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Abstract

Objective: To develop and validate a robust risk prediction model for stroke and systemic embolism (SSE)
in adult patients with congenital heart disease (ACHD), using artificial intelligence.
Patients and Methods: Deidentified insurance claims from the Optum Labs Data Warehouse, including
enrollment records and medical and pharmacy claims for commercial and Medicare Advantage enrollees,
were used to identify 49,276 patients with ACHD, followed between January 1, 2009, and December 31,
2014. The group was randomly divided into development (70%) and validation (30%) cohorts. The
development cohort was used to train 2 machine learning (ML) algorithms, regularized Cox regression
(RegCox), and extreme gradient boosting (XGBoost) to predict SSE at 1, 2, and 5 years. The Shapley
additive explanations (SHAP) model was used to identify the variables particularly driving the SSE risk.
Results: Within this large and diverse cohort of patients with ACHD (mean age, 59 � 19 years; 25,390
(51.5%) female, 35,766 [77.6%]) white), 1756 (3.6%) patients experienced SSE during follow-up. In the
Validation cohort, CHA2DS2-VASC had an area under the receiver operating characteristics curve (AUC) of
0.66 for predicting SSE at 1-,2, and 5-years. RegCox had the best predictive performance, with AUCs of
0.82,.81, and.80 at 1-, 2, and 5-years. XGBoost had AUCs of 0.81, 0.80, and 0.79 respectively. Atrial
septal defect (ASD) emerged as an important predictor for SSE uncovered by the unbiased ML algorithms.
A new clinical risk score, the CHA2DS2-VASC-ASD2 score, provides improved SSE prediction in ACHD.
Yet, the ML models still outperformed this.
Conclusion: ML models significantly outperformed the clinical risk scores in patients with ACHD.
ª 2024 THEAUTHORS. PublishedbyElsevier Inc onbehalf ofMayoFoundation forMedical Education andResearch. This is anopenaccess article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) n Mayo Clin Proc Digital Health 2024;2(1):92-103
P atients with adult congenital heart dis-
ease (ACHD) are at increased risk of
stroke from a young age and other

mechanisms, beyond atrial fibrillation-driven
cardioembolism, may play a role.1e4 They
are also at increased risk of atrial arrhythmias,
often starting early in life.5e7 For patients with
documented atrial arrhythmias (atrial fibrilla-
tion, atrial tachycardia, or flutter), the clinician
may refer to the CHA2DS2-VASC score to pre-
dict their risk of stroke and guide the initiation
of systemic anticoagulation therapy. However,
clinical prediction models such as the
CHA2DS2-VASC score have not been validated
in the ACHD population. Furthermore, atrial
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arrhythmias in ACHD often result from
different pathogenic mechanisms compared
with the anatomically normal heart, based on
atriotomy scars, boundaries and substrates
for reentry created by baffles and conduits,
and progressive atrial myopathy caused by
volume and pressure overload as a conse-
quence of various anatomical defects.8e13

This contrasts with the typically older age of
the population and the different substrate
and mechanisms of atrial fibrillation in the
absence of congenital cardiac defects.

There is a paucity of data regarding the
risk of stroke and systemic embolism (SSE)
and the role of systemic anticoagulation in
2024;2(1):92-103 n https://doi.org/10.1016/j.mcpdig.2023.12.002
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MACHINE LEARNING AND STROKE PREDICTION IN ACHD
patients with ACHD and atrial arrhythmias. In
these cases, clinical practice is currently
guided by expert opinion and consensus state-
ments, and anticoagulation is recommended
for the highest risk congenital defects.14

Furthermore, SSE in this group may be driven
by different mechanisms. There is an unmet
need for a new risk prediction strategy to
detect the real-world risk of SSE in the
ACHD population.

We sought to harness the power of ma-
chine learning (ML) from a large and diverse
data set of patients with ACHD to derive an
unbiased algorithm able to predict the 5-year
risk of SSE in this population based on their
baseline characteristics.

METHODS

Data Source
A retrospective analysis of administrative
claims data recorded over a 5-year period be-
tween January 1, 2009, and December 31,
2014, within the Optum Labs Data Ware-
house was performed; this includes deidenti-
fied data for privately insured and Medicare
Advantage enrollees, with longitudinal health
information available on patients of diverse
ages, ethnicities, and geographical regions
across the United States. The plan provides
comprehensive insurance coverage for physi-
cian visits, hospitals, and prescription drug
services. This study involved analysis of preex-
isting and deidentified data, and institutional
review board approval was exempted.

Study Population
A total of 49,276 adult patients with a coro-
nary heart disease diagnosis (ICD-9 codes
745-747) were identified and followed up be-
tween January 2009 and December 2014. The
index date of entrance to the study was
defined as the earliest discharge date for qual-
ifying inpatient claims or service date of the
second qualifying office visit during the study
timeframe. Continuous medical and pharmacy
enrollment during the 12 months before the
index event was required and used to obtain
the baseline characteristics of the population.

