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Abstract

The rise of resistance together with the shortage of new broad-spectrum antibiotics underlines the urgency of optimizing
the use of available drugs to minimize disease burden. Theoretical studies suggest that coordinating empirical usage of
antibiotics in a hospital ward can contain the spread of resistance. However, theoretical and clinical studies came to
different conclusions regarding the usefulness of rotating first-line therapy (cycling). Here, we performed a quantitative
pathogen-specific meta-analysis of clinical studies comparing cycling to standard practice. We searched PubMed and
Google Scholar and identified 46 clinical studies addressing the effect of cycling on nosocomial infections, of which 11 met
our selection criteria. We employed a method for multivariate meta-analysis using incidence rates as endpoints and find that
cycling reduced the incidence rate/1000 patient days of both total infections by 4.95 [9.43–0.48] and resistant infections by
7.2 [14.00–0.44]. This positive effect was observed in most pathogens despite a large variance between individual species.
Our findings remain robust in uni- and multivariate metaregressions. We used theoretical models that reflect various
infections and hospital settings to compare cycling to random assignment to different drugs (mixing). We make the realistic
assumption that therapy is changed when first line treatment is ineffective, which we call ‘‘adjustable cycling/mixing’’. In
concordance with earlier theoretical studies, we find that in strict regimens, cycling is detrimental. However, in adjustable
regimens single resistance is suppressed and cycling is successful in most settings. Both a meta-regression and our
theoretical model indicate that ‘‘adjustable cycling’’ is especially useful to suppress emergence of multiple resistance. While
our model predicts that cycling periods of one month perform well, we expect that too long cycling periods are detrimental.
Our results suggest that ‘‘adjustable cycling’’ suppresses multiple resistance and warrants further investigations that allow
comparing various diseases and hospital settings.
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Introduction

The emergence and spread of antibiotic resistance threatens our

ability to treat bacterial infections and is a substantial danger for

public health world-wide [1]. Resistant strains are especially

prevalent in hospitals, where the high usage of antibiotics

facilitates emergence and spread of resistant strains. Globally,

8% of hospital stays result in nosocomial infections [1]. It has been

estimated that 70% of these are caused by single- or multiple-

resistant bacteria [2]. Compared to infections by susceptible

bacteria, those caused by resistant strains often increase mortality,

morbidity and costs [3]. While treatment can be tailored to the

pathogen and its resistance profile once cultures are available,

treatment typically needs to be initiated immediately. This

treatment phase is called empirical therapy. In single hospitals

or wards, population-wide empirical treatment of patients can be

coordinated, and several such strategies have been proposed to

fight resistance [4–10]. Here, we focus on the comparison of two

strategies on which most clinical and theoretical studies have

focused so far: The first is ‘‘cycling’’ i.e. scheduled changes of the

predominant antibiotic in a whole ward or hospital. The second is

‘‘mixing’’ i.e. the random assignment of patients to different

antibiotics, such that at any given time point multiple antibiotics

are employed in approximately equal proportions. Mixing has

been seen as the strategy closest to the current usage patterns in

most wards [5]. Theoretical models predict that, when different

antibiotics are employed at comparable average frequencies,

mixing should outperform cycling since the pathogen is subject to

greater environmental heterogeneity when transmitted from host

to host [5,6]. Clinical studies addressing the general usefulness of

cycling have come to contradictory results. Not only has no clear

pattern emerged from these studies, but also some studies report

divergent outcomes for different pathogen species. A qualitative

meta-analysis [10] has argued that cycling could be beneficial for

preserving drug susceptibility in Pseudomonas aeruginosa. However,

neither a quantitative pathogen specific meta-analysis, nor a
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theoretical explanation of potential benefits of cycling is available

to date.

Despite the difficulties to exclude confounders in the clinical

setting and the often-criticized study designs [11], it may therefore

be worth to re-evaluate both clinical studies and theoretical

models. Specifically, it is important to elucidate whether inherent

characteristics of the pathogen or the host populations may lead to

these different outcomes. Here, we perform a quantitative and

pathogen-specific meta-analysis of clinical studies comparing

cycling to standard treatment regimens. We furthermore develop

an epidemiological model tailored to the situation in hospital

wards. We design this model such that it can easily describe a

multitude of infectious diseases. Furthermore, we aim at a model

structure that allows parameterization with observed clinical

parameters. Earlier theoretical studies assumed that patients

remained on the prescribed drugs until leaving the hospital (‘‘strict

cycling’’/‘‘strict mixing’’). Here, we make the realistic assumption

that empirical therapy is automatically changed when ineffective

(‘‘adjustable cycling’’/‘‘adjustable mixing’’). For the sake of clarity,

we will refer to any clinical cycling schedules as ‘‘clinical cycling’’,

because clinical reality is likely different from these two extremes.

We compare the results of our meta-analysis with the predictions

of our theoretical model and highlight common observations that

may explain the divergence between earlier studies.

Results

Unfortunately, morbidity and mortality attributable to resistant

nosocomial infections are only known for a few pathogens [12].

Therefore, we need measurable proxies for disease burden.

Hospital-acquired infections with both susceptible and resistant

pathogens increase morbidity and mortality. In both our meta-

analyses and the epidemiological model, we follow the total

number of patients infected with either resistant or susceptible

strains. Moreover, it has been shown that patient outcome is worse

when receiving inappropriate therapy, i.e. being assigned to an

ineffective initial treatment [13,14]. In our epidemiological model,

we can quantify inappropriately treated patients. However, there

are no matched data for resistance profile and antibiotic therapy

provided in any of the clinical studies. We chose the incidence rate

of resistant infections as second endpoint in the meta-analysis,

because having a resistant infection increases the probability of

inappropriate therapy.

Analysis of clinical data
Here, we define clinical cycling as repeated rotations of at least

two antibiotics in the same order. We performed a literature

search (see methods) to identify studies meeting these criteria. For

performing a quantitative meta-analysis, we required the following

additional criteria: i) a baseline period in the same ward or

comparison to simultaneously recorded data from a ward in the

same hospital, ii) no other infection control measures introduced in

the observation period and iii) unprocessed data on the number of

isolates.

