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Abstract: Noise exposure affects the organ of Corti and the lateral wall of the cochlea, including the
stria vascularis and spiral ligament. Although the inner ear vasculature and spiral ligament fibrocytes
in the lateral wall consist of a significant proportion of cells in the cochlea, relatively little is known
regarding their functional significance. In this study, 6-week-old male C57BL/6 mice were exposed to
noise trauma to induce transient hearing threshold shift (TTS) or permanent hearing threshold shift
(PTS). Compared to mice with TTS, mice with PTS exhibited lower cochlear blood flow and lower
vessel diameter in the stria vascularis, accompanied by reduced expression levels of genes involved
in vasodilation and increased expression levels of genes related to vasoconstriction. Ultrastructural
analyses by transmission electron microscopy revealed that the stria vascularis and spiral ligament
fibrocytes were more damaged by PTS than by TTS. Moreover, mice with PTS expressed significantly
higher levels of proinflammatory cytokines in the cochlea (e.g., IL-1β, IL-6, and TNF-α). Overall,
our findings suggest that cochlear microcirculation and lateral wall pathologies are differentially
modulated by the severity of acoustic trauma and are associated with changes in vasoactive factors
and inflammatory responses in the cochlea.
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1. Introduction

The World Health Organization estimates that 12% or more of the global population is at risk of
hearing loss from noise, which impacts more than 600 million people worldwide [1–3]. The annual
cost of hearing impairment is within the range of $750 to $790 billion globally [4]. Noise-induced
hearing loss (NIHL) occurs with single or repeated sudden noise exposure and is a major health
problem [2,5–7]. Noise exposure results in a wide range of cochlear damage including blood-flow
reduction and capillary constriction, as well as changes in microcirculation, lateral wall, and spiral
ligament fibrocytes (SLFs) [8–13].

A significant part of cells within the inner ear consists of connective tissue cells of the spiral
ligament, but relatively little is known regarding their functional significance. The cochlear lateral
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wall, including the spiral ligaments and stria vascularis, is an area that is strongly affected by noise,
due to its role in the maintenance of cochlear fluid homeostasis [13]. The major capillary systems in
the spiral ligament and stria vascularis form four distinct networks (supra- and post-strial capillary
networks of the spiral ligament, ad-strial capillary network of the spiral ligament, and capillaries of
the stria vascularis) [14] which modulate cochlear endolymph homeostasis through generation of
ionic gradients and K+ recycling between perilymph and endolymph [15]. These capillaries, therefore,
play crucial roles in controlling sensory hair cell transduction by regulating endocochlear potential,
ion transport, and endolymphatic fluid balance [16–20]. Dysfunction of the cochlear lateral wall is
considered a potential etiology for a number of hearing disorders, including NIHL [10,21–23].

Functional hearing recovery is strongly associated with morphological remodeling of the cochlear
lateral wall and repair of the SLFs [24,25]. There is increasing evidence that SLFs have a remarkably
low threshold for noise-induced loss, which may explain the prevalence of missing fibrocytes in
humans [26]. Loss of fibrocytes reportedly begins at a young age and progressively increases with
time, according to clinical studies [26–28]. Moreover, the earliest change in aging ears is found in
fibrocytes, rather than in hair cells or neurons [29,30]. Fibrocytes play a key role in K+ recycling to the
stria vascularis and endolymph from the organ of Corti [31]. Changes in SLFs are accompanied by
hearing loss and a large reduction in endolymphatic potential [32].

The main targets of noise-induced damage have been extensively studied in hair cells, spiral
ganglion neurons (SGNs), and nerve fibers, however, much less is known regarding damage to the
cochlear lateral wall. Thus, we investigated how the spiral ligament and microcirculation in the lateral
wall are modulated after different severities of acoustic trauma. The physiological characteristics of
cochlear blood flow and spiral ligament fibrocytes after noise exposure were determined by measuring
changes in vasoactive factors and inflammatory and oxidative stress responses.

2. Results

2.1. Auditory Brainstem Response Threshold by Transient Hearing Threshold Shift and Permanent Hearing
Threshold Shift

To evaluate how noise exposure transient hearing threshold shift (TTS) or permanent hearing
threshold shift (PTS) changes the hearing threshold in mice, auditory brainstem response (ABR)
thresholds at 4, 8, 16, and 32 kHz, and for click sounds were measured at the following six time points:
before noise exposure (baseline or pre); immediately after (0 h); and at one, three, seven, and 14 days
after noise exposure. As shown in Figure 1a–e, for all frequencies and click sound stimuli, mice with
PTS had a significantly greater ABR threshold shift as compared to mice with TTS (a, main effect of day,
p < 0.05; b, main effect of treatment, p < 0.05 for all frequencies and click sounds, two-way ANOVA,
Tukey’s multiple comparisons test). The ABR threshold shift significantly increased immediately after
noise exposure in both TTS and PTS mice. Mice with TTS showed a gradual reduction in threshold
shift, while those with PTS maintained a high level of threshold shift until 14 days after noise exposure,
which indicates that TTS mice recovered from noise trauma over time, whereas PTS mice did not.

2.2. Survival of SGNs is Modulated by Severity of Noise Trauma

SGNs in the basal turn were visualized by hematoxylin staining. The neurons were quantified
before (pre) and 14 days after noise exposure. As shown in Figure 2, there were significant reductions
in neuronal density (hematoxylin-positive cells/20,000 µm2) in both groups, mice with TTS (* p = 0.01)
and mice with PTS (**** p < 0.0001) after acoustic overstimulation (two-way ANOVA, Tukey’s multiple
comparisons test). Mice with PTS exhibited a further reduction in SGN density as compared to mice
with TTS, at 14 days (*** p = 0.003) after noise trauma. These data indicate that SGNs experienced
more damage in PTS than in TTS mice.
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Figure 1. Auditory brainstem response (ABR) threshold shifts after noise exposure. ABR thresholds 

were measured at the following six time points: prior to (pre), immediately after (0 h), 1 d, 3 d, 7 d, 

and 14 d after noise exposure and graphed for ABR threshold shifts. Permanent hearing threshold 

shift (PTS) group showed significantly increased ABR threshold shift as compared with transient 

hearing threshold shift (TTS) animals at all frequencies and click stimuli at all-time points (a–e). TTS, 

transient threshold shift; PTS, permanent threshold shift; a, main effect of day, p < 0.05; b, main effect 

of treatment, p < 0.05; and c, interaction, p < 0.05. All graphs represent mean ± S.E.M. Two-way 

ANOVA, Tukey’s multiple comparisons test. *p < 0.05, n = 25, 0 h; n = 5, 1 d, 3 d, and 7 d; n = 4 and 14 

d. 

 

Figure 2. Changes of spiral ganglion neurons (SGNs) and spiral ligament after noise exposure. (a) 

SGNs were observed before (pre) and 14 d after (post) noise exposure. Representative pictures (a) and 

the number of SGNs (b) in the basal turn were obtained. (b) Both TTS and PTS groups showed a 

significant reduction in SGNs (hematoxylin positive cells/20,000 μm2) after noise exposure. PTS 

induced a further decrease in SGN as compared to TTS animals at 14 d post noise trauma. Scale bars 

represent 20 μm. (c) A major cell type in spiral ligament, type IV fibrocytes, were visualized by nucleic 

acid staining (Hematoxylin) before (normal) and 14 d after noise exposure. (d) The number of spiral 

ligament type IV fibrocytes (SLFs) in the basal turns of cochlea was significantly decreased by PTS at 

Figure 1. Auditory brainstem response (ABR) threshold shifts after noise exposure. ABR thresholds
were measured at the following six time points: prior to (pre), immediately after (0 h), 1 d, 3 d, 7 d, and
14 d after noise exposure and graphed for ABR threshold shifts. Permanent hearing threshold shift
(PTS) group showed significantly increased ABR threshold shift as compared with transient hearing
threshold shift (TTS) animals at all frequencies and click stimuli at all-time points (a–e). TTS, transient
threshold shift; PTS, permanent threshold shift; a, main effect of day, p < 0.05; b, main effect of treatment,
p < 0.05; and c, interaction, p < 0.05. All graphs represent mean ± S.E.M. Two-way ANOVA, Tukey’s
multiple comparisons test. * p < 0.05, n = 25, 0 h; n = 5, 1 d, 3 d, and 7 d; n = 4 and 14 d.
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Figure 2. Changes of spiral ganglion neurons (SGNs) and spiral ligament after noise exposure. (a) SGNs
were observed before (pre) and 14 d after (post) noise exposure. Representative pictures (a) and the
number of SGNs (b) in the basal turn were obtained. (b) Both TTS and PTS groups showed a significant
reduction in SGNs (hematoxylin positive cells/20,000 µm2) after noise exposure. PTS induced a further
decrease in SGN as compared to TTS animals at 14 d post noise trauma. Scale bars represent 20 µm.
(c) A major cell type in spiral ligament, type IV fibrocytes, were visualized by nucleic acid staining
(Hematoxylin) before (normal) and 14 d after noise exposure. (d) The number of spiral ligament type
IV fibrocytes (SLFs) in the basal turns of cochlea was significantly decreased by PTS at 14 d post noise
exposure. Scale bar represents 50 µm. Graphs represent mean ± S.E.M. n = 4. One-way ANOVA with
Tukey’s multiple comparisons test. *p < 0.05, *** p = 0.003, and **** p < 0.0001.
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2.3. Changes in Spiral Ligament Fibrocytes

Changes in fibrocytes around the spiral ligament in the lateral wall were evaluated before and at
14 days after noise exposure. Representative images of SLFs were obtained (Figure 2c) and quantified
(Figure 2d). The number of SLFs in the basal turn of the cochlea at 14 days after noise exposure were
significantly reduced by PTS, whereas the number of SLFs were not reduced by TTS after acoustic
trauma (p > 0.05, pre vs. TTS); this indicates that SLFs experienced greater impairment in the PTS mice
than in the TTS mice.