Recorded patient characteristics included
age (<65, 64e75, and 75þ years), sex, race
(non-Hispanic White, Asian, Black, Hispanic,
and unknown), census region (Midwest,
Mayo Clin Proc Digital Health n March 2024;2(1):92-103 n https://
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Northeast, South, West, or unknown), diagno-
ses, medications, and length of follow-up.
Comorbidities included the CharlsoneDeyo
comorbidity index (0, 1, 2, and 3þ) and the
17 conditions that comprise the score. The
CHA2DS2-VASC score was calculated for
each patient at baseline, using diagnoses coded
within the 12 month before the index diag-
nosis and categorized into groups (0e1,
2e3, and 4þ). The specific congenital heart
disease category was recorded and used as
one of the input variables for the ML models
(Supplemental Methods).
Primary Outcome
The primary outcome was defined as the 1-
year, 2-year, and 5-year incidence of SSE after
the index event which prompted entrance in
the study. Patients were followed up until their
first diagnosis of SSE, end of coverage, or until
the end of the study period, whichever came
first. SSE included ischemic stroke, transient
ischemic attack, and peripheral arterial
embolic events. Diagnosis codes for outcomes
can be found in Supplemental Methods.
Variable Engineering
Unlike traditional statistical modeling, most
ML algorithms require specific data formatting
to in other for the algorithm to properly learn
the underlying data distributions. Hence,
before training, we conducted several data pre-
processing steps: numerical variables were
normalized to zero mean and unit variance,
rare binary/categorical variables (<0.1%)
were dropped, and rare levels of categorical
variables were combined into a single cate-
gory. Furthermore, categorical variables were
converted into binary format using the 1-hot
encoding, that is, a categorical predictor with
k possible values were transformed into k bi-
nary predictors, with only 1 active predictor.
Risk Stratification Models
Two ML algorithms, regularized Cox propor-
tional hazard (RegCOX) and extreme gradient
boosting (XGBoost) were trained on a portion
of the data set to predict the risk of SSE based
on the baseline characteristics of the ACHD
cohort (Table 1). These algorithms are
commonly used for clinical risk stratification
and have implementations for time-to-event
doi.org/10.1016/j.mcpdig.2023.12.002 93
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TABLE 1. Patient Characteristics

No atrial fibrillation or flutter
(n¼39,725)

Atrial fibrillation or flutter
(n¼9551)

All patients
(N¼49,276) P

Age (y), mean (SD) 55.8 (19.0) 71.5 (13.0) 58.9 (19.1) <.0001

Age groups <.0001
<65 24,810 (62.5) 2442 (25.6) 27,252 (55.3)
65-75 6858 (17.3) 2303 (24.1) 9161 (18.6)
75þ 8057 (20.3) 4806 (50.3) 12,863 (26.1)

Sex <.0001
Female 21,043 (53.0) 4347 (45.5) 25,390 (51.5)
Male 18,682 (47.0) 5204 (54.5) 23,886 (48.5)

Region <.0001
Unknown 20 (0.1) 13 (0.1) 33 (0.1)
Midwest 9865 (24.8) 2781 (29.1) 12,646 (25.7)
Northeast 7028 (17.7) 2139 (22.4) 9167 (18.6)
South 17,537 (44.1) 3719 (38.9) 21,256 (43.1)
West 5275 (13.3) 899 (9.4) 6174 (12.5)

Race <.0001
Unknown 1601 (4.0) 441 (4.6) 2042 (4.1)
Asian 1241 (3.1) 196 (2.1) 1437 (2.9)
Black 4898 (12.3) 975 (10.2) 5873 (11.9)
Hispanic 3637 (9.2) 521 (5.5) 4158 (8.4)
White 28,348 (71.4) 7418 (77.7) 35,766 (72.6)

Year of index ACHD
diagnosis

<.0001

2009 8292 (20.9) 1630 (17.1) 9922 (20.1)
2010 6837 (17.2) 1426 (14.9) 8263 (16.8)
2011 6304 (15.9) 1433 (15.0) 7737 (15.7)
2012 6204 (15.6) 1555 (16.3) 7759 (15.7)
2013 6490 (16.3) 1847 (19.3) 8337 (16.9)
2014 5598 (14.1) 1660 (17.4) 7258 (14.7)

Charlson index, mean
(SD)

2.2 (2.6) 4.0 (3.1) 2.5 (2.8) <.0001

Charlson index groups <.0001
0 12,628 (31.8) 889 (9.3) 13,517 (27.4)
1 8674 (21.8) 1246 (13.0) 9920 (20.1)
2 5432 (13.7) 1357 (14.2) 6789 (13.8)
3þ 12,991 (32.7) 6059 (63.4) 19,050 (38.7)

Charlson comorbidities
Myocardial infarction 3985 (10.0) 1929 (20.2) 5914 (12.0) <.0001
Congestive heart failure 7920 (19.9) 5604 (58.7) 13,524 (27.4) <.0001
Peripheral vascular
disease

8105 (20.4) 3408 (35.7) 11,513 (23.4) <.0001

Cerebrovascular disease 10,632 (26.8) 3688 (38.6) 14,320 (29.1) <.0001
Dementia 2610 (6.6) 1329 (13.9) 3939 (8.0) <.0001
Chronic pulmonary
disease

