions, some work has shown a direct insertion of
AMPARs through Rab8-mediated transport within the
spines.28,30 Rabin8 has been described as a Rab8 GEF31

and optineurin as a Rab8 effector32,33 in neuronal cells,
but so far neither of them has been investigated in rela-
tion to AMPAR trafficking.

The recycling pathway of GluA subunit turnover is
regulated by a tight, spatially and temporally controlled
balance between the rapid internalization of AMPARs
associating with the early endosomes and the delivery of
AMPARs from the recycling endosomes toward the
plasma membrane (depicted within the dendritic shaft of

Figure 2. (see previous page) Rab proteins regulating intracellular trafficking of AMPA receptors (AMPARs) in neurons during basal con-
ditions and synaptic plasticity. (A) Enlarged neuronal soma summarizes neuron-specific, Rab-mediated actions in relation to different
trafficking steps (see text for details). (B-D) enlarged spines depict Rab-dependent events in the basal state (B), during long-term poten-
tiation (LTP; C) or long-term depression (LTD; D). (B) In the basal state, de novo transport from the Golgi or from the Golgi outpost takes
place through Rab8-associated exocytotic vesicles (designated as E). Exocytosis occurs at the extrasynaptic membrane, mostly at the
dendritic shaft, although some data suggest direct delivery of AMPARs to the perisynaptic membrane (dashed arrow). Extrasynaptic
AMPARs diffuse laterally toward the synaptic membrane where they get immobilized within the PSD. Clathrin-mediated endocytosis of
AMPARs into Rab5-positive early endosomes (indicated by EE) occurs at the endocytotic zone, located perisynaptically or within the den-
dritic shaft. Clathrin-independent and Rab10-regulated endocytosis of AMPAR-type subunits from lipid rafts was reported in C. elegans
neurons, as well. Besides de novo trafficking, continuous recycling directly from Rab4-positive endosomes or through Rab11-associated
recycling endosomes (designated as RE) provides the supply for synaptic AMPARs inside the spines as well as within the shafts (depicted
in details only inside the spine heads). (C) upon LTP, the amount of synaptic AMPARs is increased by upregulating de novo trafficking
toward the plasma membrane and lateral diffusion of newly inserted AMPARs (indicated by thicker arrows). During activity-dependent
recycling, the endosomal compartment is increased in size and recycling through Rab11 positive recycling endosomes is elevated. The
role of Rab4-dependent delivery to the membrane has yet to be proven during LTP. It is yet unclear how Rab5-dependent endocytosis
is changed during LTP. (D) in case of LTD, the loss of synaptic AMPARs is due to increased Rab5-dependent endocytosis. Rab11-positive
recycling is reduced, and a large portion of the endocytosed AMPARs is directed to the Rab7-associated late endosome system and
toward lysosomal degradation. During this time, Rab11-dependent recycling is still ongoing.
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the enlarged spine regions in Fig. 2). Endocytotic
removal of AMPARs occurs at the extrasynaptic mem-
brane within the shaft34 or at the perisynaptic endocy-
totic zone within the spines.35 During clathrin-mediated
internalization, Rab5 regulates uncoating and directs
internalized AMPARs toward early endosomes.25,35-37 In
C. elegans neurons, there is an additional, clathrin-inde-
pendent endocytosis of the GLR-1 AMPAR-type sub-
unit. This Rab5-independent endocytosis is mediated by
lipid rafts, and AMPARs endocytosed through this
mechanism are recycled by Rab10.38

While a role for Rab10 in AMPAR recycling in mam-
malian neurons remains unclear, the closely related
Rab4, as well as Rab11, mediate continuous recycling of
endocytosed AMPARs from sorting and recycling endo-
somes, respectively, during normal conditions.25 Rab4-
positive compartments play critical role in spine mainte-
nance during normal conditions.28 GRASP-1, a Rab4
effector has been implicated to mediate the fusion
between Rab4 and Rab11 positive endosomes via syn-
taxin 13 bridging.39,40 Knockdown or overexpression of
GRASP-1 perturbs normal spine morphology and leads
to abnormal endosomal functions. Rab11 selectively
labels recycling endosomes and has been shown to regu-
late the continuous recycling of previously endocytosed
GluA1 subunits to the postsynaptic membrane via fre-
quent entry to and exit from the spines depending on
myosin Vb-directed transport.41-44 Rab11 is not solely
responsible for targeting recycled AMPARs back to the
plasma membrane, as internalized GluA2 subunits can
return to the surface directly from the Rab4 positive
compartments, as well.25 Increase in the surface amount
of AMPARs during corticosterone-induced acute stress
also depends on the Rab4-mediated delivery of the
AMPARs, regulated by the phosphorylation of its
GDI1.45,46 Somewhat contradictory to these data, earlier
studies analyzing GluA1 delivery showed that neither
dominant-negative Rab4S22N nor Rab11S25N altered
AMPAR-mediated basal synaptic transmission,28,29,47