Ultrastructural analyses of the spiral ligament architecture revealed the presence of fusiform
type-IV fibrocytes containing granular cytoplasm (Figure 3a). The spiral ligament degenerated in TTS
mice, as indicated by rounded nuclei and vacuolization (Figure 3b). Compared to TTS mice, the PTS
mice exhibited more widespread cell loss with vacuolization; apoptotic cell bodies; and condensed,
dark, and shrunken nuclei (Figure 3c). These data suggest that the spiral ligament was affected by
noise exposure and that the damage was more severe in PTS mice.
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Figure 3. Ultrastructural analysis of spiral ligament type IV fibrocytes before (normal control) and 14 d
after TTS or PTS. (a) Normal spiral ligament presented cylindrical, spindle-shaped type IV fibrocytes.
(b) Type IV fibrocytes at 7 d after TTS showed swollen spherical nuclei (circles), cellular debris (red
arrows), and vacuolization (asterisk). (c) PTS induced massive cytoplasmic vacuolization (asterisk) in
the type IV fibrocytes and displayed several apoptotic bodies (red arrows). Scale bar represents 2 µm.
n = 3.

2.4. Acoustic Trauma Modulates Cochlear Microcirculation

To evaluate whether the severity of noise trauma differentially affects cochlear microvasculature,
blood flow was measured before (pre) and after (at one, seven, and 14 days) noise exposure with a laser
Doppler flowmeter. Cochlear blood flow was significantly reduced at all measured time points in both
groups as compared to the baseline (Figure 4, pre vs. all other time points, p < 0.05, Tukey’s multiple
comparisons test). The TTS mice showed a significant reduction one day after trauma (p < 0.0001, pre
vs. TTS at 1 day) and a restored pattern over time up to 14 days (p = 0.0195, TTS at one day vs. TTS at
14 days). Importantly, blood flow in PTS mice did not recover by 14 days after noise exposure (p < 0.05,
pre vs. PTS at one, seven, and 14 days). Mice with PTS exhibited significantly lower cochlear blood
flow at 7 days (p = 0.0086, TTS vs. PTS) and 14 days (p = 0.0129, TTS vs. PTS) after noise trauma as
compared with TTS mice. These findings imply that noise exposure was associated with cochlear
blood flow reduction, leading to cochlear damage or ischemia, and that the severity of noise trauma
was negatively correlated with the speed of threshold recovery.
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Figure 4. Changes of cochlear blood flow and microvasculature of stria vascularis after noise exposure.
(a) The cochlear blood flow was measured in TTS and PTS groups pre and post (1 d, 7 d, and 14 d) noise
exposure. Both TTS and PTS significantly decreased cochlear blood flow at 1 d post noise exposure.
The blood flow significantly increased in the TTS group as compared with the PTS group at 7 d and 14 d
post noise exposure. TTS, transient threshold shift; PTS, permanent threshold shift; a, main effect of day,
p < 0.05; b, main effect of treatment, p < 0.05. c, interaction, p < 0.05; *p < 0.05, ** p < 0.01. All graphs
represent mean ± S.E.M. Two-way ANOVA, Tukey’s multiple comparisons test. (b) Endothelial cells of
stria vascularis were stained with anti-PECAM antibody, and confocal images were obtained before
(normal) and after (7 d and 14 d) noise exposure (TTS or PTS). Representative pictures of confocal
images. Scale bar represents 100 µm. (c) Capillary thickness was measured in diameter and quantified.
The vessel diameter in apex was significantly decreased by PTS at 7 d and 14 d as compared with
normal animals, while that of TTS recovered toward normal thickness at 14 d. All graphs represent
mean ± S.E.M. One-way ANOVA, Tukey’s multiple comparisons test. a vs. b vs. c, p < 0.05. n = 12,
normal; n = 6, all other groups.

2.5. Microvasculature of Stria Vascularis after Acoustic injury

Next, we tested whether a threshold shift modulates the vessel diameter of the cochlear lateral
wall. Micro-dissected lateral wall tissues (apex, middle, and base) were stained with anti-PECAM1
antibody before (normal) and after (at seven and 14 days) noise exposure; they were imaged (Figure 4b)
and quantified (Figure 4c). As shown in Figure 4c, the vessel diameter of the cochlear lateral wall was
significantly reduced at seven days after noise trauma in TTS and PTS mice in apex tissues (one-way
ANOVA, Tukey’s multiple comparisons test, p < 0.0001, pre vs. TTS at seven days apex), middle tissues
(p < 0.0001, pre vs. TTS at seven days middle) and base tissues (p < 0.0001, pre vs. TTS, at seven at days
base). Mice with TTS exhibited restored vessel diameter in the apex at 14 days after acoustic trauma
(p = 0.9232, normal vs. TTS at 14 days; p < 0.0001, TTS at seven days vs. TTS at 14 days), while mice
with PTS exhibited a persistently reduced diameter by 14 days (p = 0.9991, PTS at seven days vs. PTS
at 14 days; p < 0.0001, normal vs. PTS at seven and 14 days).

The stria vascularis (Figure 5a) of normal mice has three cell types, basal, intermediate, and
marginal [13,33,34], but in ultrastructural analyses in our study, its structure was unclear and vacuolated
in both mice groups (Figure 5b–c). Furthermore, the stria vascularis had larger gaps between the
cellular processes of strial cells in mice with PTS than in mice with TTS. These data imply that stria
vascularis architecture in the cochlear lateral wall was affected by acoustic trauma and that the vessel
diameter was differentially modulated by the severity of hearing threshold shifts.
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inner ear section at each time point. (b) After noise trauma, the stria vascularis thickness was 
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2.7. Vasoactive Genes are Differentially Expressed in Both TTS and PTS 

Figure 5. Ultrastructural analysis of stria vascularis before (normal control) and after (14 d) TTS or PTS.
(a) Normal stria vascularis showed intact three layers of strial cells. (b) TTS-treated stria vascularis
exerts small vacuolization (asterisk) or gaps (arrow) between the strial cells. (c) PTS-induced stria
vascularis contained the large vacuolization (asterisk) between the cellular processes of strial cells.
Scale bar represents 5 µm. BC, basal cells; IC, intermediate cells; and MC, marginal cells. n = 3.

2.6. Stria Vascularis Thickness is Changed by Noise Exposure

To investigate how noise trauma affects lateral wall thickness, hematoxylin staining was performed
on inner-ear sections before (normal) and after (immediately, and one, three, seven, and 14 days)
noise exposure; it was quantified using a two-way ANOVA with a Tukey’s multiple comparisons test
(a, main effect of day, p < 0.05; c, interaction, p < 0.05). Stria vascularis thickness was significantly
increased at one day (# p < 0.0001) and three days (# p = 0.0013) after acoustic trauma in mice with TTS
as compared with those same mice prior to the induction of TTS (Figure 6). Mice with TTS exhibited
significantly swollen stria vascularis at one day after noise trauma and a full recovery to normal
thickness by 14 days after noise trauma, while the stria vascularis in mice with PTS exhibited peak
thickness at three days after noise exposure. Stria vascularis thickness was fully recovered by seven
days after noise trauma in both TTS and PTS mice.
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Figure 6. Thickness of lateral wall after noise exposure. (a) Hematoxylin staining was performed
on inner ear section at each time point. (b) After noise trauma, the stria vascularis thickness was
significantly increased in TTS and PTS groups. Scale bars represent 50 µm. a, main effect of day, p < 0.05
and c, interaction, p < 0.05. All graphs represent mean ± S.E.M. Two-way ANOVA, Tukey’s multiple
comparisons test. Asterisk denotes difference from TTS per day, p < 0.05 and pound symbols (#) denote
differences from matching normal (pre) controls, p < 0.05. n = 3.

2.7. Vasoactive Genes are Differentially Expressed in Both TTS and PTS

Gene expression levels associated with vasoconstriction and vasodilation (Figure 7) were measured
before (pre) and after (0 h, and one, three, seven, and 14 days) noise exposure. Genes involved in
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vasoconstriction included alpha-1A adrenergic receptor (ADRA1A) [35], alpha-1D adrenergic receptor
(ADRA1D) [36,37], endothelin receptor type A (ET A) [38,39], and endothelin receptor type B (ET B) [38].
All “vasoconstrictive” genes exhibited an interaction effect (p < 0.05, two-way ANOVA) and main effect
of both treatment (TTS vs. PTS) and time (p < 0.05, two-way ANOVA), indicating that genes involved
in vasoconstriction were differentially modulated by the intensity of noise (b, main effect of treatment,
p < 0.05). Corrected comparisons (Tukey’s multiple comparison test) between the groups at each time
point revealed that mice with PTS showed significantly higher “vasoconstrictive” gene expression after
noise trauma as compared to mice with TTS (Figure 7, p < 0.05, two-way ANOVA, Tukey’s multiple
comparisons test). Noticeably, all “vasoconstrictive” genes at all time points showed similar or lower
expression levels in both TTS and PTS mice as compared twith normal controls; furthermore, only the
levels of ET A were higher in PTS mice at seven and 14 days as compared with normal controls. (#,
differences from matching normal controls, p < 0.05).
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Figure 7. Genes involved in vasoconstriction and in vasodilation before (pre) and after (post) noise
exposure. Effects of noise on vascular function, sensitivity to vasoconstriction (a–d) and vasodilation
(e–j). a, main effect of day, p < 0.05; b, main effect of treatment (TTS, PTS), p < 0.05; and c, interaction,
p < 0.05; *p < 0.05. All graphs represent mean± S.E.M. Two-way ANOVA, Tukey’s multiple comparisons
test. a, main effect of day, p < 0.05; b, main effect of treatment, p < 0.05; and c, interaction, p < 0.05.
Asterisk denotes difference from TTS per day, p < 0.05; pound symbols (#) denote differences from
matching normal (pre) controls, p < 0.05. n = 3–5.