As explained above, we chose the number of total isolates and

resistant isolates per patient day as primary endpoints. Addition-

ally, we collected data on mortality as a secondary endpoint. To be

able to link resistance evolution to the used antibiotics and to

compare the results to our epidemiological model, we only

included resistance against the scheduled antibiotics. To account

for multiple resistance, we summed over the number of isolates

against each of the employed drugs (later referred to as weighted

incidence rate of resistant infections). Moreover, we extracted data

on mortality as a secondary endpoint to ascertain that cycling has

no unexpected detrimental effects. We identified 46 studies [15–

59], of which 11 were eligible [45–54,59], i.e. fulfilled our criteria

and provided all needed data (Figure S1, Table S1 and methods).

One of these [51] reported outcomes from independent wards,

which we report separately. Table S2 lists all data extracted from

these studies.

For all endpoints, cycling performed significantly better in

univariate analyses, also after adjustment for multiple testing

(Table S3). However, the three endpoints are correlated (not

independent), such that univariate meta-analyses on each individ-

ual endpoint is inferior to a multivariate meta-analysis on those

three endpoints simultaneously. We employed a multivariate

analysis framework (methods and supplementary materials p. 9),

which revealed significant reductions in the weighted incidence

rate of resistant isolates from 27 to 20 isolates/1000 patient days

(p = 0.037) as well as in the total incidence rate from 30 to 25

isolates/1000 patient days (p = 0.03, Figure 1A).

We found a pronounced correlation (p = 0.00059, p = 0.028

after Benjamini-Hochberg correction for multiple testing) between

the total incidence rate and level of resistance against the cycled

drugs during the baseline period as measured in average number

of resistances per isolate (Figure 1B). At low levels of baseline

resistance, clinical cycling reduced the total incidence rate of

resistant infections substantially.

Because of the enormous biological differences between the

various bacterial pathogens that may cause hospital-acquired

infections, we repeated our analysis for single pathogen groups and

species (Figure 1C). While clinical cycling remains overall

beneficial, its success strongly depended on the pathogen species.

Differences in antibiotic consumption and import of resistance

into the hospital are strong confounders when comparing

strategies to fight resistance. It has e.g. been argued that

conducting a study per se might alter prescription behavior and

thus reduce antibiotic usage and increase antibiotic heterogeneity

[60]. We collected data on overall antibiotic heterogeneity during

baseline and clinical cycling (in this case measured over all

Author Summary

The rise of antibiotic resistance is a major concern for
public health. In hospitals, frequent usage of antibiotics
leads to high resistance levels; at the same time the
patients are especially vulnerable. We therefore urgently
need treatment strategies that limit resistance without
compromising patient care. Here, we investigate two
strategies that coordinate the usage of different antibiotics
in a hospital ward: ‘‘cycling’’, i.e. scheduled changes in
antibiotic treatment for all patients, and ‘‘mixing’’, i.e.
random assignment of patients to antibiotics. Previously,
theoretical and clinical studies came to different conclu-
sions regarding the usefulness of these strategies. We
combine meta-analyses of clinical studies and epidemio-
logical modeling to address this question. Our meta-
analyses suggest that cycling is beneficial in reducing the
total incidence rate of hospital-acquired infections as well
as the incidence rate of resistant infections, and that this is
most pronounced at low baseline levels of resistance. We
corroborate our findings with theoretical epidemiological
models. When incorporating treatment adjustment upon
deterioration of a patient’s condition (‘‘adjustable cy-
cling’’), we find that our theoretical model is in excellent
accordance with the clinical data. With this combined
approach we present substantial evidence that adjustable
cycling can be beneficial for suppressing the emergence of
multiple resistance.
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periods), antibiotic usage and whether the study controlled for

imported pathogens. We obtained very similar estimates for the

effect of clinical cycling (Table 1) when adjusting for these three

confounders in a multivariate meta-regression. A sensitivity

analysis of the results can be found in the supplementary material

(text S1, {table S4, S5).

Theoretical model
We used our epidemiological model to investigate whether we

could find theoretical explanations for the results of our meta-

analysis. Unlike previous work, our model distinguishes between

asymptomatically colonized and symptomatically infected patients.

In particular, we make the realistic assumption that treatment is

adapted if an asymptomatically colonized patient progresses to

symptomatic disease. For instance, patients receiving drug A are

switched to drug B when their condition deteriorates. In clinical

practice, it may be impossible to adhere to the current treatment

regimen under all circumstances. To accommodate for variable

adherence, we include patients treated with neither of the

scheduled drugs as well as patients treated with both drugs

simultaneously. We also consider two transmission modes: delayed

transmission via contaminated surfaces and direct transmission.

Furthermore, we consider a stochastic and a deterministic version,

which describe small populations (i.e. single wards) and large

populations (i.e. entire hospitals), respectively.

We employed our model to address how the benefit of

‘‘adjustable cycling’’ changes with the period length. Figure 2

gives an overview of the dynamics during different period lengths.

For the extremes of the screened period range, our findings are

in accordance with previous studies (Figure 3, S2, and S3). For

periods below 5 days, there is no difference between ‘‘adjustable

cycling’’ and ‘‘adjustable mixing’’. Intuitively, this makes sense

because for cycling periods below the average length of stay (in our

standard setting 6.8 days), at a given time point the patients in the

ward will have started their therapy in different phases of the

cycling regime, and will therefore be treated with different drugs.

Thus, ‘‘adjustable cycling’’ leads to a similar heterogeneity in drug

use as ‘‘adjustable mixing’’. For very long periods, ‘‘adjustable

cycling’’ performs worse than ‘‘adjustable mixing’’. This is because

cycling with long periods is almost equivalent to strict mono-

therapy, leading to high frequencies of the currently favored

single-resistant strain (Figure 3D, S2, and S3). However, we find

for most parameter settings that ‘‘adjustable cycling’’ outperforms

‘‘adjustable mixing’’ for a range of intermediate periods (Figure

S4).