9976 (25.1) 4228 (44.3) 14,204 (28.8) <.0001

Ulcer 682 (1.7) 327 (3.4) 1009 (2.0) <.0001
Mild liver disease 2187 (5.5) 741 (7.8) 2928 (5.9) <.0001
Diabetes without
complications

9461 (23.8) 3505 (36.7) 12,966 (26.3) <.0001

Diabetes with
complications

3056 (7.7) 1378 (14.4) 4434 (9.0) <.0001

Continued on next page
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TABLE 1. Continued

No atrial fibrillation or flutter
(n¼39,725)

Atrial fibrillation or flutter
(n¼9551)

All patients
(N¼49,276) P

Charlson comorbidities, continued
Hemiplegia or
paraplegia

1283 (3.2) 381 (4.0) 1664 (3.4) .0002

Moderate/severe renal
disease

4171 (10.5) 2502 (26.2) 6673 (13.5) <.0001

Moderate/severe liver
disease

261 (0.7) 91 (1.0) 352 (0.7) .0021

Metastatic solid tumor 624 (1.6) 252 (2.6) 876 (1.8) <.0001
AIDS 135 (0.3) 18 (0.2) 153 (0.3) .0170
Rheumatologic disease 1407 (3.5) 462 (4.8) 1869 (3.8) <.0001
Other cancer 3564 (9.0) 1493 (15.6) 5057 (10.3) <.0001

Other comorbidities
Hypertension 22,676 (57.1) 8068 (84.5) 30,744 (62.4) <.0001
Atrial fibrillation or
flutter

0 (0.0) 9551 (100.0) 9551 (19.4) <.0001

Pacemaker 613 (1.5) 656 (6.9) 1269 (2.6) <.0001

CHA2DS2Vasc, mean (SD) 2.8 (2.1) 4.5 (2.1) 3.1 (2.2) <.0001

CHADSVasc groups <.0001
0-1 14,382 (36.2) 877 (9.2) 15,259 (31.0)
2-3 11,603 (29.2) 2084 (21.8) 13,687 (27.8)
4þ 13,740 (34.6) 6590 (69.0) 20,330 (41.3)

CHD groups <.0001
ASD 12,461 (31.4) 2644 (27.7) 15,105 (30.7)
Left-side CHD 12,019 (30.3) 3315 (34.7) 15,334 (31.1)
Other CHD 12,996 (32.7) 3333 (34.9) 16,329 (33.1)
Single ventricle 391 (1.0) 57 (0.6) 448 (0.9)
Transposition 274 (0.7) 31 (0.3) 305 (0.6)
VSD 1584 (4.0) 171 (1.8) 1755 (3.6)

Values are n (%) unless specified.

ACHD, adult congenital heart disease; CHA2DS2-VASC, clinically derived stroke prediction model with points for congestive heart
failure, hypertension, age older than 65 or 75 years, diabetes, stroke, vascular disease, and female sex; CHD, congenital heart disease;
VSD, ventricular septal defect.
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outcomes.15 See the Supplemental Methods
for summary description of these algorithms.

Given that the CHA2DS2-VASC score can
be computed for any patient at index (cohort
entry), we also included the CHA2DS2-VASC
score as a predictor variable in the ML models.
The performance results of ML models
without CHA2DS2-VASC score are presented
in the Supplemental Material.

Training and Validation
We randomly divided the study data into a
development cohort (n¼40799, 70%) for
training and validation of the ML models
and a validation cohort (n¼17485, 30%) for
final evaluation. Because both RegCOX and
XGBoost require choosing 1 or more tuning
Mayo Clin Proc Digital Health n March 2024;2(1):92-103 n https://
www.mcpdigitalhealth.org
parameters for optimal performance, we set
up a grid search to select the best (based on
area under the receiver operating characteristic
curve [AUC]) combination of hyperparameters
through a 10-fold cross-validation procedure
using the development cohort. In a 10-fold
cross-validation, the training data were
randomly partitioned into 10 mutually exclu-
sive subsets (or folds); 9 subsets were used
to train the model, and the other (holdout)
subset was used to evaluate the performance
of the model (Figure 1). This procedure en-
sures that each instance is included into the
testing set once. Then, the best tuning param-
eters over the 10-fold cross-validation were
used to train a final model based on the com-
plete data set (all 10 folds combined).
doi.org/10.1016/j.mcpdig.2023.12.002 95
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Development cohort
70% (n=40799) random sample of ACHD patients included in

OLDW between 2009-2014

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10

1) Train ML models to predict risk of
SSE and obtain optimal tuning param-
eters.
2) Obtain optimal threshold for ML
models, CHA2DS2-VASC, and
CHA2DS2-VASC-ASD2 scores

Training set (9 folds)

Final model
Train ML models on complete

development cohort using optimal
tuning parameters

Prediction on hold out fold
Predict 1-, 2-, and 5-year risk

of SSE. Aggregate and compute
confidence intervals.