Genes involved in vasodilation included angiotensin 2 receptor type 2 (AT2) [40–42], endothelial
nitric oxide synthase (eNOS) [43], adenosine A2A receptor (ADORA2A) [44,45], VEGF-A [43],
prostaglandin E receptor 2 (PGE2) [46], and prostaglandin I2 receptor (PGI2) [47]. The expression levels
of AT2 (Figure 7e), eNOS (Figure 7f), VEGF-A (Figure 7h), and PGI2 (Figure 7i) exhibited interaction
effects (p < 0.05, two-way ANOVA) and a main effect for both time and treatment (TTS vs. PTS,
p < 0.05, two-way ANOVA). Planned comparisons (Tukey’s multiple comparisons test) between groups
at each time point revealed that mice with TTS exhibited significantly higher expression levels of
“vasodilating” genes after acoustic trauma as compared to mice with PTS (Figure 7, two-way ANOVA,
Tukey’s multiple comparisons test). Increased expression levels of AT2, eNOS, and VEGF-A were
observed in mice with TTS as compared with normal controls (Figure 7e,f,h). Other “vasodilating”
genes, such as ADORA2A and PGE2, were increased in mice with TTS as compared to mice with PTS
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(Figure 7g,i). Overall, expression levels of “vasodilating” genes were significantly higher in mice with
TTS than in mice with PTS. These data suggest that genes involved in vasoconstriction and vasodilation
are differentially modulated by the severity of noise trauma and may impact lateral wall pathology,
microvessel diameter, and cochlear blood flow.

2.8. Genes Involved in Oxidative Stress are Modulated by Noise Trauma

To determine how severity of noise trauma differentially affects oxidative stress responses in
the cochlea, quantitative real-time polymerase chain reaction assays for catalase [48,49] and heme
oxygenase 1 (HO-1) [48] were conducted before (pre) and after (0 h, and one, three, seven, and 14 days)
acoustic trauma. As shown in Figure 8a,b, both catalase and HO-1 exhibited a main effect of treatment
(TTS vs. PTS, p < 0.0001, two-way ANOVA) and main effect of time (p < 0.0001, two-way ANOVA).
Catalase was significantly increased in mice with PTS at one, three, and seven days after noise trauma
as compared with the pre-PTS level (p < 0.05, pre vs. PTS at one, three, and seven days, hash symbols).
Planned comparisons revealed that mice with PTS exhibited significantly higher catalase expression as
compared to mice with TTS, at one and three days after noise exposure. HO-1 expression was also
upregulated in mice with PTS as compared to mice with TTS, at one and three days after acoustic
trauma. These data suggest that oxidative stress responses are differentially modulated by noise
trauma of different severities, which may affect vessel pathology.
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The qRT-PCR for antioxidant enzymatic scavengers (a–b) and inflammatory cytokines (c–e) before (pre)
and after (0 h, 1 d, 3 d, 7 d, and 14 d) noise trauma (TTS and PTS). a, main effect of day, p < 0.05; b, main
effect of treatment (TTS, PTS), p < 0.05; c, interaction, p < 0.05; * p < 0.05. All graphs represent mean ±
S.E.M. Two-way ANOVA, Tukey’s multiple comparisons test. Asterisk denotes difference from TTS per day,
p < 0.05 and pound symbols (#) denote differences from matching normal (pre) controls, p < 0.05. n = 3–5.

2.9. Genes Involved in Proinflammatory Responses are Modulated by Noise Trauma

To test cytokine levels in the cochlea, tissue samples were collected from mice with TTS or PTS
before (pre) and after (0 h, and at one, three, seven, and 14 days) noise trauma. Quantitative real-time
polymerase chain reaction assays were performed to examine the levels of interleukin-1β (IL-1β),
interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). Figure 8c–e shows that the expression levels
of IL-1β, IL-6, and TNF-α were significantly modulated by noise trauma (a, main effect of day, p < 0.05;
b, main effect of treatment (TTS, PTS), p < 0.05; and c, interaction, p < 0.05). The IL-1β expression levels
were significantly increased in mice with PTS as compared to mice with TTS, at later time points (three,
seven, and 14 days), whereas IL-6 expression levels were increased at earlier time points (immediately,
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and at one and three days) after noise trauma. TNF-α exhibited a main effect of time, but not of
treatment. Overall, mice with PTS exhibited significantly higher expression levels of proinflammatory
cytokines as compared to mice with TTS (Figure 8c–e). These observations suggest that noise exposure
induced local inflammation was more severe in the PTS group.

3. Discussion

In this study, we evaluated how the cochlear lateral wall is affected by different noise conditions.
Noise exposure induced structural changes in the cochlea, including a loss of spiral ganglion neurons
(Figure 2a,b) and structural changes in spiral ligament type IV fibrocytes (Figure 2) and the stria
vascularis (Figure 6). Acoustic overstimulation adversely affected cochlear microcirculation by causing
blood vessel contraction (Figure 4b,c), which led to reduced blood flow (Figure 4a). Mice with PTS
exhibited more severe damage than mice with TTS. A significant increase in “vasoconstrictive” genes
(Figure 7a–d) and a significant decrease in vasodilating genes (Figure 7e–j) were observed in PTS
mice. Blood flow reduction caused by PTS induced local ischemic damage and subsequent cochlear
inflammation (Figure 8c–e) and these findings are consistent with prior studies [50,51].

Cochlear blood flow and oxygen levels decline during noise exposure, consistent with the general
concept of ischemia and reperfusion as an important pathophysiological process in NIHL [8,52–56].
Noise exposure results in multiple impairments of cochlear microcirculation, including increased
vascular permeability and reduced cochlear blood circulation [21,22]. Although some research has
reported reductions in blood supply in response to noise trauma, few studies have confirmed the
original findings [51]. For instance, Okamoto et al. observed no changes in guinea pig cochlear blood
flow in response to 120 dB sound pressure level (SPL) [57]. Hultcrantz was unable to show a significant
alteration in cat cochlear blood flow by 100 dB noise for 6 min [58]. Prazma et al. also found no
significant change in cochlear blood flow by 115 dB noise for 6 h [59].

More recent findings have corroborated the changes in cochlear blood flow after loud noise,
due to technical developments such as intravital microscopy. These studies have demonstrated that
stria vascularis vessels exhibit an initial compensatory increase in red blood cell velocity within 30
to 180 s after noise exposure, followed by a reduction in blood flow after several minutes [26,51,60].
Surprisingly, after 30 min of noise exposure, the flow was reversed and stasis ultimately occurred in
many of the capillaries within the stria vascularis [26,51,60]. Arpornchayanon et al. also reported
a reduction in guinea pig cochlear blood flow when measured at 106 dB SPL with a duration of
30 min [10]. Other investigators have reported that alterations in cochlear blood flow and hypoxia are
strictly correlated with the intensity of noise and severity of hearing loss [8,55]. Our data also support
changes in cochlear blood flow in response to hearing threshold shifts (Figure 4a). Cochlear blood flow
in mice with TTS was restored by 14 days after noise exposure, whereas that in mice with PTS was
not, suggesting that cochlear blood flow reduction and recovery are associated with the severity of
noise trauma.

On the basis of the results shown in Figure 4a, it is important to determine how vessel tone is
modulated. When we measured vasoactive factors (Figure 7) in cochlear homogenates, mice with PTS
exhibited significantly higher expression levels of genes involved in vasoconstriction (e.g., endothelin
receptors) and lower expression levels of “vasodilating” genes (e.g., vascular endothelial growth factor
[VEGF] and adenosine A2A receptors) as compared to mice with TTS (Figure 7). Importantly, genes
involved in vasoconstriction and vasodilation were differentially modulated by the intensity of noise
(b, main effect of treatment, p < 0.05). All “vasoconstrictive” genes (Figure 7a–d) at all time points
showed similar or lower expression levels in both TTS and PTS mice as compared with those in normal
controls. Conversely, endothelin (ET) A showed an increased level only in mice with PTS at seven days
and 14 days as compared with normal controls (#, differences from matching normal controls, p < 0.05).
ET, a potent vasoconstrictor peptide, functions as a local hormonal regulator of neurotransmitters,
ions, and pressure in the inner ear [61] by binding to the receptors ET A and ET B [62]. Both of these
are expressed in the strial vascularis and in non-strial tissues. Moreover, capillary constriction in the
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spiral ligament is regulated by ET-mediated vasoconstriction via ET A receptors [61,63,64]. In this
study, the expression levels of ET A and ET B receptors were higher in mice with PTS than in mice
with TTS, which may have contributed to the vessel constriction and blood flow reduction observed in
the former group.

In contrast to the vasoconstriction factors, mice with TTS expressed higher levels of genes involved
in vasodilation as compared to mice with PTS (Figure 7). VEGF is a potent angiogenic factor that
induces endothelial cell proliferation, promotes cell migration, and inhibits apoptosis [65,66]. Modiolus,
spiral ganglion, spiral ligament, supporting cells, and stria vascularis produce VEGF, and expression
levels of cochlear VEGF are increased in noise-exposed mice, whereas VEGF receptor expression levels
do not change [65,67]. Vlajkovic et al. observed increased expression of ADORA2A in the cochlea
after noise exposure and this gene is involved in vasodilation. The authors postulated that ADORA2A
suppresses expression of proinflammatory mediators via the PI3K-PKA-Akt-GSK-3β-NF-κB pathway,
which contributes to the repair of cochlear tissue damage [68]. In our study, increased AT2, eNOS, and
VEGF-A levels were observed in mice with TT as compared with normal controls (Figure 7e,f,h). Other
“vasodilating” genes, such as ADORA2A and PGE2, were increased in mice with TTS as compared
to mice with PTS (Figure 7g,i). Overall, these data indicate that vasodilating genes are expressed at
significantly higher levels in TTS than PTS mice.

Our gene expression profile can be explained as follows: the genetic messages involved in
vasoconstriction and dilation contribute to the overall physiological phenotypes of inner ear vasculature
and blood flow, instead of contributing to each as a single factor. It seems clear that the cochlear
tissues in mice with TTS can produce “stop-constriction” or “promote-dilation” messages, as indicated
by the reduced expression of vasoconstrictive genes and increased expression of vasodilating genes.
In contrast, the cochlear tissues of PTS mice failed to generate those messages, potentially because
the fibrocytes or pericytes in the cochlea (i.e., the sources of those messages) underwent severe cell
death after PTS. The capillary networks of the cochlear lateral wall contain a rich population of
pericytes [69,70]; these cells are generally located on microvessels, including arterioles and venules [71].
The cochlear capillary system has a relatively large population of pericytes. The ratio of pericytes to
endothelial cells is approximately 1:2 in the stria vascularis and spiral ligament, whereas the ratios
are 1:1 in the retina, 1:5 in the brain, 1:10 in the lung, and 1:100 in skeletal muscle [69,72,73]. Pericytes
on the blood vessels of the spiral ligament produce contractile proteins, including α-SMA, desmin,
F-actin, and tropomyosin, which modulate vasocontractility [69,74]. Taken together, these data indicate
that modulation of vascular tone is orchestrated by a strict balance between vasoconstriction and
vasodilation factors in the cochlear lateral wall.