The success of ‘‘adjustable cycling’’ might be attributable to

extinction of strains that are resistant to the antibiotic that is

currently unused. Surprisingly, adjustable cycling performs worse

in stochastic models, falsifying that hypothesis (Figure 3, S2, and

S3). Our findings are in contrast to earlier studies that employed

deterministic models [5,6], which have argued that cycling always

performs worse than mixing. In particular, it was argued that the

disadvantage of cycling is monotonically increasing with the

cycling period [5].

We tested which of our model assumptions changes the

predictions so fundamentally. Unlike previous work, our model

distinguishes between asymptomatically colonized and symptom-

atically infected patients. In particular, we make the realistic

assumption that treatment is adapted if an asymptomatically

colonized patient progresses to symptomatic disease. For instance,

patients receiving prophylaxis with drug A are switched to drug B

upon progression. We compared our chosen endpoints as well as

the prevalence of different genotypes either with (Figure 3 A and

C) or without (Figure 3 B and D) this adjustment of treatment.

When assuming that there was no progression from colonization to

symptomatic infection, the number of colonized patients raised

monotonically with the period (Figure 3 B) as observed by

Bergstrom et al. [5]. Why does an adjustment of therapy make

‘‘adjustable cycling’’ effective? The most pronounced difference is

that the prevalence of singly resistant pathogens is lower with the

adjustments (Figure 3 C and D). This is because the treatment

Figure 1. Effect of clinical cycling vs. baseline period. A) This figure shows the effect of clinical cycling on total incidence rate, weighted
incidence rate of resistance, and mortality as estimated by a multivariate random-effects model. B) Performance of clinical cycling and pre-existing
resistance. On the x-axis, the average number of resistances per isolate during the baseline period against antibiotics used in the clinical cycling
regimen are given. On the y-axis, the success of clinical cycling as measured in the difference of total isolates per 1000 patient days is given. The error
bars indicate the standard deviation for each study. The p-value as well as the slope of the regression line (red line) with 95% confidence interval of
the regression is given in the figure. One study [49] was omitted because of insufficient data. C) Pathogen-specific meta-analysis. Our outcome
measures were the total number of isolates (black) and the weighted prevalence of resistance to the scheduled antibiotics (red). The number of
studies giving data on the respective pathogen group is given in brackets (black = total number, red = resistant). Due to the sparsity of the data for
individual pathogens, we used the Mantel-Haenszel method. Empty symbols indicate pathogen groups for which the omission of one single study
changed the relative benefit of clinical cycling (e.g. clinical cycling was beneficial when all studies were considered, but the omission of one of these
studies led to a detrimental outcome or vice versa).
doi:10.1371/journal.ppat.1004225.g001

Table 1. Outcomes adjusted for confounders.

Endpoint Adjusted for antibiotic usage and heterogeneity Adjusted for import into hospital

difference total incidence rate/1000 patient days 27.5 [212.3, 22.6] 29 [218.5, 0.4]

difference resistance incidence rate/1000 patient days 210.0 [220.3, 0.2] 23.0 [215.3, 9.3]

difference deaths/1000 patient days 0.4 [22.6, 23.5] 22.6 [25.9, 20.7]

This table shows how the obtained results are affected by commonly criticized confounders. To adjust for differences in antibiotic usage and heterogeneity, we
predicted new estimates for univariate with the function predict() as implemented in the package metafor in R. Here, antibiotic heterogeneity is defined with the
antibiotic heterogeneity index, AHI~1{

n
2(n{1)

X
abs(1=n{ai) with n = number of employed antibiotics and a = usage of antibiotic a/total antibiotic usage.i

To adjust for antibiotic heterogeneity and consumption, we predicted the estimates for the hypothetical case that the ratio of daily defined doses and antibiotic
heterogeneity indices is 1, i.e. exactly equal antibiotic consumption and heterogeneity in both study arms. For predicting the difference when controlling for hospital
import, we predicted estimates for the hypothetical case that all studies only report isolates of strains that the respective patients were neither colonized nor infected
with at admission.
doi:10.1371/journal.ppat.1004225.t001
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switch slows the rise of those pathogens, which are resistant to the

current treatment during a particular cycling period. At the same

time, a substantial amount of resistant infections is washed out by

asymptomatic carriers leaving the hospital. Due to this fast decline

and the slow rise of resistance, a previously restricted drug can be

successfully re-employed in the next cycling period.

As mentioned above, one aim of this study was to investigate

whether we could find theoretical explanations for potentially

divergent recommendations depending on hospital settings or

differences in pathogen biology. To this end, we screened a very

large parameter space (see material and methods and text S1). We

defined the optimal period as the period most successfully reducing

inappropriate treatment without leading to an increased prevalence

of symptomatic infections (Figure S4). A sensitivity analysis

describing how the optimal period can be found in the supplemen-

tary material (Figure S5, S6, and S7). In our model, ‘‘adjustable

cycling’’ with a fixed period of 30 days was often successful and

rarely clearly disadvantageous. Despite enormous improvements in

some settings when individually adjusting the period for each

setting, the optimal period only performed 1.6% (median) better

than a fixed period of 30 days. A detailed analysis of the influence of

specific disease and hospital characteristics is given in the text S1. In

accordance with the results of our meta-regression, adjustable

cycling is especially advantageous if multiple resistance has not risen

to high frequencies yet but is likely to rise further.

Discussion

The question when to use cycling or mixing has been

controversially debated [10], and clinical and theoretical studies

came to different conclusions [5–7,9,10,61]. There are two

possible explanations for this divergence between theory and

clinical observations and potentially between different pathogens:

We might not have sufficient data on population-wide resistance

emergence. Alternatively, specific settings or differences in

pathogen biology might not have been adequately captured in

theoretical models so far.