Validation cohort

30% (n=17485) holdout random
sample of ACHD patients included

in OLDW between 2009-2014

Performance

ROC curve, accuracy, AUC,
sensitivity, specificity, positive

predictive value, negative
predictive value, true positive,
false negative, false positive,

and true negative

10-fold cross-validation

FIGURE 1. Schematic representation of the training and validation of machine learning models. The development cohort (70% of the
original cohort) was randomly partitioned into 10 mutually exclusive subsets (folds): the models were trained on 9 folds and tested on
the holdout fold. This procedure ensures that each instance is included into the holdout fold once. The best tuning parameters over
the 10-fold cross-validation were then used to train the final model based on the complete development cohort (all 10 folds
combined). The final model was evaluated on the validation cohort (30 % of the original cohort). The development cohort was also
used to select the best classification threshold for the ML models and risk scores (CHA2DS2-VASC and CHA2DS2-VASC-ASD2).
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Performance Measures
To evaluate the performance of the models in
predicting SSE at 1, 2, and 5 years, we
computed the accuracy, receiver operating
characteristic (ROC) curve, area under the
ROC curve (AUC), sensitivity, specificity, pos-
itive predictive value, number of true posi-
tives, false negatives, false positives, and true
negatives at each time point.
Selecting the Optimal Classification
Threshold
Using the predicted risk scores from each
model, sensitivity, and specificity were
computed across all possible threshold values
that defined event assignments and used to
construct the ROC curve. The optimal
Mayo Clin Proc Digital Health n March
classification cutoff was defined as the value
that minimizes the distance (d) between the
point (0,1) and the ROC curve (Supplemental
Figure 1, available online at https://www.
mcpdigitalhealth.org/). The optimal cutoff
value displaying the best predictive value for
each of the models is reported in the results sec-
tion, along with the corresponding sensitivity.
Statistical Analyses
Analysis was performed using SAS 9.3 and the
R programing environment for statistical
computing, version 3.5.1. Baseline patient
characteristics were described using means
and standard deviation for continuous vari-
ables and percentages for categorical variables.
The abovementioned performance measures,
2024;2(1):92-103 n https://doi.org/10.1016/j.mcpdig.2023.12.002
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MACHINE LEARNING AND STROKE PREDICTION IN ACHD
and their CIs computed over the 10-fold
cross-validation were used to assess the pre-
dictive power of the 2 ML models, the
CHA2DS2-VASC score and a new CHA2DS2-
VASC-ASD score in predicting SSE at 1, 2,
and 5 years. Classification thresholds were
defined as the value of the risk score that min-
imizes the distance to the ROC curve. Because
the AUC is the most common and effective
performance metric to define the discrimina-
tory ability of a risk scoring system, the pre-
sentation of the results will be given in the
AUC, using the following categories: excellent
(0.9-1.0), good (0.80-0.89), fair (0.70-0.79),
poor (0.60-0.69), or fail/no discriminatory ca-
pacity (0.50-0.59).

RESULTS
A cohort of 49,276 patients with insurance
claims related to ACHD between 2009 and
2014 were included in the study (51.5% fe-
male; age, 59 � 19 years). The most common
congenital cardiac defect was atrial septal
defect (ASD, 30.7%), followed by the group
of left-sided defects (ie, congenital defects of
the aortic and mitral valves, bicuspid aortic
valve, Shone syndrome, coarctation of the
aorta, and persistent ductus arteriosus, 31%).
Ventricular septal defects (VSDs, 3.6%), single
ventricle physiology (0.9%), and transposition
of the great arteries (0.6%) were rare in this
cohort, and this was consistent with real-life
clinical practice. Baseline characteristics of
the ACHD cohort are summarized in Table 1.

Atrial arrhythmias (atrial fibrillation or
flutter) were present in one-fifth of the popu-
lation (9551, 19%) at baseline. The mean
CHA2DS2-VASC score was 3.1 � 2.2 for the
entire cohort, 4.5 � 2.1 for patients with atrial
arrhythmias, and 2.8 � 2.1 for the rest. Ther-
apeutic interventions included oral anticoagu-
lation in 6344 (12.9%) patients and
antiarrhythmic therapy in 2372 (4.8%) pa-
tients (Supplemental Table 2, available online
at https://www.mcpdigitalhealth.org/).

The primary outcome, SSE, occurred in
1064 patients at 1 year, 1412 patients at 2
years, and 1717 patients at 5 years, at a rate
of 25.77 per 1000 person-years. By the end
of follow-up, SSE occurred at a rate of 38.62
per 1000 person-years in patients with known
atrial arrhythmia, and in 23.00 per 1000
person-years in patients without known
Mayo Clin Proc Digital Health n March 2024;2(1):92-103 n https://
www.mcpdigitalhealth.org
arrhythmia (Supplemental Table 3, available
online at https://www.mcpdigitalhealth.org/).

Stroke Prediction Models
When applied to the entire ACHD population,
with or without atrial arrhythmias, the
CHA2DS2-VASC score achieved and main-
tained fair AUC performance of 0.76 (95%
CI, 0.72-0.79) at each time point during
follow-up (Table 2 and Figure 2). However,
both ML models significantly outperformed
the CHA2DS2-VASC score. In particular,
RegCOX exhibited good AUC performance
of 0.83 (95% CI, 0.80-0.85), 0.81 (95% CI,
0.80-0.83), and 0.80 (95% CI, 0.78-0.82) at
1-year, 2-year, and 5-year risk of SSE,
respectively.