Reduction of blood flow in various organs induces cellular damage by producing reactive oxygen
species (ROS) and releasing inflammatory cytokines [75–78]. In our study, mice with PTS exhibited
significantly higher levels of antioxidant enzymatic scavengers such as catalase and HO-1 as compared
to mice with TTS (Figure 8a,b), which indicates that PTS induces the production of excessive free radical
species that require increased ROS detoxification. Noise-induced oxidative stress in cochlear tissues is
well-documented [79–81]. Importantly, Yuan et al. reported that noise-induced oxidative responses as
indicated by products of lipid oxidation (4-hydroxynonenal) and protein nitration (3-nitrotyrosine)
occurred in a noise-dose-dependent manner [82]. The results of this study are consistent with the
literature in demonstrating that the levels of antioxidant enzymatic scavengers, including HO-1 and
catalase, are increased in the cochlea (particularly the organ of Corti), in response to intense noise
stimulation [83,84]. The natural defense system managed by antioxidant enzymatic scavengers seems
to be overwhelmed by ROS accumulation, before or during initiation of TTS- or PTS-related damage.
Free radical species are generated in the cochlea, including outer hair cells and cochlear lateral wall,
after exposure to damaging levels of noise [82,85,86]. ROS have been detected in cochlea immediately
after noise exposure, however, they are also maintained in the cochlea for seven to 10 days after noise
exposure [80]. This may explain our observation of long-term elevation of the antioxidant enzymatic
scavengers found in mice with PTS. The formation and accumulation of ROS occurs through various
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mechanisms, depending on the type and intensity of stress. While the precise origin of ROS in the
cochlea after noise exposure remains unknown [82], we speculate that a surge of oxidative stress may
be caused by prolonged tissue hypoxia induced by a reduction in blood flow (Figure 4a) resulting from
vasoconstriction (Figure 7a–d) in the cochlea after acoustic overstimulation. Other investigators have
postulated that increased mitochondrial activity, ischemic conditions, and rebound hyperperfusion
may contribute to ROS production [87,88].

Stress signaling, such as noise trauma, regulates the expression of inflammatory mediators [89].
Both reduced blood flow and ROS generation trigger local inflammation [89–91]. Noise exposure
upregulates cytokines in the cochlea [92,93], accompanied by a significantly augmented ABR threshold
shift [94]. We observed increased expression of proinflammatory cytokines (e.g., IL-1β and IL-6)
in mice with PTS as compared to mice with TTS (Figure 8c–e). Yamamoto et al. speculated that
generation of inflammatory mediators could occur through activation of NF-κB signaling cascade,
causing cytokine production [95]. The tendency for cytokines, such as TNFα, to damage the cochlea
are well-documented [96]. Alternatively, immune infiltration to the middle ear and auditory cortex
may be a contributing factor in the immune response after noise trauma. In one study, the expression
levels of TNF-α, IL-1β, and ICAM1 genes were increased in response to noise damage [97]; in addition,
elevated proinflammatory cytokine expression and microglial activation in the auditory cortex have
been found in NIHL model [98]. It is important to recognize that, although immune response genes
were detected in whole cochlear tissue homogenates after noise damage in our study, it is much more
likely that only a subset of cell types in the inner ear upregulate these genes. Identifying these cell types
could enable specific targeting of their contribution to lateral-wall and hair-cell damage in response to
acoustic trauma. Our data suggest that the production of ROS and proinflammatory cytokines may
play a key role in response to noise damage. Although our data do not directly explain which type
of damage induces subsequent signaling activities, ROS reportedly can activate NF-κB, inducing the
production of proinflammatory cytokines and the expression of stress and apoptotic genes [89].

In conclusion, mice with PTS exhibited significant reductions in cochlear blood flow, vessel
diameter in the stria vascularis, and number of type IV fibrocytes in the spiral ligament as compared to
mice with TTS; this was accompanied by reduced expression levels of genes involved in vasodilation
and increased expression of genes involved in vasoconstriction. PTS mice also exhibited swelling of
the cochlear lateral wall and higher expression levels of proinflammatory cytokines. These findings
imply a potential mechanism underlying the effects of noise trauma on cochlear microcirculation and
the lateral wall, and suggest that cochlear blood flow and fibrocytes are differentially modulated in a
noise dose-dependent fashion.

4. Materials and Methods

4.1. Experimental Animals and Design

All animal experiments were approved by the Chungnam National University, Institutional
Animal Care and Use Committee (IACUC CNU01169, 26/12/2018). C57BL/6 male mice (n = 76), aged 6
weeks, weighing 20 to 30 g, were used in this study after confirming to have normal hearing prior
to noise exposure. Animals were randomly assigned to one of two groups according to the noise
exposure level, a transient threshold shift (TTS) group, and a permanent threshold shift (PTS) group.
The experimental animals were used for time point studies at immediately after (0 h) and days 1, 3,
7, and 14 following noise exposure. All experimental protocols were approved by the Chungnam
National University Institutional Animal Care and Use Committee. All animal care and use was
conducted in accordance with the Guide for the Care and Use of Laboratory Animals.

4.2. Noise Exposure

Noise exposure was induced as described previously [48,99]. Briefly, in the TTS group, animals
were exposed to free-field broadband noise (1–8 kHz) for 5 min at an intensity of 108 decibels (dB)
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SPL. In the PTS group, animals were applied to free-field broadband noise (2–8 kHz) for 2 h at an
intensity of 116 dB SPL in an acoustically insulated reverberation chamber. The noise signals were
sent through an amplifier (INTER-M R300 Plus power amplifier; Canford Audio PLC, Washington,
UK) and a computer to a loud speaker (ElectroVoice DH1A-WP; Sonic Electronix Inc., Los Angeles,
CA, USA). The noise level was measured using a sound level meter (B & K type 2250; Brüel & Kjaer,
Copenhagen, Denmark), sound calibrator (B & K type 4231; Brüel & Kjaer), and condenser microphone
(B & K type 4189; Brüel & Kjaer).

4.3. Auditory Brainstem Response

To measure ABR thresholds at frequencies between 4 and 32 kHz, and click sounds separately
from both ears, mice were anesthetized with intramuscular injection of xylazine 10 mg/kg (Rompun,
Bayer Animal Health, Monheim, Germany) and zolazepam HCl 40 mg/kg (Zoletil, Virbac Animal
Health, Carros, France) [99]. ABR thresholds were obtained prior to noise exposure, immediately
after (0 h), and 1, 3, and 7 days after TTS or PTS using the TDT System-3 (Tucker Davis Technologies,
Gainesville, FL, USA) hardware and software, as described previously [100]. Briefly, subcutaneous
needle electrodes were placed around both infra-auricular areas and the skull vertex. The waveforms
were analyzed by BioSig RP (version 4.4.1; Tucker Davis Technologies) and threshold was defined as
the lowest stimulus intensity to evoke a wave III response > 0.2 µV.

4.4. Hematoxylin Staining

Hematoxylin staining was used to visualize nucleic acids of the cells in the cochlea and measure
stria vascularis thickness [99,101]. Harvested tissue samples were placed in 4% paraformaldehyde in
PBS for 24 h, at 4 ◦C, decalcified in 10% EDTA for 1 week at room temperature, embedded in paraffin,
sectioned on a mechanical implant microtome (Leica RM2235, Leica Microsystems, Wetzlar, Germany)
at a thickness of 4 µm, and stained with hematoxylin (Sigma-Aldrich, St. Louis, MO, USA). The stained
tissue sections were photographed using a slide scanner (Panoramic MIDI version 1.23, 3DHISTECH,
Ltd., Budapest, Hungary) and the numbers of hematoxylin-positive cells were quantified.

4.5. Transmission Electron Microscope (TEM)

Tissue samples were fixed with 3% glutaraldehyde in culture medium for 2 h at room temperature.
They were washed five times with 0.1 M cacodylate buffer containing 0.1% CaCl2 at 4 ◦C. Then, they
were postfixed with 1% OsO 4 in 0.1 M cacodylate buffer (pH 7.2) containing 0.1% CaCl2 for 2 h,
at 4 ◦C. After rinsing with cold distilled water, tissue samples were dehydrated slowly with an ethanol
series and propylene oxide at 4 ◦C. The cells were embedded in Spurr’s epoxy resin [102]. After
polymerization of the resin at 70 ◦C for 36 h, serial sections were cut with a diamond knife on an
ULTRACUT UCT ultramicrotome (Leica Mikrosysteme GmbH, Vienna, Austria) and mounted on
formvar-coated slot grids. Sections were stained with 4% uranyl acetate for 10 min and lead citrate [103]
for 7 min. They were observed by a Tecnai G2 Spirit Twin transmission electron microscope (FEI
Company, Hillsboro, OR, USA).

4.6. Measurement of Cochlear Blood Flow

To evaluate changes in cochlear blood flow before and after noise exposure, the left tympanic
bulla of each mouse was exposed and opened under anesthesia. After the mouse was placed on the
stereotaxic instrument, a 0.1 mm diameter laser Doppler probe was placed over the lateral wall of the
cochlea. Cochlear blood flow was determined from an intensity oscillation that was translated from the
oscillation frequency produced by the Doppler frequency shift of the RBC in the left tympanic bulla,
using a Laser Doppler Flowmeter (Transonic Systems, Ithaca, NY, USA). Each intensity oscillation was
measured separately, and relative cochlear blood flow was reported as the ratio of the control (pre)
value to the post-noise exposure value.
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4.7. Measurement of the Stria Capillary Thickness

The cochlear lateral wall tissues were collected and fixed in 4% paraformaldehyde in PBS for 1 h
at room temperature. Tissues were permeated and blocked with 0.3% Triton X-100/10% normal goat
serum/PBS for 1 h and then incubated with PECAM1 (Millipore, Burlington, MA, USA), MAB 13982,
IgG) antibody at a concentration of 1:200 in blocking solution overnight at 4 ◦C. After rinsing six times
in PBS for 10 min, Alexa Fluor 594 goat anti rat IgG (A11007, 1:200, Thermo Fisher Scientific, Waltham,
MA USA) was used as a secondary antibody for PECAM. The specimens were mounted on glass slides
using 50% glycerol and observed using a confocal microscopy TCS SP8 (Leica Microsystems, Wetzlar,
Germany). The thickness of the stria vascularis was measured, as described previously [104], using
image analysis software (Case Viewer, version 2.1, 3DHISTECH, Ltd. Budapest, Hungary).