We employed a method for a quantitative multivariate random-

effects meta-analysis using incidence rates as endpoints and find

that cycling reduced the incidence rate for both total infections

and resistant infections. Our findings remain robust in uni- and

multivariate metaregressions.

Figure 2. Dynamics during ‘‘adjustable mixing’’ and ‘‘adjustable cycling’’ periods of different length. The prevalence of
symptomatically infected patients by strain genotype during deterministic realizations of scenario ii) (single-resistance among incoming patients)
are shown. Red indicates resistance to drug A, blue indicates resistance to drug B, purple resistance to both drugs, and black the overall prevalence.
Graph A) shows the dynamics during mixing, B)–D) during cycling with increasing period length. The grey vertical lines indicate a period change.
doi:10.1371/journal.ppat.1004225.g002
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We investigated the influence of 60 factors that might affect

study outcome by meta-regressions. Regressions with a single

potential confounder are simplifications and might bias our results.

However, if the results of the meta-regressions and the mathe-

matical model are in concordance, it is justified to suggest that the

tested factors influence the success of cycling. Indeed, we found

that clinical cycling reduced the number of total infections when

the pathogens isolated during the baseline period had a low

average number of resistance genes to the drugs employed in the

cycling regimen. This is in line with our and previous theoretical

results arguing that cycling is effective in preventing the evolution

of multiple resistance, but that there is little difference once

multiple resistance is wide-spread [5,6,62].

In our analysis, we assume that the baseline period most closely

resembles ‘‘adjustable mixing’’. However, physicians might tend to

prescribe drugs that both cover a broad spectrum of pathogens

and which they are familiar with. Additionally, they may be asked

to use the substance that has the lowest cost. These restrictions

may lead to a predominance of one drug. Furthermore, there is

only one clinical study simultaneously comparing mixing and

cycling [63]. Finally, the implementation of a study might alter

prescribing behavior [60]. We examined these confounders by

adjusting for different AHIs (antibiotic heterogeneity indices) [28],

as well as the total volume of antibiotic consumption (measured in

daily defined doses, DDD). These adjustments did not generally

change the outcome.

Another potential confounder may be differences in the influx of

resistant pathogens into the hospital. Some of the studies we

analyzed controlled for this confounder. Additional adjustment for

the differences in these two study groups further widened the

confidence interval such that all differences became statistically

insignificant, while the general trend towards a positive effect of

clinical cycling remains. Although adjustment leads to less clear

results, we would expect that confounders are comparable for all

considered pathogens and confounders therefore do not explain

the divergent findings for different pathogens. Moreover, the

adjusted endpoints are not uniformly shifted towards a less

favorable outcome. This indicates that the observed success of

clinical cycling is not solely attributable to confounders that were

most criticized [11]. Despite testing for publication bias (data not

shown), we cannot exclude that unsuccessful studies were not

published. However, we chose a new composite outcome

(weighted incidence rate of resistance), making publication bias

for this particular measure less likely.

Nosocomial infections can be caused by a large variety of

bacterial pathogens. We therefore repeated our analysis for

important pathogen groups and bacterial species. Again, the

overall effect of clinical cycling was beneficial, especially in

reducing resistance. Surprisingly, we observed large differences

between different pathogens. The detrimental effect of clinical

cycling regarding infections caused by enterococci might be

partially explained by the fact that one study used linezolid and

Figure 3. Cycling is successful when treatment is adjusted. The schematic on the left illustrates treatment adjustment upon progression. A
patient colonized (C) with an A-resistant pathogen as indicated by red circles and receiving drug A progresses to symptomatic disease (I) because the
current drug is ineffective. Upon progression, the therapy under which the patient deteriorated is switched to drug B. This drug is effectively clearing
the infection and the patient becomes susceptible (S) for new colonization. The left panel (A, C) shows a scenario where treatment is adjusted upon
progression, the right panel (B, D) shows the same parameter without treatment adjustment. We modeled the scenario without treatment
adjustment by setting the progression rate to zero, the treatment frequencies for colonized patients were adjusted to correspond to the overall
treatment frequencies in our standard settings. The x-axis gives the period length, the y-axis the prevalence of single-resistant carriers relative to
Mixing. The upper panel (A, B) shows the prevalence of colonized (green), symptomatically infected (black) and symptomatic patients who are
inappropriately treated (grey). The lower panel (C, D) shows the genotype composition depending on the period length: red indicates resistance to A,
blue resistance to B, and purple resistance to both drugs. The dotted black line indicates no difference in prevalence.
doi:10.1371/journal.ppat.1004225.g003
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vancomycin for their regimen, leading to outbreaks of vancomy-

cin-resistant enterococci (VRE) in the vancomycin periods [54].

Also from previous theoretical studies as well as our theoretical

results, we expect that cycling favors singly-resistant pathogens.

The study design of many clinical studies had been criticized

before [11]. Based on the available studies that fulfill our selection

criteria, our meta-analyses consistently show that clinical cycling is

beneficial. To strengthen this finding, we used mathematical

modeling to investigate the underlying mechanisms that explain

our results. This theoretical epidemiological model specifically

addresses the situation in hospitals and can be adapted to a

multitude of infectious diseases. Importantly, our model allows

adjusting ineffective treatment. These ‘‘adjustable strategies’’ are

different from the strict cycling and mixing modeled in previous

theoretical work, but is likely to be closer to clinical reality.

The flexibility of our model enables us to identify the optimal

period for a large parameter-range for several settings. This is

essential for elucidating the influence of pathogen biology on

optimal treatment strategies. Our model includes many of the

characteristics of hospital wards that were not considered in

previous models. However, we made simplifications that are

discussed below. These simplifications were necessary because

screening a large parameter space would become impossible with

increasing model complexity. Importantly, for parameter settings

corresponding to those in earlier models we come to the same

conclusions.