This powerful performance of the ML al-
gorithms was also demonstrated on the inde-
pendent validation cohort (RegCOX: 1-year
AUC, 0.82; 2-year AUC, 0.81; and 5-year
AUC, 0.80; XGBoost: 1-year AUC, 0.81; 2-
year AUC, 0.80; and 5-year AUC, 0.79), thus
both significantly outperforming the
CHA2DS2-VASC score (1-year AUC, 0.75; 2-
year AUC, 0.75; and 5-year AUC, 0.74).
Similar superior performances of the ML
models over the CHA2DS2-VASC score were
observed for accuracy, sensitivity, specificity,
true positives, false negatives, false positives,
and true negatives.

ASD Emerged as an Important Predictor of
Stroke in this ACHD Cohort
The Shapley additive explanations (SHAP)
model was used to identify the variables
particularly driving the SSE risk. SHAP plots
were used to display the top 25 variables
from the XGBoost model for patients in the
validation cohort (Figure 3). Each variable in
the model was assigned a weighting score
that reflects the contribution of the variable to-
ward the overall risk prediction. Positive SHAP
values indicate the variable contributes toward
high-risk prediction (SSE), whereas negative
values indicate low risk (no SSE). In
Figure 3, variables on the y axis are sorted
by the sum of absolute SHAP values over all
patients, and the x axis reports the raw
SHAP values (impact of variables on the
model). Each plotted point represents an indi-
vidual patient, and the color represents the
variable value: red indicates high and green
doi.org/10.1016/j.mcpdig.2023.12.002 97
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TABLE 2. Machine Learning Models, Clinical Risk Scores, and Stroke Prediction in the ACHD Population

Model Time (d) Accuracy AUC Sensitivity Specificity PPV NPV Threshold Data

XGBoost 365 0.70 (0.54, 0.83) 0.81 (0.80, 0.84) 0.73 (0.45, 0.95) 0.70 (0.54, 0.84) 0.05 (0.03, 0.06) 0.99 (0.99, 1.00) 0.02 (0.02, 0.02) Development
730 0.68 (0.37, 0.87) 0.80 (0.78, 0.83) 0.74 (0.38, 0.98) 0.68 (0.36, 0.89) 0.06 (0.03, 0.08) 0.99 (0.98, 1.00) 0.03 (0.03, 0.03) Development
1825 0.70 (0.52, 0.82) 0.79 (0.77, 0.83) 0.74 (0.55, 0.90) 0.70 (0.51, 0.82) 0.07 (0.05, 0.09) 0.99 (0.98, 0.99) 0.05 (0.05, 0.05) Development
365 0.69 0.81 0.78 0.68 0.04 0.99 0.02 Validation
730 0.76 0.80 0.70 0.76 0.07 0.99 0.03 Validation
1825 0.61 0.79 0.83 0.60 0.06 0.99 0.05 Validation

RegCOX 365 0.78 (0.77, 0.79) 0.83 (0.80, 0.85) 0.72 (0.65, 0.80) 0.78 (0.77, 0.79) 0.05 (0.04, 0.07) 0.99 (0.99, 1.00) 0.03 (0.03, 0.03) Development
730 0.75 (0.74, 0.76) 0.81 (0.80, 0.83) 0.72 (0.66, 0.77) 0.75 (0.74, 0.76) 0.06 (0.05, 0.07) 0.99 (0.99, 0.99) 0.04 (0.04, 0.04) Development
1825 0.74 (0.73, 0.75) 0.80 (0.78, 0.82) 0.71 (0.66, 0.75) 0.74 (0.73, 0.76) 0.07 (0.06, 0.09) 0.99 (0.99, 0.99) 0.07 (0.07, 0.07) Development
365 0.78 0.82 0.73 0.78 0.06 0.99 0.03 Validation
730 0.75 0.81 0.75 0.75 0.07 0.99 0.04 Validation
1825 0.74 0.80 0.71 0.74 0.07 0.99 0.07 Validation

CHA2DS2VASC
ASD2

365 0.70 (0.69, 0.71) 0.79 (0.76, 0.82) 0.75 (0.70, 0.82) 0.70 (0.68, 0.71) 0.04 (0.03, 0.06) 0.99 (0.99, 1.00) 5 Development
730 0.70 (0.69, 0.72) 0.78 (0.76, 0.81) 0.74 (0.71, 0.79) 0.70 (0.69, 0.72) 0.06 (0.04, 0.07) 0.99 (0.99, 0.99) 5 Development
1825 0.70 (0.69, 0.72) 0.77 (0.74, 0.81) 0.72 (0.67, 0.78) 0.70 (0.69, 0.72) 0.07 (0.05, 0.08) 0.99 (0.99, 0.99) 5 Development
365 0.70 0.77 0.74 0.70 0.04 0.99 5 Validation
730 0.70 0.77 0.72 0.70 0.05 0.99 5 Validation
1825 0.70 0.76 0.70 0.70 0.06 0.99 5 Validation