4.8. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

Quantitative RT-PCR was performed as previously described [48,99]. Briefly, tissues were collected
and frozen immediately in liquid nitrogen. Total RNA was extracted with TRIzol reagent (Thermo
Fisher Scientific, Waltham, MA USA). RNA was quantified using a Nano drop (Nano Drop Technologies,
Wilmington, DE, USA). The cDNA was produced using the cDNA synthesis kit (Roche, Branchburg,
NJ, USA). Real-time PCR was performed on a CFX Connect Real-Time PCR Detection System (BioRad,
Des Plaines, IL, USA) by using a reaction mixture with SYBR Green as the fluorescent dye (Applied
Biosystems, Waltham, Massachusetts, USA). The fold change (2−∆(∆C

T
)) in the target gene relative to

the endogenous control gene was calculated.

4.9. Image Processing and Statistical Analysis

Adobe Photoshop (version 7.0) was used for adjustment of image contrast, superimposition of
images, and colorization of monochrome fluorescence images. A two-way ANOVA coded for treatment
(TTS and PTS) and day was used for ABR, cochlea blood flow, and qRT-PCR. For vessel thickness in
the stria vascularis, a one-way ANOVA was used. An unpaired Student’s t-test was used for all other
comparisons. A p-value < 0.05 was significant in each case. All tests were performed using GraphPad
Prism (Version 6).
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Abbreviations

TTS transient hearing threshold shift
PTS permanent hearing threshold shift
IL interleukin
TNF tumor necrosis factor
NIHL noise-induced hearing loss
SLFs spiral ligament fibrocytes
SGNs spiral ganglion neurons
ADRA1A alpha-1A adrenergic receptor
ADRA1D alpha-1D adrenergic receptor
ET A endothelin receptor type A
ET B endothelin receptor type B
HO-1 heme oxygenase 1
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eNOS endothelial nitric oxide synthase
AT2 angiotensin 2 receptor type 2
ADORA2A adenosine A2A receptor
PGE2 prostaglandin E receptor 2
PGI2 prostaglandin I2 receptor
VEGF-A vascular endothelial growth factor A

References

1. WHO. Global Estimates on Prevalence of Hearing Loss; World Health Organization: Geneva, Switzerland, 2012.
2. Le, T.N.; Straatman, L.V.; Lea, J.; Westerberg, B. Current insights in noise-induced hearing loss: A literature

review of the underlying mechanism, pathophysiology, asymmetry, and management options. J. Otolaryngol.
Head Neck Surg. 2017, 46, 41. [CrossRef] [PubMed]

3. WHO. Deafness and Hearing Loss. Available online: https://www.who.int/news-room/fact-sheets/detail/
deafness-and-hearing-loss (accessed on 20 March 2019).

4. World Health Organization. Global Costs of Unaddressed Hearing Loss and Cost-Effectiveness of Interventions:
A WHO Report; World Health Organization: Geneva, Switzerland, 2017.

5. Kujawa, S.G.; Liberman, M.C. Adding insult to injury: Cochlear nerve degeneration after “temporary”
noise-induced hearing loss. J. Neurosci. 2009, 29, 14077–14085. [CrossRef] [PubMed]

6. Rabinowitz, P.M. Noise-induced hearing loss. Am. Fam. Physician 2000, 61, 2759–2760.
7. Holborow, C. Deafness as a world problem. Adv. Otorhinolaryngol. 1983, 29, 174. [PubMed]
8. Lamm, K.; Arnold, W. Noise-induced cochlear hypoxia is intensity dependent, correlates with hearing loss

and precedes reduction of cochlear blood flow. Audiol. Neurootol. 1996, 1, 148–160. [CrossRef]
9. Tabuchi, K.; Nishimura, B.; Tanaka, S.; Hayashi, K.; Hirose, Y.; Hara, A. Ischemia-reperfusion injury of

the cochlea: Pharmacological strategies for cochlear protection and implications of glutamate and reactive
oxygen species. Curr. Neuropharmacol. 2010, 8, 128–134. [CrossRef]

10. Arpornchayanon, W.; Canis, M.; Suckfuell, M.; Ihler, F.; Olzowy, B.; Strieth, S. Modeling the measurements
of cochlear microcirculation and hearing function after loud noise. Otolaryngol. Head Neck Surg. 2011, 145,
463–469. [CrossRef]

11. Shi, X. Physiopathology of the cochlear microcirculation. Hear. Res. 2011, 282, 10–24. [CrossRef]
12. Reif, R.; Zhi, Z.; Dziennis, S.; Nuttall, A.L.; Wang, R.K. Changes in cochlear blood flow in mice due to loud

sound exposure measured with Doppler optical microangiography and laser Doppler flowmetry. Quant.
Imaging Med. Surg. 2013, 3, 235–242.

13. Hirose, K.; Liberman, M.C. Lateral wall histopathology and endocochlear potential in the noise-damaged
mouse cochlea. J. Assoc. Res. Otolaryngol. 2003, 4, 339–352. [CrossRef]

14. Hawkins, J.E., Jr. Microcirculation in the labyrinth. Arch. Otorhinolaryngol. 1976, 212, 241–251. [CrossRef]
[PubMed]

15. Wangemann, P. Supporting sensory transduction: Cochlear fluid homeostasis and the endocochlear potential.
J. Physiol. 2006, 576, 11–21. [CrossRef] [PubMed]

16. Asakuma, S.; Snow, J.B., Jr. Effects of furosemide and ethacrynic acid on the endocochlear direct current
potential in normal and kanamycin sulfate-treated guinea pigs. Otolaryngol. Head Neck Surg. (1979) 1980, 88,
188–193. [CrossRef]

17. Anniko, M.; Wroblewski, R. Ionic environment of cochlear hair cells. Hear. Res. 1986, 22, 279–293. [CrossRef]
18. Hellier, W.P.; Wagstaff, S.A.; O’Leary, S.J.; Shepherd, R.K. Functional and morphological response of the stria

vascularis following a sensorineural hearing loss. Hear. Res. 2002, 172, 127–136. [CrossRef]
19. Hibino, H.; Nin, F.; Tsuzuki, C.; Kurachi, Y. How is the highly positive endocochlear potential formed?

The specific architecture of the stria vascularis and the roles of the ion-transport apparatus. Pflugers Arch.
2010, 459, 521–533. [CrossRef]

20. Patuzzi, R. Ion flow in stria vascularis and the production and regulation of cochlear endolymph and the
endolymphatic potential. Hear. Res. 2011, 277, 4–19. [CrossRef]

21. Shi, X.; Nuttall, A.L. Upregulated iNOS and oxidative damage to the cochlear stria vascularis due to noise
stress. Brain Res. 2003, 967, 1–10. [CrossRef]

http://dx.doi.org/10.1186/s40463-017-0219-x
http://www.ncbi.nlm.nih.gov/pubmed/28535812
https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss
https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss
http://dx.doi.org/10.1523/JNEUROSCI.2845-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19906956
http://www.ncbi.nlm.nih.gov/pubmed/6837370
http://dx.doi.org/10.1159/000259195
http://dx.doi.org/10.2174/157015910791233123
http://dx.doi.org/10.1177/0194599811407829
http://dx.doi.org/10.1016/j.heares.2011.08.006
http://dx.doi.org/10.1007/s10162-002-3036-4
http://dx.doi.org/10.1007/BF00453672
http://www.ncbi.nlm.nih.gov/pubmed/990077
http://dx.doi.org/10.1113/jphysiol.2006.112888
http://www.ncbi.nlm.nih.gov/pubmed/16857713
http://dx.doi.org/10.1177/019459988008800223
http://dx.doi.org/10.1016/0378-5955(86)90104-8
http://dx.doi.org/10.1016/S0378-5955(02)00553-1
http://dx.doi.org/10.1007/s00424-009-0754-z
http://dx.doi.org/10.1016/j.heares.2011.01.010
http://dx.doi.org/10.1016/S0006-8993(02)04090-8


Int. J. Mol. Sci. 2019, 20, 5316 15 of 18

22. Shi, X. Pathophysiology of the cochlear intrastrial fluid-blood barrier (review). Hear. Res. 2016, 338, 52–63.
[CrossRef]

23. Park, Y.H.; Chung, J.; Lee, M.Y.; Lee, D.Y.; Kim, Y.H. Cochlear damage caused by the striking noise of
Titanium head golf driver. Clin. Exp. Otorhinolaryngol. 2019, 12, 18–26. [CrossRef]

24. Mizutari, K.; Nakagawa, S.; Mutai, H.; Fujii, M.; Ogawa, K.; Matsunaga, T. Late-phase recovery in the
cochlear lateral wall following severe degeneration by acute energy failure. Brain Res. 2011, 1419, 1–11.
[CrossRef] [PubMed]

25. Li, Y.; Watanabe, K.; Fujioka, M.; Ogawa, K. Characterization of slow-cycling cells in the mouse cochlear
lateral wall. PLoS ONE 2017, 12, e0179293. [CrossRef] [PubMed]

26. Adams, J.C. Immunocytochemical traits of type IV fibrocytes and their possible relations to cochlear function
and pathology. J. Assoc. Res. Otolaryngol. 2009, 10, 369–382. [CrossRef] [PubMed]

27. Wright, J.L.; Schuknecht, H.F. Atrophy of the spiral ligament. Arch. Otolaryngol. 1972, 96, 16–21. [CrossRef]
[PubMed]

28. Kusunoki, T.; Cureoglu, S.; Schachern, P.A.; Baba, K.; Kariya, S.; Paparella, M.M. Age-related histopathologic
changes in the human cochlea: A temporal bone study. Otolaryngol. Head Neck Surg. 2004, 131, 897–903.
[CrossRef]

29. Howarth, A.; Shone, G.R. Ageing and the auditory system. Postgrad. Med. J. 2006, 82, 166–171. [CrossRef]
30. Hequembourg, S.; Liberman, M.C. Spiral ligament pathology: A major aspect of age-related cochlear

degeneration in C57BL/6 mice. J. Assoc. Res. Otolaryngol. 2001, 2, 118–129. [CrossRef]
31. Locher, H.; de Groot, J.C.; van Iperen, L.; Huisman, M.A.; Frijns, J.H.; Chuva de Sousa Lopes, S.M.