We assume that resistance always fully protects from the effects

of the antibiotics and neglect any within-host dynamics. We only

model a single hospital ward and assume that the composition of

incoming patients is constant. In our modeling framework, the

susceptible state is a result of previous antibiotic therapy. It

indicates that a patient’s microflora has been disturbed to a degree

that other strains can easily invade. Despite the large numbers of

bacteria in the microflora in colonized patients, their numbers

likely decline when treated with an antibiotic for which they are

susceptible. This process would be most accurately described by a

continuous decline of infectiousness, which may never reach zero.

However, to keep our model tractable, we assume that the

bacterial load in the microflora is reduced to an extent that

transmission of a strain susceptible to the used antibiotics is

negligible compared to the infectious pressure by fully colonized or

infected patients.

Furthermore, we assume that the mutation rates to resistance

are constant. With plasmid-borne resistance, the rate of resistance

acquisition depends on the abundance of both donor- and

acceptor strains. Thus, our model reflects chromosomal resistance

more accurately than plasmid-borne resistance. However, muta-

tion rates have a negligible influence once resistance is brought in

by incoming patients. We therefore do not expect that the results

of our model would change substantially when taking different

modes of resistance acquisition into account.

Naturally, there is an enormous biological diversity in all

pathogens that cause nosocomial infections. Thus, we would

expect differences in the speed of resistance emergence and

spread. Here, we focus on the question, which salient properties of

these bacteria determine which treatment strategy will be most

successful. One important factor we identify in all our analyses is

the rate of emergence of multiple resistance. In our general meta-

analysis we found that the baseline prevalence of resistance

strongly affects the success of cycling. Consistent with these results,

we observe in our model that ‘‘adjustable cycling’’ can suppress the

emergence of multiple resistance. This is the case when multiple

resistance is not present in incoming patients, but would emerge de

novo in the ward during ‘‘adjustable mixing’’, i.e. with high

mutation rates in the stochastic model and more generally in the

deterministic model. The fact that ‘‘adjustable cycling’’ is even

more effective in a deterministic model indicates that extinction

events during the off-periods play only a minor role and cannot

explain potential advantages of cycling. This is in contrast to

making use of extinction in informed switching, where treatment is

switched depending on current resistance frequencies [64].

Unsurprisingly, these results only hold when the single-resistant

strains have a competitive advantage over the double-resistant

strain in each cycling period.

The optimal period depends on the emergence of double-

resistant strains and the generation time (time between the

infection of a patient and the transmission to the next patient).

These factors are not always known, but a period length of 30 days

performed well in nearly all settings. When in doubt, a shorter

period seems to be more beneficial, because there is no difference

between ‘‘adjustable cycling’’ and ‘‘adjustable mixing’’ when the

period length is shorter than the generation time, while too long

periods are equal to treating with only one drug. Despite the lack

of correlation between number of used drugs and study outcome

in the meta-analysis, it would also be interesting to develop

theoretical models with more than two drugs. From previous

theoretical studies [6], we would expect that cycling improves as

more drugs are included, because resistance against a specific drug

would decline to lower levels until this drug is reintroduced.

Most importantly, the findings of our meta-analysis agree well

with our theoretical results. Both the meta-analysis as well as the

theoretical model shows that cycling is beneficial if there is

emerging or a low influx of double-resistance. Thus, our model

incorporates an important, previously disregarded factor that

changes treatment recommendations. Clearly, more pathogen-

specific studies of larger scales are needed to answer in which

pathogens cycling is beneficial.

Methods

Meta-analysis
Study selection. A literature search was performed on

PubMed in the Medline database using ‘hospital’’ combined with

two of the following terms: i) ‘antibiotic’, ‘antimicrobial’ or

‘antibacterial’ and ii) ‘cycling’, ‘rotation’ or ‘scheduled changes’.

For a search on Google Scholar we required i) and ii) to be linked,

i.e. either ‘‘i) ii)’’ or ‘‘ii) of i)’’ to minimize false-positive hits in the

full text search. Reference lists of all retrieved original papers and

of review articles were hand-searched to identify further relevant

studies. We identified 46 clinical studies addressing the effect of

cycling on nosocomial infections (Figure S1).

Inclusion/exclusion criteria. We defined cycling as repeat-

ed rotations of at least two antibiotics in the same order. This

criterion was met by 25 studies (Figure S1) Furthermore, we

required a baseline period in the same ward or comparison to

simultaneously recorded data from a ward in the same hospital

and that no other infection control measures were introduced in

the observation period. In total, 11 studies were eligible, i.e.

fulfilled our criteria and provided all needed data (Figure S1).

Endpoints. We chose the number of total isolates and

resistant isolates per patient day as primary endpoints and

deaths/patient day as secondary endpoint. To be able to compare

the results to our model, we only included resistance against the

scheduled antibiotics and summed over all resistances, such that

we count resistance genes rather than the number of isolates

resistant against at least one drug. This measure is related to the

number of inappropriately treated patients, since appropriate

treatment becomes less likely with increasing resistance levels.
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Since not all studies gave the number of patient days, we used the

number of beds in ward or in the hospital multiplied with observed

period as a proxy when necessary.

Data extraction. Data were extracted independently by two

investigators (PAzW and SA). Differences were resolved by

discussion with a third investigator (RK). The extracted data are

given in table S2. For one study [45], both a temporal and a spatial

control were given. Three studies reported both total and only

acquired pathogens [11,50,54]). To minimize heterogeneity, we

chose the temporal control and total isolates. However, when

adjusting for possible confounding (Table 1), we used the

difference in the three studies reporting both total and acquired

pathogens. Regarding antibiotic usage, the level of detail in

reporting was very variable. To calculate antibiotic heterogeneity

([28], Table 1), we used all data reported in each study regardless

of how comprehensive they are.

Data analysis and statistical methods. We used the

metafor package [65] in the statistical software package R (version

3.0.2). For analyzing the incidence rates of all reported pathogens,

the pooled rate differences and 95% confidence intervals (CIs)

were calculated using data provided in each study. For the data on

infections caused by all bacterial species, these were obtained using

a random-effects multivariate meta-analysis of the three endpoints

simultaneously ([66–68] see supplementary material).