CHA2DS2VASC 365 0.66 (0.65, 0.67) 0.76 (0.72, 0.78) 0.72 (0.65, 0.77) 0.66 (0.65, 0.67) 0.04 (0.03, 0.05) 0.99 (0.99, 1.00) 4 Development
730 0.66 (0.65, 0.68) 0.76 (0.73, 0.79) 0.74 (0.68, 0.79) 0.66 (0.65, 0.68) 0.05 (0.04, 0.06) 0.99 (0.99, 0.99) 4 Development
1825 0.67 (0.65, 0.68) 0.76 (0.72, 0.79) 0.74 (0.69, 0.80) 0.66 (0.65, 0.68) 0.06 (0.05, 0.07) 0.99 (0.99, 0.99) 4 Development
365 0.66 0.75 0.70 0.65 0.04 0.99 4 Validation
730 0.66 0.75 0.71 0.66 0.05 0.99 4 Validation
1825 0.66 0.74 0.70 0.66 0.06 0.99 4 Validation

Machine learning models versus the CHA2DS2-VASC score (RegCOX outperformed XGBoost, and both ML algorithms outperformed the traditional CHA2DS2-VASC score). The impact of ASD in the general population:
improved stroke prediction compared of the CHA2DS2-VASC, but this was still outperformed by the ML models.

ACHD, adult congenital heart disease; ASD, atrial septal defect; CHA2DS2-VASC, clinically derived stroke prediction model with points for congestive heart failure, hypertension, age older than 65 or 75 years, diabetes, stroke,
vascular disease, and female sex; ML, machine learning; RegCOX, regularized Cox proportional hazard; XGBoost, extreme gradient boosting.
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Model AUC TP FN FP TN

ASD2 0.77 231 82 5232 11940

CHA2DS2VASC 0.75 220 93 5933 11239

RegCOX 0.82 230 83 3827 13345

XGBoost 0.81 244 69 5421 11751
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Model AUC TP FN FP TN

ASD2 0.77 299 115 5164 11907

CHA2DS2VASC 0.75 295 119 5858 11213

RegCOX 0.81 310 104 4296 12775

Model AUC TP FN FP TN

ASD2 0.76 342 148 5121 11874

CHA2DS2VASC 0.74 345 145 5808 11187

RegCOX 0.80 349 141 4393 12602

XGBoost 0.80 291 123 4125 12946

XGBoost 0.79 406 84 6780 10215

FIGURE 2. Model performance for 1-year, 2-year, and 5-year risk of SSE on the validation cohort. ASD2 represents the new
CHA2DS2-VASC-ASD2 score.

MACHINE LEARNING AND STROKE PREDICTION IN ACHD
low. In this cohort of patients, ASD emerged
as a top important variable. In particular, the
top 3 drivers of SSE risk included high
CHA2DS2-VASC scores, presence of cerebro-
vascular disease, and presence of ASD. How-
ever, the coloring of CHA2DS2-VASC score
indicated that the abovementioned relation-
ships do not necessarily apply to every patient.
Although on average high CHA2DS2-VASC
scores indicate an overall greater risk of SSE
(the points are skewed toward positive SHAP
values), for some patients (red points to the
left), their high CHA2DS2-VASC scores were
still associated with lower risk of SSE.

Defining a New CHA2DS2-VASC þ ASD2

Score
Sensitivity analyzes were performed by succes-
sively adding between 0 and 10 points for the
presence of an ASD to the CHA2DS2-VASC
score and calculating the resulting predictive
Mayo Clin Proc Digital Health n March 2024;2(1):92-103 n https://
www.mcpdigitalhealth.org
performance for each model (Supplemental
Table 5, available online at https://www.
mcpdigitalhealth.org/). The optimal perfor-
mance was achieved by adding 2 points for
the presence of an ASD. The new CHA2DS2-
VASC-ASD2 score outperformed the
CHA2DS2-VASC score in its ability to predict
the 1-year (AUC, 0.79 [95% CI, 0.76-0.82],
2-year (AUC, 0.78 [95% CI, 0.76-0.81]), and
5-year (AUC, 0.77 [95% CI, 0.74-0.81]) risk
of SSE on the development cohort. This pre-
dictive advantage was maintained for the vali-
dation cohort. However, the improved
CHA2DS2-VASC-ASD2 score still could not
match the performance of the ML models
(Table 2).

ML: Performance of Models in Patients With
Known Atrial Arrhythmia
The predictive ability of the ML models was
greater for patients without a known atrial
doi.org/10.1016/j.mcpdig.2023.12.002 99
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CHD:Single ventricle