Development of the stria vascularis and potassium regulation in the human fetal cochlea: Insights into
hereditary sensorineural hearing loss. Dev. Neurobiol. 2015, 75, 1219–1240. [CrossRef]

32. Minowa, O.; Ikeda, K.; Sugitani, Y.; Oshima, T.; Nakai, S.; Katori, Y.; Suzuki, M.; Furukawa, M.; Kawase, T.;
Zheng, Y.; et al. Altered cochlear fibrocytes in a mouse model of DFN3 nonsyndromic deafness. Science 1999,
285, 1408–1411. [CrossRef]

33. Anniko, M.; Nordemar, H.; Sobin, A. Principles in embryonic development and differentiation of vestibular
hair cells. Otolaryngol. Head Neck Surg. 1983, 91, 540–549. [CrossRef]

34. Anniko, M.; Nordemar, H.; Van De Water, T.R. Embryogenesis of the inner ear. I. Development and
differentiation of the mammalian crista ampullaris in vivo and in vitro. Arch. Otorhinolaryngol. 1979, 224,
285–299. [CrossRef] [PubMed]

35. Billaud, M.; Lohman, A.W.; Straub, A.C.; Looft-Wilson, R.; Johnstone, S.R.; Araj, C.A.; Best, A.K.;
Chekeni, F.B.; Ravichandran, K.S.; Penuela, S.; et al. Pannexin1 regulates alpha1-adrenergic receptor-
Mediated vasoconstriction. Circ. Res. 2011, 109, 80–85. [CrossRef] [PubMed]

36. Methven, L.; Simpson, P.C.; McGrath, J.C. Alpha1A/B-knockout mice explain the native
alpha1D-adrenoceptor’s role in vasoconstriction and show that its location is independent of the other
alpha1-subtypes. Br. J. Pharmacol. 2009, 158, 1663–1675. [CrossRef] [PubMed]

37. Tanoue, A.; Nasa, Y.; Koshimizu, T.; Shinoura, H.; Oshikawa, S.; Kawai, T.; Sunada, S.; Takeo, S.; Tsujimoto, G.
The α1D-adrenergic receptor directly regulates arterial blood pressure via vasoconstriction. J. Clin. Investig.
2002, 109, 765–775. [CrossRef] [PubMed]

38. Boyd, R.; Ratsep, M.T.; Ding, L.L.; Wang, H.D. ETA and ETB receptors are expressed in vascular adventitial
fibroblasts. Am. J. Physiol. Heart Circ. Physiol. 2011, 301, H2271–H2278. [CrossRef] [PubMed]

39. Niu, J.; Wu, J.; Li, X.; Zhang, F. Association between endothelin-1/endothelin receptor A and inflammation in
mouse kidneys following acute ischemia/reperfusion. Mol. Med. Rep. 2015, 11, 3981–3987. [CrossRef]

40. Rodriguez, J.E.; Romero-Nava, R.; Resendiz-Albor, A.A.; Rosales-Cruz, E.; Hong, E.; Huang, F.; Villafana, S.
Expression and localization of the AT1 and AT2 angiotensin II receptors and alpha1A and alpha1D adrenergic
receptors in aorta of hypertensive and diabetic rats. Clin. Exp. Hypertens. 2017, 39, 85–92. [CrossRef]

41. Ibarra-Lara, L.; Del Valle-Mondragon, L.; Soria-Castro, E.; Torres-Narvaez, J.C.; Perez-Severiano, F.;
Sanchez-Aguilar, M.; Ramirez-Ortega, M.; Cervantes-Perez, L.G.; Pastelin-Hernandez, G.S.; Oidor-Chan, V.H.;
et al. Peroxisome proliferator-activated receptor-alpha stimulation by clofibrate favors an antioxidant and
vasodilator environment in a stressed left ventricle. Pharmacol. Rep. 2016, 68, 692–702. [CrossRef]

42. Justin, A.; Divakar, S.; Ramanathan, M. Cerebral ischemia induced inflammatory response and altered
glutaminergic function mediated through brain AT1 and not AT2 receptor. Biomed. Pharmacother. 2018, 102,
947–958. [CrossRef]

http://dx.doi.org/10.1016/j.heares.2016.01.010
http://dx.doi.org/10.21053/ceo.2017.01669
http://dx.doi.org/10.1016/j.brainres.2011.08.062
http://www.ncbi.nlm.nih.gov/pubmed/21925650
http://dx.doi.org/10.1371/journal.pone.0179293
http://www.ncbi.nlm.nih.gov/pubmed/28632772
http://dx.doi.org/10.1007/s10162-009-0165-z
http://www.ncbi.nlm.nih.gov/pubmed/19277783
http://dx.doi.org/10.1001/archotol.1972.00770090054005
http://www.ncbi.nlm.nih.gov/pubmed/5032052
http://dx.doi.org/10.1016/j.otohns.2004.05.022
http://dx.doi.org/10.1136/pgmj.2005.039388
http://dx.doi.org/10.1007/s101620010075
http://dx.doi.org/10.1002/dneu.22279
http://dx.doi.org/10.1126/science.285.5432.1408
http://dx.doi.org/10.1177/019459988309100513
http://dx.doi.org/10.1007/BF01108785
http://www.ncbi.nlm.nih.gov/pubmed/526189
http://dx.doi.org/10.1161/CIRCRESAHA.110.237594
http://www.ncbi.nlm.nih.gov/pubmed/21546608
http://dx.doi.org/10.1111/j.1476-5381.2009.00462.x
http://www.ncbi.nlm.nih.gov/pubmed/19888965
http://dx.doi.org/10.1172/JCI200214001
http://www.ncbi.nlm.nih.gov/pubmed/11901185
http://dx.doi.org/10.1152/ajpheart.00869.2010
http://www.ncbi.nlm.nih.gov/pubmed/21949113
http://dx.doi.org/10.3892/mmr.2014.3138
http://dx.doi.org/10.1080/10641963.2016.1200610
http://dx.doi.org/10.1016/j.pharep.2016.03.002
http://dx.doi.org/10.1016/j.biopha.2018.03.164


Int. J. Mol. Sci. 2019, 20, 5316 16 of 18

43. Khodadadi, S.; Zabihi, N.A.; Niazmand, S.; Abbasnezhad, A.; Mahmoudabady, M.; Rezaee, S.A. Teucrium
polium improves endothelial dysfunction by regulating eNOS and VCAM-1 genes expression and
vasoreactivity in diabetic rat aorta. Biomed. Pharmacother. 2018, 103, 1526–1530. [CrossRef]

44. Shukla, M.; Roy, K.; Kaur, C.; Nayak, D.; Mani, K.V.; Shukla, S.; Kapoor, N. Attenuation of adverse effects of
noise induced hearing loss on adult neurogenesis and memory in rats by intervention with Adenosine A2A
receptor agonist. Brain Res. Bull. 2019, 147, 47–57. [CrossRef] [PubMed]

45. Liu, Z.; Yan, S.; Wang, J.; Xu, Y.; Wang, Y.; Zhang, S.; Xu, X.; Yang, Q.; Zeng, X.; Zhou, Y.; et al. Endothelial
adenosine A2a receptor-mediated glycolysis is essential for pathological retinal angiogenesis. Nat. Commun.
2017, 8, 584. [CrossRef] [PubMed]

46. Kawahara, K.; Hohjoh, H.; Inazumi, T.; Tsuchiya, S.; Sugimoto, Y. Prostaglandin E2-induced inflammation:
Relevance of prostaglandin E receptors. Biochim. Biophys. Acta 2015, 1851, 414–421. [CrossRef] [PubMed]

47. Misawa, H.; Ohashi, W.; Tomita, K.; Hattori, K.; Shimada, Y.; Hattori, Y. Prostacyclin mimetics afford
protection against lipopolysaccharide/d-galactosamine-induced acute liver injury in mice. Toxicol. Appl.
Pharmacol. 2017, 334, 55–65. [CrossRef] [PubMed]

48. Han, W.K.; Kim, E.H.; Shin, S.A.; Shin, D.S.; Kim, B.J.; Lyu, A.R.; Park, Y.H. Susceptibility of diabetic mice to
noise trauma. Biomed. Res. Int. 2018, 2018, 7601232. [CrossRef]

49. Fujita, T.; Yamashita, D.; Katsunuma, S.; Hasegawa, S.; Tanimoto, H.; Nibu, K. Increased inner ear susceptibility
to noise injury in mice with streptozotocin-induced diabetes. Diabetes 2012, 61, 2980–2986. [CrossRef]

50. Hildesheimer, M.; Henkin, Y.; Pye, A.; Heled, S.; Sahartov, E.; Shabtai, E.L.; Muchnik, C. Bilateral superior
cervical sympathectomy and noise-induced, permanent threshold shift in guinea pigs. Hear. Res. 2002, 163,
46–52. [CrossRef]

51. Seidman, M.D.; Quirk, W.S.; Shirwany, N.A. Mechanisms of alterations in the microcirculation of the cochlea.
Ann. N. Y. Acad. Sci. 1999, 884, 226–232. [CrossRef]