although Rab4-dependent membrane trafficking was
critical for spine size maintenance during normal
conditions.28

During normal conditions, most of the endocytosed
AMPARs return back to the synaptic membrane and
therefore transport to the Rab7-labeled late endosomes
and toward lysosomal degradation is not a common phe-
nomenon.48 In accordance with this, dominant-negative
Rab7N125I did not cause significant differences in the
amount of surface AMPARs in hippocampal slices.47

A special way of recycling has been described in C.
elegans neurons: the retromer complex sequesters GLR-1
AMPARs into endosomal tubules, where RAB-6.1 and
RAB-6.2 regulate the trafficking of the cargo vesicles

back to the Golgi or to dendritic Golgi outposts (depicted
as Rab6 on Fig. 2). Subsequently, cargo is transported
back to the plasma membrane.49,50 In case of rat hippo-
campal neurons, Golgi-associated dominant-negative
Rab6T27N did not grossly alter glycine-evoked AMPAR
insertion to the plasma membrane suggesting that the
retrograde transport is negligible under these condi-
tions.44 Very recently, a function for the retromer com-
plex in AMPAR trafficking was also confirmed in
mammalian neurons. Here, Temkin and colleagues
showed that retromer function is required for exocytosis
of AMPAR during LTP but not for basal synaptic trans-
mission in mature hippocampal neurons.51 Whether
Rab6 is required for AMPAR trafficking under these
conditions, however, still needs to be addressed.

Rab proteins regulating AMPAR trafficking
under LTP

Long-term potentiation is accompanied by a rapid
increase in the amount of surface AMPARs within the
postsynaptic membrane, which confers increased synap-
tic strength. Increased mobility and lateral diffusion of
extrasynaptic AMPARs provide an important supply for
newly inserted synaptic AMPARs. Additionally, exocyto-
sis from recycling endosomes and/or from the Golgi
complex increased AMPAR insertion into the synaptic
membrane within minutes.52 These events are regulated
at different levels, including interaction with scaffold
proteins and molecular motors, formation of the exocyst
complex and regulated release from endosomal compart-
ments (reviewed in more detail by refs. 53-55).

Elevated de novo transport of AMPAR subunit (see
the thickened arrows on the enlarged spine in Fig. 2C)
requires proper Rab8 functioning, as dominant-negative
Rab8T22N selectively impairs AMPA receptor currents
and abolishes LTP in hippocampal slices.28,29 Interest-
ingly, Rab8T22N highly elevates the relative amount of
GluA1 in spines compared with the dendritic shaft fol-
lowing the expression of constitutively active CaMKII,
implicating phosphorylation-dependent regulation of
Rab8 functions.28

LTP is accompanied by structural changes, including
expansion of the spine head and enlargement of the
endocytotic compartment.43 It seems that Rab4-associ-
ated sorting endosomes are not primarily involved in
activity-induced recycling of AMPAR subunits during
LTP, as dominant-negative Rab4S22N only slightly
reduced EPSC amplitudes in organotypic hippocampal
slice cultures.28 Despite the lack of a proven role in LTP,
dominant negative Rab4 regulates synaptic efficacy
under stress conditions. It is known that acute stress
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increases AMPAR-mediated synaptic transmission and
surface positioning in pyramidal neurons. Corticosterone
activates serum- and glucocorticoid-inducible kinase
(SGK), which phosphorylates GDI1, regulating the
cycling of Rab proteins between membranes and cyto-
sol.45 Thus, in the prefrontal cortex, corticosterone stim-
ulates the formation of the GDI1/Rab4 complex via
SGK1-mediated phosphorylation of GDI1, which facili-
tates Rab4-dependent AMPAR delivery to the surface
and potentiates synaptic transmission.45,46