–0.050 –0.025 0.000

Variable contribution score (Impact on model prediction)
0.025 0.050

Feature value
High

Low

CHA2DS2VASC
Celebrovascular disease

CHD:ASD
Age

Chalson index
Hemiplegia

CHD:Other
Sex:Female

Hypertention
Region:South
Days supply

Renal disease
Myocardial infarction

Peripheral vascular disease
CHD Dx year:2009

Atrial fibrillation
CHD Dx year:2011

Chronic pulmonary disease
Liver disease

Rx:Anticoagulants
Race:Black

Rx:Amiodarone HCL
Days to procedure

Region:West

FIGURE 3. SHAP summary plot for the top 25 variables of the XGBoost model contributing to predict risk of SSE. Positive SHAP
values (x axis) indicate the variable contribute to push the model to make high SSE risk prediction, whereas negative values indicate
the variable contribute to push the model to make low SSE risk prediction. Variables on the y axis are sorted by the sum of the
absolute SHAP values over all patients. Each plotted point represents a patient, and the color represents the variable value: red
indicates high and green low. See Supplemental Figure 2 (available online at https://www.mcpdigitalhealth.org/) for SHAP summary
plot for the RegCOX model.
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arrhythmia diagnosis at baseline, and it was
paradoxically weakest in patients with known
atrial arrhythmia. Supplemental Table 4 (avail-
able online at https://www.mcpdigitalhealth.
org/) presents the performance of the models
in the validation cohort for patients with and
without an atrial arrhythmia diagnosis. The
final ML model and the optimal classification
threshold were used for the risk models. The
best performing model, RegCOX, predicted
the 1-year, 2-year, and 5-year risk of SSE in
arrhythmia-free patients with good AUCs of
0.85, 0.84, and 0.84 respectively. Incorpo-
rating the presence of an ASD into the
CHA2DS2-VASC score improved its predictive
ability for arrhythmia-free patients. However,
the presence of an ASD did not make any dif-
ference in stroke prediction in patients with
arrhythmia. Indeed, the performance of all
models was weaker for patients with known
atrial arrhythmia.
Mayo Clin Proc Digital Health n March
DISCUSSION
In this study, 2 well-established ML models
(XGBoost and RegCOX) were trained and vali-
dated in a large population of patients with
ACHD of diverse clinical, racial, and
geographical backgrounds in the United States
to recognize a unique pathologic signature and
forecast the 1-year, 2-year, and 5-year risk of
SSE with greater precision and accuracy than
the CHA2DS2-VASC score.

ML has the ability to scan large data sets
and identify complex patient signatures, which
together may predict the real-life risk of SSE
better than clinical risk scores. In this study,
both ML models outperformed the
CHA2DS2-VASC score, and RegCOX had the
best predictive power, AUC 0.80 (good perfor-
mance), at 5 years. XGBoost had a similar per-
formance (AUC 0.79). Comparatively, the
CHA2DS2-VASC score had a lower predictive
power, AUC 0.74 (fair performance).
2024;2(1):92-103 n https://doi.org/10.1016/j.mcpdig.2023.12.002
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Therefore, these ML algorithms provide supe-
rior risk stratification for SSE in the ACHD
population.

In clinical practice, the physician will often
refer to the CHA2DS2-VASC score after an
atrial arrhythmia diagnosis is firmly estab-
lished; however, this risk score was previously
demonstrated to be predictive of stroke/SSE
even in the absence of atrial arrhythmia
because it is a compilation of important car-
diovascular risk factors for stroke.16 It has
been suggested that perhaps the individual
components of the CHA2DS2-VASC score
may be more important than the atrial rhythm
per se. These factors collectively contribute to
a proinflammatory and prothrombotic milieu
and can set in motion a cascade of events
that ultimately culminates in both thrombotic
(in situ) and cardioembolic events.16

In this study, the CHA2DS2-VASC score
paradoxically performed better in predicting
the risk of SSE in patients with ACHD without
a known atrial arrhythmia diagnosis at base-
line (which was not the population it was
designed for). Furthermore, both ML models
also performed better in these patients
(XGBoost AUC was 0.78-0.80 for all patients,
0.8-0.83 for arrhythmia-free patients, and
0.65-0.67 for atrial arrhythmia patients).
From a clinical standpoint, one may hypothe-
size that once an atrial arrhythmia diagnosis is
established, the clinician may take steps to
mitigate the risk by implementing systemic
anticoagulation therapy and, perhaps,
arrhythmia-targeted interventions. Owing to
the nature of this study, it was not possible
to analyze the individual effects of specific in-
terventions, whether a rhythm control strategy
was pursued and whether it was effective in
maintaining sinus rhythm, or whether patients
were compliant with anticoagulation therapy
when prescribed. However, the large number
of patients in this cohort, and the fact that
the majority of patients (81%) did not have a
known atrial arrhythmia diagnosis at baseline,
and were not treated with antiarrhythmics or
systemic anticoagulation, only increases the
strength of the ML model for SSE prediction
in a naïve real-world population. However,
ML mirrored the behavior of the CHA2DS2-
VASC score in patients with or without known
atrial arrhythmias (with better performance),
suggesting that SSE prediction in ACHD is
Mayo Clin Proc Digital Health n March 2024;2(1):92-103 n https://
www.mcpdigitalhealth.org
more complex than the simple dichotomic
presence or absence of atrial arrhythmia, and
other mechanisms of stroke may be at play.

Although clinical risk prediction models
are developed as the sum of a finite number
of clinical variables already known to be
important (ie, age, hypertension, heart failure,
diabetes, vascular disease, and previous
stroke), ML models are free of this bias and
avoid the “streetlamp paradox” of only consid-
ering variables that are already expected to be
relevant. Furthermore, ML can incorporate a
large number of clinical variables in building
the modeldlimited only by the inputdand
the algorithm can learn and improve the
model with each successive iteration.