52. Nuttall, A.L. Sound-induced cochlear ischemia/hypoxia as a mechanism of hearing loss. Noise Health 1999, 2,
17–32.

53. Olivetto, E.; Simoni, E.; Guaran, V.; Astolfi, L.; Martini, A. Sensorineural hearing loss and ischemic injury:
Development of animal models to assess vascular and oxidative effects. Hear. Res. 2015, 327, 58–68.
[CrossRef]

54. Axelsson, A.; Dengerink, H. The effects of noise on histological measures of the cochlear vasculature and red
blood cells: A review. Hear. Res. 1987, 31, 183–191. [CrossRef]

55. Scheibe, F.; Haupt, H.; Ludwig, C. Intensity-related changes in cochlear blood flow in the guinea pig during
and following acoustic exposure. Eur. Arch. Otorhinolaryngol. 1993, 250, 281–285. [CrossRef] [PubMed]

56. Attanasio, G.; Buongiorno, G.; Piccoli, F.; Mafera, B.; Cordier, A.; Barbara, M.; Filipo, R. Laser Doppler
measurement of cochlear blood flow changes during conditioning noise exposure. Acta Otolaryngol. 2001,
121, 465–469. [CrossRef] [PubMed]

57. Okamoto, A.; Hasegawa, M.; Tamura, T.; Homma, T.; Komatsuzaki, A. Effects of frequency and intensity of
sound on cochlear blood flow. Acta Otolaryngol. 1992, 112, 59–64. [CrossRef] [PubMed]

58. Hultcrantz, E.; Angelborg, C.; Beausang-Linder, M. Noise and cochlear blood flow. Arch. Otorhinolaryngol.
1979, 224, 103–106. [CrossRef] [PubMed]

59. Prazma, J.; Smalley, W.E.; Covington, S.; Pillsbury, H.C. Cochlear blood flow. The effect of six hours of noise
exposure. Arch. Otolaryngol. Head Neck Surg. 1988, 114, 657–660. [CrossRef] [PubMed]

60. Quirk, W.S.; Seidman, M.D. Cochlear vascular changes in response to loud noise. Am. J. Otol. 1995, 16,
322–325.

61. Luo, Y.; Tang, Y.; Xia, Q.; Liu, J. The expression of endothelin type A and B receptors in the lateral wall of the
mouse cochlea. Cell. Mol. Biol. Lett. 2007, 12, 595–603. [CrossRef]

62. Coessens, B.C. Endothelin: An endothelium-derived vasoactive peptide. J. Reconstr. Microsurg. 1994, 10,
405–410. [CrossRef]

63. Sadanaga, M.; Liu, J.; Wangemann, P. Endothelin-A receptors mediate vasoconstriction of capillaries in the
spiral ligament. Hear. Res. 1997, 112, 106–114. [CrossRef]

64. Scherer, E.Q.; Arnold, W.; Wangemann, P. Pharmacological reversal of endothelin-1 mediated constriction of
the spiral modiolar artery: A potential new treatment for sudden sensorineural hearing loss. BMC Ear Nose
Throat Disord. 2005, 5, 10. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.biopha.2018.04.158
http://dx.doi.org/10.1016/j.brainresbull.2019.02.006
http://www.ncbi.nlm.nih.gov/pubmed/30771409
http://dx.doi.org/10.1038/s41467-017-00551-2
http://www.ncbi.nlm.nih.gov/pubmed/28928465
http://dx.doi.org/10.1016/j.bbalip.2014.07.008
http://www.ncbi.nlm.nih.gov/pubmed/25038274
http://dx.doi.org/10.1016/j.taap.2017.09.003
http://www.ncbi.nlm.nih.gov/pubmed/28887131
http://dx.doi.org/10.1155/2018/7601232
http://dx.doi.org/10.2337/db11-1845
http://dx.doi.org/10.1016/S0378-5955(01)00371-9
http://dx.doi.org/10.1111/j.1749-6632.1999.tb08644.x
http://dx.doi.org/10.1016/j.heares.2015.05.004
http://dx.doi.org/10.1016/0378-5955(87)90125-0
http://dx.doi.org/10.1007/BF00186226
http://www.ncbi.nlm.nih.gov/pubmed/8217130
http://dx.doi.org/10.1080/00016480120524
http://www.ncbi.nlm.nih.gov/pubmed/11508505
http://dx.doi.org/10.3109/00016489209100783
http://www.ncbi.nlm.nih.gov/pubmed/1575038
http://dx.doi.org/10.1007/BF00455231
http://www.ncbi.nlm.nih.gov/pubmed/485935
http://dx.doi.org/10.1001/archotol.1988.01860180071033
http://www.ncbi.nlm.nih.gov/pubmed/3365338
http://dx.doi.org/10.2478/s11658-007-0027-9
http://dx.doi.org/10.1055/s-2007-1006611
http://dx.doi.org/10.1016/S0378-5955(97)00121-4
http://dx.doi.org/10.1186/1472-6815-5-10
http://www.ncbi.nlm.nih.gov/pubmed/16316469


Int. J. Mol. Sci. 2019, 20, 5316 17 of 18

65. Picciotti, P.M.; Fetoni, A.R.; Paludetti, G.; Wolf, F.I.; Torsello, A.; Troiani, D.; Ferraresi, A.; Pola, R.; Sergi, B.
Vascular endothelial growth factor (VEGF) expression in noise-induced hearing loss. Hear. Res. 2006, 214,
76–83. [CrossRef] [PubMed]

66. Byrne, A.M.; Bouchier-Hayes, D.J.; Harmey, J.H. Angiogenic and cell survival functions of vascular endothelial
growth factor (VEGF). J. Cell. Mol. Med. 2005, 9, 777–794. [CrossRef] [PubMed]

67. Yang, D.; Zhou, H.; Zhang, J.; Liu, L. Increased endothelial progenitor cell circulation and VEGF production
in a rat model of noise-induced hearing loss. Acta Otolaryngol. 2015, 135, 622–628. [CrossRef] [PubMed]

68. Vlajkovic, S.M.; Housley, G.D.; Thorne, P.R. Adenosine and the auditory system. Curr. Neuropharmacol. 2009,
7, 246–256. [CrossRef]

69. Shi, X.; Han, W.; Yamamoto, H.; Tang, W.; Lin, X.; Xiu, R.; Trune, D.R.; Nuttall, A.L. The cochlear pericytes.
Microcirculation 2008, 15, 515–529. [CrossRef] [PubMed]

70. Canis, M.; Bertlich, M. Cochlear capillary pericytes. Adv. Exp. Med. Biol. 2019, 1122, 115–123.
71. Gerhardt, H.; Betsholtz, C. Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res. 2003, 314, 15–23.

[CrossRef]
72. Frank, R.N.; Dutta, S.; Mancini, M.A. Pericyte coverage is greater in the retinal than in the cerebral capillaries

of the rat. Investig. Ophthalmol. Vis. Sci. 1987, 28, 1086–1091.
73. Shepro, D.; Morel, N.M. Pericyte physiology. FASEB J. 1993, 7, 1031–1038. [CrossRef]
74. Dai, M.; Nuttall, A.; Yang, Y.; Shi, X. Visualization and contractile activity of cochlear pericytes in the

capillaries of the spiral ligament. Hear. Res. 2009, 254, 100–107. [CrossRef] [PubMed]
75. Wagenfeld, L.; Weiss, S.; Klemm, M.; Richard, G.; Zeitz, O. Vascular dysfunction in ocular blood flow

regulation: Impact of reactive oxygen species in an experimental setup. Investig. Ophthalmol. Vis. Sci. 2014,
55, 5531–5536. [CrossRef] [PubMed]

76. Minutoli, L.; Puzzolo, D.; Rinaldi, M.; Irrera, N.; Marini, H.; Arcoraci, V.; Bitto, A.; Crea, G.; Pisani, A.;
Squadrito, F.; et al. ROS-mediated NLRP3 inflammasome activation in brain, heart, kidney, and testis
ischemia/reperfusion injury. Oxid. Med. Cell. Longev. 2016, 2016, 2183026. [CrossRef] [PubMed]

77. Pak, O.; Sydykov, A.; Kosanovic, D.; Schermuly, R.T.; Dietrich, A.; Schroder, K.; Brandes, R.P.; Gudermann, T.;
Sommer, N.; Weissmann, N. Lung ischaemia-reperfusion injury: The role of reactive oxygen species. Adv. Exp.
Med. Biol. 2017, 967, 195–225. [PubMed]

78. Francis, A.; Baynosa, R. Ischaemia-reperfusion injury and hyperbaric oxygen pathways: A review of cellular
mechanisms. Diving Hyperb. Med. 2017, 47, 110–117. [PubMed]

79. Ohlemiller, K.K.; Wright, J.S.; Dugan, L.L. Early elevation of cochlear reactive oxygen species following noise
exposure. Audiol. Neurootol. 1999, 4, 229–236. [CrossRef] [PubMed]

80. Yamane, H.; Nakai, Y.; Takayama, M.; Iguchi, H.; Nakagawa, T.; Kojima, A. Appearance of free radicals in
the guinea pig inner ear after noise-induced acoustic trauma. Eur. Arch. Otorhinolaryngol. 1995, 252, 504–508.
[CrossRef]

81. Yamashita, D.; Jiang, H.Y.; Schacht, J.; Miller, J.M. Delayed production of free radicals following noise
exposure. Brain Res. 2004, 1019, 201–209. [CrossRef]

82. Yuan, H.; Wang, X.; Hill, K.; Chen, J.; Lemasters, J.; Yang, S.M.; Sha, S.H. Autophagy attenuates noise-induced
hearing loss by reducing oxidative stress. Antioxid. Redox Signal. 2015, 22, 1308–1324. [CrossRef]

83. Matsunobu, T.; Satoh, Y.; Ogawa, K.; Shiotani, A. Heme oxygenase-1 expression in the guinea pig cochlea
induced by intense noise stimulation. Acta Otolaryngol. Suppl. 2009, 129, 18–23. [CrossRef]

84. Jacono, A.A.; Hu, B.; Kopke, R.D.; Henderson, D.; Van De Water, T.R.; Steinman, H.M. Changes in cochlear
antioxidant enzyme activity after sound conditioning and noise exposure in the chinchilla. Hear. Res. 1998,
117, 31–38. [CrossRef]