In the case of Rab11, it is widely accepted that its asso-
ciation with recycling endosomes facilitates the delivery
of previously endocytosed AMPARs back to the synaptic
membrane,44 interacting with myosin Vb and the endo-
somal adaptor Rab11-FIP2 upon glycine-induced LTP.43

Accordingly, dominant-negative Rab11 inhibits the ele-
vation in synaptic AMPARs induced by cholesterol
depletion or during chemically induced LTP,44,56

depletes mobile AMPARs at synapses57 and blocks LTP
formation.28,44 Interestingly, overexpression of wild-type
Rab11 leads to robust glycine-induced AMPAR inser-
tion44 while short-term removal or addition of Rab11
recycling endosomes from spines does not impair spine
expansion during chemically induced LTP in hippocam-
pal neurons.41

Although dominant-negative Rab5S34N does not influ-
ence LTP formation in organotypic cultures,28 it is highly
likely that Rab5-mediated endocytosis takes place during
LTP. Chemical LTP (cLTP) was shown to increase the
synaptic delivery of Ca2C-permeable AMPARs selectively
and within minutes, which is followed by a subsequent
exchange to Ca2C-impermeable AMPARs.58 Although
Rab5-mediated endocytosis was not investigated directly,
selective removal of GluA2-free AMPARs during the
consolidation phase of cLTP is most probably mediated
by Rab5-dependent endocytosis. Importantly, selective
retention of GluA2-containing AMPARs during the early
phase of LTP is mediated by their association to PICK1
in the endosomal compartments. Upon elevated intracel-
lular Ca2C ion levels PICK1 is phosphorylated and
released from the membrane allowing GluA2 containing
AMPARs to insert into the synaptic membrane.58,59

Another study, however, showed that PICK1 is not nec-
essary for maintenance of the basal synaptic complement
of AMPARs or NMDAR-dependent LTP. Instead,
PICK1 function in AMPAR trafficking seems to be spe-
cific to NMDAR-dependent LTD.60 Whether the
PICK1-dependent GluA2 retention is of physiological
relevance for LTP thus requires further investigation.

So far, we are not aware of any data showing a contri-
bution of Rab7-mediated lysosomal degradation of
AMPARs in LTP. However, we assume that basal protein
turnover of AMPARs takes place also during LTP, albeit

it might not be important for the strengthening of the
synapse.

Rab proteins regulating AMPAR trafficking
under LTD

During LTD formation (see the enlarged spine in
Fig. 2D), synaptic efficacy is reduced due to the loss of
synaptic AMPARs, which is often accompanied by struc-
tural changes inside the spines, leading to shrinkage
(reviewed in more detail in ref. 13). During this process,
synaptic AMPARs are taken back by Rab5-dependent
endocytosis, leading to the formation of Rab5-positive
early endosomes containing ex-synaptic AMPARs.35,61

Rab5 activity is a key mediator of AMPAR endocytosis
and LTD formation, as blocking Rab5 function by infus-
ing anti-Rab5 antibody or expressing dominant-negative
Rab5S53N inhibited serotonin-facilitated LTD formation
in the prefrontal cortex. In line with these findings, con-
stitutively active Rab5Q79L caused a gradual depression of
mEPSC amplitude, indicating increased endocytotic
activity.62 The surface level of AMPARs and its downre-
gulation during chemically evoked LTD in cultured hip-
pocampal neurons was shown to be dependent on the
intact Rab5 effector functions of Ras and Rab interactor
protein 1 (RIN1), as well.36

Internalized AMPARs are sorted along the recycling
or retention pathways, according to neuronal activ-
ity.48,61 Blockade of Rab7-dependent trafficking by the
dominant-negative Rab7N125I produced a significant
reduction in the extent of LTD,47 indicating that Rab7-
driven trafficking of AMPARs to lysosomes is important
during LTD. Blocking the transport of AMPARs from
the recycling endosomes to the postsynaptic membrane
by the dominant negative Rab11S25N produced a signifi-
cant increase in LTD, indicating that a certain amount
of internalized AMPARs upon LTD induction recycles
back toward the synaptic membrane.47 This is in accor-
dance with previously published data, where vesicles
containing AMPARs from the cell surface colocalize
with TfR (transferrin receptor) or Rab4,61 highlighting
the importance of the recycling pathways even during
LTD formation. Rab8, finally, has not been mentioned
so far in relation to the development and formation
of LTD.