Since the data for single pathogens are sparse, we used the

Mantel-Haenszel method and evaluated the stability of the results

with leave-one-out sensitivity analyses. Between-study heteroge-

neity was examined using the Q statistic and the I2 statistic [69].

Publication bias was assessed using plots of study results against

precision of the study (funnel plots). Symmetry of the funnel plots

was tested using the methods suggested by Egger et al. [70] and

Begg and Mazumdar [71]. Given the detected high degree of

heterogeneity of the incidence rate differences, we subsequently

conducted meta-regression analyses to explore pre-defined sources

of heterogeneity.

Epidemiological model
We assess the outcome for a timeframe of ten years to account

for the fact that the expected time for the availability of new

broad-spectrum antibiotics is in the range of a decade. We

performed all analyses with a stochastic and a deterministic

version, which describe small populations (i.e. single wards) and

large populations (i.e. entire hospitals), respectively. In preliminary

analyses, we found that transmission mode and the proportion of

incoming resistant strains were the factors that lead to the greatest

changes in model predictions. Therefore, we chose a total of six

standard scenarios. We consider two transmission modes: delayed

transmission via contaminated surfaces and direct transmission.

Both transmission modes were analyzed for three settings: either i)

no pre-existing resistance in the community, ii) pre-existing single-

resistance or iii) both single and double-resistance pre-exist. For

these six standard scenarios, each of the 22 model parameters was

varied over a clinically relevant range (Table S6), while all other

parameters were kept at default values. All periods were chosen

such that we evaluate the success at 3600 days exactly at the end of

a period where the second antibiotic (B) was employed. For all six

settings, we screened the combination of all default values by

varying the period length over all integer divisors of 1800 (i.e.

1800, 900, 600, …, 2, 1). When varying single parameters in each

of the six standard settings, we chose a subset between 5 and 360

days (Figure S4).

The model we use in this study is based on a model we used

previously [64,72]. We consider a compartmental epidemiological

model that aims at describing a single hospital ward (for an

overview over the parameterization see Table S6). We assume that

two broad-spectrum antibiotics are available for empirical

treatment. We will refer to these as drug A and B. Accordingly,

we follow four genotypes (Figure S8): wild type (sensitive to both

drugs), resistant to A, resistant to B, and resistant to both drugs.

Resistance can be acquired via mutations, which occur at rates ma,

mb and mab, the subscript denotes the drug against which resistance

is acquired. The parameter masym describes mb relative to ma, while

keeping the resulting mab constant. For simplicity, we make the

assumption that there is no cross-resistance, meaning there is no

additional selection pressure for A-resistance or B-resistance other

than by drug A and B, respectively.

Patients are classified as being protected (P, e.g. intact

microflora), susceptible (S), colonized (C; i.e. asymptomatic

carriers), or infected (I; i.e. symptomatic carriers) (Figure 4). In

this context the susceptible state is a result of previous antibiotic

therapy. It indicates that a patient’s microflora has been disturbed

to a degree that other strains can easily invade. Furthermore, we

assume that the bacterial load in the microflora is reduced such

that transmission of a strain susceptible to the used antibiotics

ceases.

We assume that both mortality and morbidity only differ in

symptomatically infected patients, the additional mortality in these

patients is given by the parameter d, the reduced likelihood of

leaving the hospital when infected by the parameter rI. With long-

term treatment, protected patients may proceed to the susceptible

compartment after a time tcl,P. We consider two transmission

modes; either immediate transmission (also appropriate for

transmission without a time-lag via health care workers) or

delayed transmission. The latter occurs via a pathogen reservoir

outside the patients (E), which describes most appropriately

environmental contamination. It may also describe the dynamics

resulting from the transient colonization of health care workers,

although these are not modeled explicitly. Patients are first

asymptomatically colonized and may then progress after a time tp.

The time to clearance tcl when treated appropriately is the same

for both colonized and infected patients. The compartments C and

I are divided in subcompartments according to the carried

genotype (wt, A-, B- or AB-res).

We assume a fixed number of beds (20) in the hospital ward. As

soon as a bed is free, new patients are admitted within a day,

resulting in an average population size of ,17 patients per ward

(85% occupancy). The composition of the incoming patients

regarding colonization and resistance status is assumed to be

constant over the observed timeframe. These frequencies are

described using the parameters in table S6, section 2. The

proportion of patients carrying resistant and double-resistant

strains is given by pres and pab, respectively, the relative proportions

of A- and B- resistance are given by pasym (if this is 0.5, both strains

are found at equal frequencies). To follow treated patients, all

compartments are subdivided according to the treatment status

(Figure 5). Since we only investigate resistance to drug A and B, we

do not take any other drugs into account. Infected patients are

treated per default according to the current treatment strategy

(‘‘adjustable mixing’’ or ‘‘adjustable cycling’’) as soon as they enter

the hospital or progress to the infected compartment.

Here, we consider ‘‘adjustable strategies’’, i.e. we assume that in

patients that progress while they are treated, the treatment is

switched. Furthermore, we assume that susceptible patients cannot

be infected with a strain when treated with a drug the pathogen is

susceptible for. A certain fraction of patients that are not

symptomatically infected with the considered pathogen may also

receive treatment with the scheduled drugs. The frequency of such

treatment, which we call here prophylaxis, is given by fp, and
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describes the number of asymptomatic patients receiving the

currently scheduled therapy. In addition, some patients may

receive both drugs, this is denoted by fp,AB. Figure S9 gives the

average treatment frequency during one strategy. Around seven of

seventeen patients (41%) receive either of the scheduled drugs at

any point in time. Once an infected patient is assigned to a drug,

Figure 4. Compartmental model for single strain. Explanations of the parameters, their standard values, the range over which we varied these
parameters, as well as references are given in table S6. The compartments are: P = protected patients; S = susceptible patients; C = colonized patients;
I = infected patients; E = environment. The color coded arrows indicate: violet = environmental contamination & decay; blue = admission & mortality/
discharge; green = decolonization & recovery (this does not necessarily indicate full clearance of the pathogen from all body compartments, rather, it
describes that the bacterial population has decreased sufficiently to allow a new strain to take over); orange = progression; red = transmission.
doi:10.1371/journal.ppat.1004225.g004