85. Cheng, P.-W.; Liu, S.-H.; Young, Y.-H.; Hsu, C.-J.; Lin-Shiau, S.-Y. Protection from noise-induced temporary
threshold shift by D-methionine is associated with preservation of ATPase activities. Ear Hear. 2008, 29,
65–75. [CrossRef] [PubMed]

86. Henderson, D.; Bielefeld, E.C.; Harris, K.C.; Hu, B.H. The role of oxidative stress in noise-induced hearing
loss. Ear Hear. 2006, 27, 1–19. [CrossRef] [PubMed]

87. Miller, J.M.; Brown, J.N.; Schacht, J. 8-iso-prostaglandin F(2alpha), a product of noise exposure, reduces inner
ear blood flow. Audiol. Neurootol. 2003, 8, 207–221. [CrossRef] [PubMed]

88. Thorne, P.R.; Nuttall, A.L.; Scheibe, F.; Miller, J.M. Sound-induced artifact in cochlear blood flow measurements
using the laser Doppler flowmeter. Hear. Res. 1987, 31, 229–234. [CrossRef]

http://dx.doi.org/10.1016/j.heares.2006.02.004
http://www.ncbi.nlm.nih.gov/pubmed/16603326
http://dx.doi.org/10.1111/j.1582-4934.2005.tb00379.x
http://www.ncbi.nlm.nih.gov/pubmed/16364190
http://dx.doi.org/10.3109/00016489.2014.1003092
http://www.ncbi.nlm.nih.gov/pubmed/25720428
http://dx.doi.org/10.2174/157015909789152155
http://dx.doi.org/10.1080/10739680802047445
http://www.ncbi.nlm.nih.gov/pubmed/19086261
http://dx.doi.org/10.1007/s00441-003-0745-x
http://dx.doi.org/10.1096/fasebj.7.11.8370472
http://dx.doi.org/10.1016/j.heares.2009.04.018
http://www.ncbi.nlm.nih.gov/pubmed/19422897
http://dx.doi.org/10.1167/iovs.14-14032
http://www.ncbi.nlm.nih.gov/pubmed/25034604
http://dx.doi.org/10.1155/2016/2183026
http://www.ncbi.nlm.nih.gov/pubmed/27127546
http://www.ncbi.nlm.nih.gov/pubmed/29047088
http://www.ncbi.nlm.nih.gov/pubmed/28641323
http://dx.doi.org/10.1159/000013846
http://www.ncbi.nlm.nih.gov/pubmed/10436315
http://dx.doi.org/10.1007/BF02114761
http://dx.doi.org/10.1016/j.brainres.2004.05.104
http://dx.doi.org/10.1089/ars.2014.6004
http://dx.doi.org/10.1080/00016480902933056
http://dx.doi.org/10.1016/S0378-5955(97)00214-1
http://dx.doi.org/10.1097/AUD.0b013e31815d635b
http://www.ncbi.nlm.nih.gov/pubmed/18091106
http://dx.doi.org/10.1097/01.aud.0000191942.36672.f3
http://www.ncbi.nlm.nih.gov/pubmed/16446561
http://dx.doi.org/10.1159/000071061
http://www.ncbi.nlm.nih.gov/pubmed/12811002
http://dx.doi.org/10.1016/0378-5955(87)90192-4


Int. J. Mol. Sci. 2019, 20, 5316 18 of 18

89. Kurabi, A.; Keithley, E.M.; Housley, G.D.; Ryan, A.F.; Wong, A.C. Cellular mechanisms of noise-induced
hearing loss. Hear. Res. 2017, 349, 129–137. [CrossRef]

90. Kobel, M.; Le Prell, C.G.; Liu, J.; Hawks, J.W.; Bao, J. Noise-induced cochlear synaptopathy: Past findings
and future studies. Hear. Res. 2017, 349, 148–154. [CrossRef]

91. Vetter, D.E. Cellular signaling protective against noise-induced hearing loss—A role for novel intrinsic
cochlear signaling involving corticotropin-releasing factor? Biochem. Pharmacol. 2015, 97, 1–15. [CrossRef]

92. Hirose, K.; Discolo, C.M.; Keasler, J.R.; Ransohoff, R. Mononuclear phagocytes migrate into the murine
cochlea after acoustic trauma. J. Comp. Neurol. 2005, 489, 180–194. [CrossRef]

93. Fujioka, M.; Okano, H.; Ogawa, K. Inflammatory and immune responses in the cochlea: Potential therapeutic
targets for sensorineural hearing loss. Front. Pharmacol. 2014, 5, 287. [CrossRef]

94. Tahera, Y.; Meltser, I.; Johansson, P.; Bian, Z.; Stierna, P.; Hansson, A.C.; Canlon, B. NF-kappaB mediated
glucocorticoid response in the inner ear after acoustic trauma. J. Neurosci. Res. 2006, 83, 1066–1076. [CrossRef]
[PubMed]

95. Yamamoto, H.; Omelchenko, I.; Shi, X.; Nuttall, A.L. The influence of NF-κB signal-transduction pathways on
the murine inner ear by acoustic overstimulation. J. Neurosci. Res. 2009, 87, 1832–1840. [CrossRef] [PubMed]

96. Infante, E.B.; Channer, G.A.; Telischi, F.F.; Gupta, C.; Dinh, J.T.; Vu, L.; Eshraghi, A.A.; Van De Water, T.R.
Neurotology, Mannitol Protects Hair Cells Against Tumor Necrosis Factor α–Induced Loss. Otol. Neurotol.
2012, 33, 1656–1663. [CrossRef] [PubMed]

97. Tan, W.J.; Thorne, P.R.; Vlajkovic, S.M. Characterisation of cochlear inflammation in mice following acute
and chronic noise exposure. Histochem. Cell Biol. 2016, 146, 219–230. [CrossRef] [PubMed]

98. Wang, W.; Zhang, L.S.; Zinsmaier, A.K.; Patterson, G.; Leptich, E.J.; Shoemaker, S.L.; Yatskievych, T.A.;
Gibboni, R.; Pace, E.; Luo, H.; et al. Neuroinflammation mediates noise-induced synaptic imbalance and
tinnitus in rodent models. PLoS Biol. 2019, 17, e3000307. [CrossRef] [PubMed]

99. Lyu, A.R.; Kim, D.H.; Lee, S.H.; Shin, D.S.; Shin, S.A.; Park, Y.H. Effects of dexamethasone on intracochlear
inflammation and residual hearing after cochleostomy: A comparison of administration routes. PLoS ONE
2018, 13, e0195230. [CrossRef]

100. Lee, S.H.; Lyu, A.R.; Shin, S.A.; Jeong, S.H.; Lee, S.A.; Park, M.J.; Park, Y.H. Cochlear glucocorticoid receptor
and serum corticosterone expression in a rodent model of noise-induced hearing loss: Comparison of timing
of Dexamethasone administration. Sci. Rep. 2019, 9, 12646. [CrossRef]

101. Fischer, A.H.; Jacobson, K.A.; Rose, J.; Zeller, R. Hematoxylin and eosin staining of tissue and cell sections.
CSH Protoc. 2008, 2008, pdb.prot4986. [CrossRef]

102. Spurr, A.R. A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res.
1969, 26, 31–43. [CrossRef]

103. Reynolds, E.S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell
Biol. 1963, 17, 208. [CrossRef]

104. Wangemann, P.; Itza, E.M.; Albrecht, B.; Wu, T.; Jabba, S.V.; Maganti, R.J.; Lee, J.H.; Everett, L.A.; Wall, S.M.;
Royaux, I.E.; et al. Loss of KCNJ10 protein expression abolishes endocochlear potential and causes deafness
in Pendred syndrome mouse model. BMC Med. 2004, 2, 30. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.heares.2016.11.013
http://dx.doi.org/10.1016/j.heares.2016.12.008
http://dx.doi.org/10.1016/j.bcp.2015.06.011
http://dx.doi.org/10.1002/cne.20619
http://dx.doi.org/10.3389/fphar.2014.00287
http://dx.doi.org/10.1002/jnr.20795
http://www.ncbi.nlm.nih.gov/pubmed/16493680
http://dx.doi.org/10.1002/jnr.22018
http://www.ncbi.nlm.nih.gov/pubmed/19185019
http://dx.doi.org/10.1097/MAO.0b013e31826bedd9
http://www.ncbi.nlm.nih.gov/pubmed/22996158
http://dx.doi.org/10.1007/s00418-016-1436-5
http://www.ncbi.nlm.nih.gov/pubmed/27109494
http://dx.doi.org/10.1371/journal.pbio.3000307
http://www.ncbi.nlm.nih.gov/pubmed/31211773
http://dx.doi.org/10.1371/journal.pone.0195230
http://dx.doi.org/10.1038/s41598-019-49133-w
http://dx.doi.org/10.1101/pdb.prot4986
http://dx.doi.org/10.1016/S0022-5320(69)90033-1
http://dx.doi.org/10.1083/jcb.17.1.208
http://dx.doi.org/10.1186/1741-7015-2-30
http://www.ncbi.nlm.nih.gov/pubmed/15320950
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Auditory Brainstem Response Threshold by Transient Hearing Threshold Shift and Permanent Hearing Threshold Shift 
	Survival of SGNs is Modulated by Severity of Noise Trauma 
	Changes in Spiral Ligament Fibrocytes 
	Acoustic Trauma Modulates Cochlear Microcirculation 
	Microvasculature of Stria Vascularis after Acoustic injury 
	Stria Vascularis Thickness is Changed by Noise Exposure 
	Vasoactive Genes are Differentially Expressed in Both TTS and PTS 
	Genes Involved in Oxidative Stress are Modulated by Noise Trauma 
	Genes Involved in Proinflammatory Responses are Modulated by Noise Trauma 

	Discussion 
	Materials and Methods 
	Experimental Animals and Design 
	Noise Exposure 
	Auditory Brainstem Response 
	Hematoxylin Staining 
	Transmission Electron Microscope (TEM) 
	Measurement of Cochlear Blood Flow 
	Measurement of the Stria Capillary Thickness 
	Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) 
	Image Processing and Statistical Analysis 

	References