Improper regulation of Rab activity and AMPA
receptor trafficking in neuronal disorders

AMPA receptor dysfunction has been reported in a
couple of neuronal disorders, with Alzheimer disease
(AD) representing the best studied disease so far.
Here, amyloid b (Ab) treatment of neurons induces a
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reduction of AMPA receptor surface expression
through increased endocytosis.63 Accordingly, Ab
treatment facilitates hippocampal LTD and impairs
synaptic plasticity and memory.64,65 Some of the earli-
est neuronal responses in AD are endosomal abnor-
malities which are associated with an upregulation of
Rab5 expression,66 which most likely results in
enhanced endocytosis. Furthermore, enhanced Rab7
levels67 might promote lysosomal degradation of
AMPA receptors. So far the molecular mechanisms
leading to pathological Rab5 activity have not been
well understood. A recent study suggested that ele-
vated levels of bCTF induce APPL1-mediated Rab5
activation on endosomes in AD, a process that is inde-
pendent from Ab.68 How Ab disturbs endocytic signal-
ing thus still awaits investigation.

In the past years, malfunctioning of Rab GTPases and
their regulators and effectors has also been implicated in
several neurodegenerative and neurodevelopmental dis-
orders. For example, mutations in the Rab5 GEF ALS2
are associated with amyotrophic lateral sclerosis,69 mis-
sense mutations in Rab7 cause the Charcot-Marie-Tooth
type 2B disease,70,71 whereas Rab8 has been linked to
Huntington’s disease through its effector optineurin.
Here, mutant huntingtin disrupts the Rab8-optineurin
complex resulting in an overall deficit in post-Golgi traf-
ficking.33 Furthermore, nonsense or missense mutations
of the X-chromosome localized RAB39B resulted in X-
linked intellectual disability72 and early onset Parkinson
disease in affected males.73-76 Although it is likely that
alteration of Rab GTPase activity cause the deregulated
AMPA receptor trafficking that contributes to these dis-
eases, substantial evidence for this is still missing. In a
recent paper, we have shown that the Rab5 GEF RIN1
enhances GluA1 endocytosis due to its Rab5 GEF activity
and plays a critical role in AMPAR internalization upon
LTD.36 RIN1 is highly expressed within the dendrites of
hippocampal neurons77 and regulates EphA4 receptor
internalization.78 Importantly, RIN1¡/¡ mice have defi-
cits in fear learning and extinction and were proposed as
a potential model for posttraumatic stress disorder, char-
acterized by enhanced retention of fear-related memo-
ries.77,79 Thus, the lack of RIN1 leads to increased
amount of AMPARs at the plasma membrane, which
cannot be downregulated upon NMDA-dependent
cLTD. Because AMPAR downregulation is required dur-
ing fear extinction in the amygdala,80,81 one interesting
possibility is that prolonged fear memory of RIN1¡/¡

mice as well as their inability to forget aversive memories
are due to the increased surface level of AMPARs and
the inability to downregulate their levels during
LTD and fear extinction through Rab5-dependent
endocytosis.

Summary and conclusion

Taken together, in the past years several members of the
RabGTPase family have been shown to control the traf-
ficking of AMPA receptors under basal and activity-
dependent conditions. Because of partially redundant
functions within the Rab subfamilies, it can be assumed
that even more RabGTPases contribute to exo- and
endocytosis of AMPA receptors. While it is intuitively
clear that Rab GTPases must be tightly regulated in a
spatial and temporal manner to ensure proper trafficking
of AMPA receptors and hence synaptic plasticity, the
identification of the responsible GEFs and GAPs is still
in its infancy. Similarly, only a few Rab effector proteins
involved in AMPA receptor trafficking have been charac-
terized so far. Rab effectors are very heterogeneous, and
each Rab isoform has many effectors through which it
carries out multiple functions, making their identifica-
tion still challenging. Similarly, several GAPs and GEFs
control the activity of a single Rab isoform. Large inter-
actions screens are required to provide more detailed
information on the interaction network of RabGTPases
in the orchestration of AMPA receptor trafficking under
normal and pathological conditions.
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