Figure 5. Treatment algorithm. The superscript denotes the treatment status. Colonized patients are assigned with frequencies fp and fp,AB to
treatment for other causes than symptomatic infections with the organism under consideration. If they progress to symptomatic disease and were
previously treated with a single drug, this drug is then switched, while patients on both drugs remain on their treatment. Infected patients are
assigned to treatments according to the current treatment strategy (mixing or cycling) immediately upon entering the ward.
doi:10.1371/journal.ppat.1004225.g005
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he remains on this treatment until he leaves the hospital unless the

treatment is inappropriate (for example treatment with drug A for

an A-resistant infection), in which case it is switched with a rate s.

The biology of different infectious diseases is described with the

parameters of table S6, section 3. These determine a) how fast de

novo resistance may arise in individual patients, b) the costs of

these resistance mutations, which are assumed to lower transmis-

sion probability, c) the rates with which patients can recover after

treatment, d) the increase in mortality by the disease and finally e)

how fast colonized patients become symptomatic.

We consider both a deterministic and a stochastic version of the

model described above. The deterministic model is implemented

by numerically solving the ordinary differential equations (ODEs)

that correspond to figures 4, 5 and S8. The stochastic model is

derived from these ODEs by considering transition between

compartments as stochastic events according to the Gillespie

algorithm. All codes are available upon request.

Supporting Information

Figure S1 PRISMA flowchart.

(PDF)

Figure S2 Influence of period length on ‘‘adjustable
cycling’’ success and genotype composition. Results of

stochastic simulations with parameters for scenario ii (single-

resistance present among incoming patients) and direct transmis-

sion. A) Relative change of inappropriately treated patients (open

grey diamonds) and symptomatically infected patients (solid black

circles) as compared to ‘‘adjustable mixing’’. B) same as A with

higher resolution. C) Relative change of genotype composition

depending on the period length as compared to ‘‘adjustable

mixing’’: black indicates wild-type, red resistance to A, blue

resistance to B, and dotted purple resistance to both drugs. D)

same as C) with higher resolution. The 95% CI, as determined by

bootstrapping, is given as error bars. Please note that the error

bars for all measures except the prevalence of double-resistance

are smaller than the used symbols.

(PDF)

Figure S3 Influence of period length on cycling success
and genotype composition, environmental transmis-
sion. For all simulations, parameters for scenario ii (single-

resistance present among incoming patients) and environmental

transmission were used. A) Relative change of inappropriately

treated patients (open diamonds) and symptomatically infected

patients (solid circles) as compared to mixing for a deterministic

realization. B) Same as A) for a stochastic realization. C) Relative

change of genotype composition depending on the period length

as compared to mixing: black indicates wild-type, red resistance to

A, blue resistance to B, and dotted purple resistance to both drugs.

The 95% CI, as determined by bootstrapping, is given as error

bars. D) Same as C) for a stochastic realization.

(PDF)

Figure S4 Overview over optimal cycling periods and
success of these periods. A) For stochastic simulations if no

resistance pre-exists in the incoming patients (scenario i). The

results were obtained by averaging over 10000 simulations.

Parameters (explained in table S6) were varied from a) (lowest)

to g) (highest, see table S6) and the effect on the relative reduction

of inappropriately treated patients as compared to mixing is

indicated by green color code for an optimal period length. The

optimal period was defined as the period that is most successful in

reducing inappropriate therapy without leading to a higher

prevalence of symptomatic infections and its length is indicated

by red color code. The areas shaded in grey indicate that there is

no period (within our screened range) for which cycling

outperforms mixing. B) For stochastic simulations if only single-

resistance pre-exists in the incoming patients (scenario ii). The

results were obtained by averaging over 10000 simulations.

Parameters (explained in table S6 were varied from a) (lowest) to

g) (highest, see table S6 and the effect on the relative reduction of

inappropriately treated patients as compared to mixing is

indicated by green color code for an optimal period length. The

optimal period was defined as the period that is most successful in

reducing inappropriate therapy without leading to a higher

prevalence of symptomatic infections and its length is indicated

by red color code. The areas shaded in grey indicate that there is

no period (within our screened range) for which cycling

outperforms mixing. C) For stochastic simulations if both single

and double-resistance pre-exist in the incoming patients (scenario

iii). The results were obtained by averaging over 10000

simulations. Parameters (explained in table S6) were varied from

a) (lowest) to g) (highest, see table S6 and the effect on the relative

reduction of inappropriately treated patients as compared to

mixing is indicated by green color code for an optimal period

length. The optimal period was defined as the period that is most

successful in reducing inappropriate therapy without leading to a

higher prevalence of symptomatic infections and its length is

indicated by red color code. The areas shaded in grey indicate that

there is no period (within our screened range) for which cycling

outperforms mixing. D) For deterministic simulations if no

resistance pre-exist in the incoming patients (scenario i). Same as

Figure S4A for deterministic simulations. E) For deterministic

simulations if single-resistance pre-exists in the incoming patients

(scenario ii). Same as Figure S4B for deterministic simulations. F)

For deterministic simulations if both single and double-resistance

pre-exist in the incoming patients (scenario iii). Same as Figure

S4C for deterministic simulations.

(PDF)

Figure S5 Influence of admission of susceptible patients
and time between first and second transmission. The

lines represent the averages of 10000 stochastic simulations; the

error bars the 95% CI as determined by bootstrapping. The red

line indicates the standard parameter setting. A) Shows an

example of increasing the influx of susceptible patients (from

0%, given in black in 15% steps to 90%, given in light grey).