In this study, ML also underscored the
importance of several key variables, found to
be prioritized by the unbiased algorithms.
Among the different types of congenital car-
diac defects, ASD emerged as a particularly
important predictor of stroke in patients with
ACHD, seemingly independent of atrial fibril-
lation. In fact, the top 4 high-risk variables
identified by the ML models were the
CHA2DS2-VASC score, a history of cerebro-
vascular disease, ASD, and the Charlson
comorbidity index. Although the enhanced
CHA2DS2-VASC-ASD2 risk score demon-
strated improved predictive power in
arrhythmia-free patients compared with the
CHA2DS2-VASC score, it performed similarly
in patients with atrial arrhythmia. Paradoxical
embolization may be an independent mecha-
nism for stroke in these patients, although
this requires further study.

The mechanisms of stroke in ACHD are
heterogeneous and likely different from the
general population.1e4,16 Pressure and volume
overload can lead to atrial fibrosis, stasis and
thrombosis, intracardiac shunts and the pres-
ence of pacemaker leads can lead to paradox-
ical embolization, and the hyperviscosity of
cyanotic congenital heart disease can lead to
in situ thrombosis.2e4 At the same time, pa-
tients with cyanotic ACHD are at increased
risk of bleeding, making empirical initiation
of systemic anticoagulation without support-
ing data problematic. In ACHD, there is a
paucity of data regarding primary prevention
anticoagulation, and current recommenda-
tions are based on expert opinion and
consensus statements.14,17 In these
doi.org/10.1016/j.mcpdig.2023.12.002 101
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documents, anticoagulation is reserved for the
more complex congenital defects and for high
burden of atrial arrhythmias only.

This study harnesses the power of
advanced ML from a large data set of patients
with ACHD within the United States to iden-
tify a unique signature that predicts SSE better
than the CHA2DS2-VASC score and even in
the absence of atrial arrhythmia.

We followed a robust model development
process through cross-validation to prevent
model bias and overfitting and validation on
a holdout independent cohort to assess model
generalizability outside the development
cohort, thus mimicking how the model will
be used in clinical practice. We demonstrated
that the ML models were consistent, reliable,
and interpretable and, thus, can be translated
into clinical practice to help with the selection
of patients with ACHD at high risk for SSE.

Furthermore, ASDdidentified by the ML
algorithm as a particular risk factor for stroke
in this populationdis known to be associated
with significant late morbidity and mortality
after the fourth decade of life.18 Studies have
reported normal survival in patients who un-
dergo early ASD closure, during childhood,
adolescence or early adulthood, and more
recently improved survival was also demon-
strated in patients who undergo closure later
in life.3,19,20 Although ASD is a known risk
factor for stroke due to paradoxical emboliza-
tion, and ASD closure is an established therapy
for stroke prevention,21,22 multiple studies
have also suggested an increased risk of atrial
arrhythmias after ASD closure.23,24 These iat-
rogenic atrial arrhythmias hypothetically
confer a higher risk of stroke in certain co-
horts; however, this has not yet been explored.
Owing to the nature of this study, using dei-
dentified data from a large cohort of patients
with ACHD selected based insurance claims
using ICD codes, it was not possible to
know the types and severities of various
ASDs and whether they had any specific
catheter-based or surgical interventions.

In this study, we randomly divided the
cohort of patients with ACHD into a develop-
ment group (70%), used to train the ML algo-
rithms, and a validation group (30%). The ML
models demonstrated good performance on
the development cohort, and this was also
confirmed on the independent validation
Mayo Clin Proc Digital Health n March
cohort. Further studies are needed to validate
these ML models on different adult congenital
populations. Potential implementation in the
form of a smartphone or personal computer
application integrated with the electronic med-
ical record would expand the use in clinical
practice. The updated and simple CHA2DS2-
VASC-ASD2 score has a better prediction
power than the CHA2DS2-VASC score in
ACHD and would be readily available for
clinical implementation.

Study Limitations
This study was performed using ML from a
large data set of diverse patients with ACHD
from across the United States; however, 1
requirement for enrollment was to have and
maintain a specific insurance coverage
throughout the duration of the study. There-
fore, this data set may not be representative
of the worldwide ACHD population, with
different medical insurance coverage or treated
outside of the United States or across different
periods (as clinical practice may change).
However, having a large cohort of patients
with diverse clinical, ethnic, and demographic
characteristics tried to mitigate this limitation.
Future studies are needed to further validate
the ML models on different ACHD popula-
tions before full clinical application.

CONCLUSIONS
This study highlights that ML can be leveraged
in large data sets to reveal unique patient sig-
natures in complex and rare diseases such as
ACHD. Being able to provide insight into the
prediction of real-life risk of SSE at 1, 2, and
5 years, beyond standard clinical methods,
provides the physician with the armamen-
tarium to prevent such events in this popula-
tion. Both ML algorithms (XGBoost and
RegCOX) significantly outperformed the
CHA2DS2-VASC score, and a new clinical
risk score was derived, the CHA2DS2-VASC-
ASD2 score, providing improved SSE predic-
tion in ACHD.
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