Simulations for direct transmission for scenario ii (only single-

resistance among incoming patients) are shown. B) Shows an

example of increasing the time between the colonization of a

patient and the transmission of the pathogen by increasing the

environmental decay rate (from 1 day, given in black over 2, 5, 7,

10, 20 to 100 days, given in light grey). Simulations for

environmental transmission for scenario ii (only single-resistance

among incoming patients) are shown. The dotted black line

indicates no difference in prevalence.

(PDF)

Figure S6 ‘‘Adjustable cycling’’ success depends on
fitness of double-resistant strain. These graphs show how

the suppression of double-resistance depends on the fitness of the

double-resistant strain (color code on the right). The parameter

setting corresponds to scenario ii (single-resistance among

incoming patients) for direct transmission. The upper panel (A,

B) gives the prevalence of inappropriately treated patients relative

to mixing; A) for deterministic realizations and B) for the stochastic

realizations. The 95% CI, as determined by bootstrapping, is

given as error bars, however, these are smaller than the line width.

The lower panel (C, D) gives the prevalence of double-resistant
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strains relative to mixing; C) for deterministic realizations and D)

for the stochastic realizations. The 95% CI, as determined by

bootstrapping, is given as error bars.

(PDF)

Figure S7 Selection pressure depending on period
length and main factors influencing the optimal period.
A) Classification of period lengths in three groups, on the example

of a stochastic realization of the standard setting for scenario ii

(single-resistance present among incoming patients). i) red

indicates those periods for which there is no difference between

‘‘adjustable mixing’’ and ‘‘adjustable cycling’’, ii) green indicates

those periods, which select against single-resistance and for

double-resistance, iii) black those that both increasingly select

against double-resistance and increasingly allow outgrowth of

single-resistant strains. B) to D) show examples of the main factors

influencing the location and success of the optimal period, the

arrows summarize the trends which occur by changing these

factors. B) Influence of the difference between the prevalences of

the single resistant strains during the on- and off-periods in

‘‘adjustable cycling’’. The black line indicates the standard value as

in A), the grey line indicates a setting with more incoming

susceptible patients C) Influence of the turnover rate on the

optimal period. The black line indicates environmental transmis-

sion with a decay rate of one day (note the similarity to the

standard setting for direct transmission), the grey line indicates

environmental transmission with a decay rate of 30 days. D)

Influence of suppression of double-resistance on optimal period.

Here, we chose a deterministic realization, because the variability

of the emergence of double-resistance is large in stochastic

simulations. The black line indicates the standard setting for

scenario ii (single-resistance present among incoming patients), the

grey line indicates a setting where the costs of double-resistance are

50% and it is therefore not competitive.

(PDF)

Figure S8 Considered genotypes and frequency with
which infected patients become non-susceptible. The

grey, red and blue boxed indicate resistance gene loci on the

bacterial chromosome (black circle). Grey boxes with a ‘+’

represent wild-type alleles, red boxes with ‘a’ and blue boxes with

‘b’ represent alleles that confer resistance to drug ‘A’ or ‘B’,

respectively. Transitions between genotypes are represented by

arrows and the respective mutation rate for each transition is

indicated by ‘mx’.

(PDF)

Figure S9 Treatment frequencies for standard param-
eter setting for stochastic realizations of scenario ii
(single-resistance, but not double-resistance pre-exists).
Red lines indicate patients being treated with drug A, blue lines B-

treated patients. Only the last 1.5 years are shown to illustrate

long-term dynamics. For each strategy, the average of 500 runs is

shown.

(PDF)

Table S1 PRISMA checklist.
(PDF)

Table S2 Overview of study characteristics and extract-
ed data. A) Study characteristics. Abbreviations: pip/taz = piper-

acillin/tazobactam, imi/cil = imimpinem/cilastin, tic/clav = ticar-

cillin/clavulanic acid. B) Extracted data. * AHI~1{
n

2(n{1)

X
abs(1=n{ai) with n = number of employed antibiot-

ics and ai = usage of antibiotic a/total antibiotic usage.

(PDF)

Table S3 Results of univariate meta-analysis.

(PDF)

Table S4 Results of meta-analyses under inclusion of
acquired instead of the total isolates in [50,52]. All other

used data are the same as in figure 1 in the main text.

(PDF)

Table S5 Results of meta-analyses under inclusion of
the contemporary instead of the historic control arm in
[45]. All other used data are the same as in figure 1 in the main

text.

(PDF)

Table S6 Overview over parameters. A) Ward character-

istics [73]. * The average length of stay is 8 days in Switzerland

(http://www.obsandaten.ch/indikatoren/5_4_1/2005/d/541.pdf,

data from 2005) and 5 days in the US (http://www.cdc.gov/

mmwr/preview/mmwrhtml/mm5427a6.htm). ** Pennsylvania

Health Care Cost Containment Council. Hospital-acquired

Infections in Pennsylvania 2005, 2006 & 2007. Available:

http://www.phc4.org/reports/hai/(2011). ***x was chosen arbi-

trarily. However, bE is adjusted such that R0 remains constant for

both direct and environmental transmission or any mixture of

these two transmission modes. B) Composition of incoming

patients [74]. C) Disease biology [1] [75–77] [78,79] [80,81]. *

‘‘Colonization pressure’’, i.e. the frequency of both asymptomatic

and symptomatic carriers in a hospital ward has been shown to be

a major risk factor for the acquisition of a nosocomial pathogen

[82]. It also has been shown for Clostridium difficile, that

environmental contamination occurred for both symptomatic

and asymptomatic infections [83]. Nevertheless, it is conceivable

that e.g. in symptomatically infected patients with diarrhea

infectivity is much higher than in asymptomatic patients.

However, since the connection between carriage and infection is

established and data on potential differences in infectivity between

symptomatic and asymptomatic patients are scarce, we chose not

to distinguish between these two classes. D) Treatment character-

istics.

(PDF)

Text S1 Detailed description of meta-analysis (method,
extracted data and sensitivity analysis) and sensitivity
analysis of theoretical model.

(DOCX)
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