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A B S T R A C T   

This paper aims to accurately assess and effectively manage various security risks in the com-
munity and overcome the challenges faced by traditional models in handling large amounts of 
features and high-dimensional data. Hence, this paper utilizes the back propagation neural 
network (BPNN) to optimize the security risk assessment model. A key challenge of researching 
community security risk assessment lies in accurately identifying and predicting a range of po-
tential security threats. These threats may encompass natural disasters, public health crises, ac-
cidents, and social security issues. The intricate interplay of these risk factors, combined with the 
dynamic nature of community environments, presents difficulties for traditional risk assessment 
methodologies to address effectively. Initially, this paper delves into the factors influencing safety 
incidents within communities and establishes a comprehensive system of safety risk assessment 
indicators. Leveraging the adaptable and generalizable nature of the BPNN model, the paper 
proceeds to optimize the BPNN model, enhancing the security risk assessment model through this 
optimization. Subsequent comparison experiments with traditional models validate the ratio-
nality and effectiveness of the proposed model, with hidden layer nodes set at various levels like 
10, 15, 20, 25, 30, and 35. These traditional models include Convolutional Neural Network 
(CNN), Long Short-Term Memory Network (LSTM), Bidirectional Encoder Representations from 
Transformers (BERT), Generative Pre-trained Transformer (GPT), and eXtreme Gradient Boosting 
(XGBOOST). Experimental findings demonstrate that with 20 hidden layer nodes, the optimized 
model achieves a remarkable final recognition accuracy of 99.1 %. Moreover, the optimized 
model exhibits significantly lower final function loss compared to models with different node 
numbers. Increasing the number of hidden layer nodes may diminish the optimized model’s fit 
and accuracy. Comparison with traditional models reveals that the average accuracy of the 
optimized model in community risk identification reaches 98.5 %, with a maximum accuracy of 
99.6 %. This marks an improvement of 9%–11 % in recognition accuracy across various risk 
factors compared to traditional models. Regarding system response time and resource utilization, 
the optimized model exhibits a response time ranging from 100 ms to 120 ms and consistently 
lower resource utilization rates across all scenarios, underscoring its efficiency in community 
security risk assessment. In conclusion, this experiment sheds light on the underlying mechanisms 
and patterns of community safety risk formation, offering novel perspectives and methodologies 
for researching community safety risk assessment. The paper concludes by presenting recom-
mendations and strategies for addressing community safety risks based on experimental analysis.  

* Corresponding author. 
E-mail address: zhoushuang_8706@163.com (S. Zhou).  

Contents lists available at ScienceDirect 

Heliyon 

journal homepage: www.cell.com/heliyon 

https://doi.org/10.1016/j.heliyon.2024.e30185 
Received 27 February 2024; Received in revised form 19 April 2024; Accepted 22 April 2024   

mailto:zhoushuang_8706@163.com
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2024.e30185
https://doi.org/10.1016/j.heliyon.2024.e30185
https://doi.org/10.1016/j.heliyon.2024.e30185
http://creativecommons.org/licenses/by-nc-nd/4.0/


Heliyon 10 (2024) e30185

2

1. Introduction 

Community safety risk assessment is a vital field of study that focuses on analyzing and predicting potential security threats faced 
by communities. These threats can range from criminal activities to accidents and natural disasters, all of which jeopardize community 
stability and residents’ quality of life [1]. With the rapid pace of societal development and urbanization, these safety risks are 
becoming more prominent, posing significant challenges to both community development and residents’ well-being. Hence, accurately 
assessing a community’s safety risk level and analyzing the factors influencing it are crucial for devising effective security measures 
and emergency plans. When identifying risk factors, it is essential to consider various parameters or variables. These include com-
munity crime rates, traffic accident occurrence rates, fire incidence rates, the likelihood of natural disasters, resident population 
density, regional economic conditions, level of infrastructure development, and community emergency response capabilities. The 
selection of these variables aims to provide a comprehensive reflection of the multidimensional nature of community safety risks. 
Traditional methods of community safety risk assessment typically involve qualitative analysis, quantitative analysis (such as fault tree 
analysis, and event tree analysis), and hybrid approaches. These methods encounter the following challenges when dealing with 
high-dimensional data and dynamic community environments. First, when dealing with large and complex data sets, traditional 
methods often struggle to effectively process them. This is because they were not designed to account for the characteristics of 
high-dimensional data, such as complex interactions between features, which can result in ineffective risk identification and evalu-
ation [2–4]. Next, community environments are constantly changing, with new risk factors potentially emerging at any time. 
Traditional methods often lack the ability for real-time updates and learning, making it difficult to adapt to such dynamic changes, 
which may result in reduced accuracy and timeliness of risk assessment. Finally, many traditional risk assessment methods focus more 
on identifying and evaluating existing risks rather than predicting future risks. This limits their effectiveness in preventing potential 
security threats. Henceforth, this paper introduces a groundbreaking algorithm for community safety risk assessment and influencing 
factor analysis, rooted in the Back Propagation Neural Network (BPNN). The aim is to revolutionize the accuracy and dependability of 
assessments through cutting-edge computing technology and algorithms, offering a more scientific and comprehensive 
decision-making framework for community safety management. The existing constraints of the current community security risk 
assessment system often stem from limitations in data availability, integrity, and accuracy, particularly prevalent in communities with 
scarce resources or inadequate information sharing. Furthermore, the ever-evolving community environment and the dynamic nature 
of security risks demand a level of flexibility and adaptability that the current evaluation system may lack, thereby impeding real-time 
accuracy in assessment results. 

Renowned for its prowess in pattern recognition, prediction, and classification, BPNN stands as a formidable machine learning (ML) 
algorithm. Its adaptive learning capability, adeptness in nonlinear mapping, and robustness render BPNN exceptional in tackling 
intricate relationships and nonlinear quandaries [5–7]. The reason for choosing BPNN over other ML models to optimize the security 
risk assessment model lies primarily in several prominent advantages of BPNN. First, the multi-layer structure of BPNN allows them to 
capture and model complex nonlinear relationships, which is particularly important for the multiple variables and high-dimensional 
data involved in security risk assessment. This is because these data often contain complex and nonlinear influencing factors. Next, 
BPNN can learn universal patterns from training data and effectively apply them to new, unseen data. This means that once the BPNN is 
well-trained on community security risk assessment data, it can accurately predict unknown or future security risks. Lastly, BPNN can 
adjust network structures (such as the number of layers and nodes per layer) and automatically adjust weights during the training 
process to best reflect the complex relationships in the data according to specific requirements. This enables BPNN to maintain 
excellent performance in different scenarios and conditions. BPNN has demonstrated its strong potential applications in various fields, 
including but not limited to financial risk assessment, medical diagnosis, image recognition, and language processing. For example, in 
the financial domain, BPNN is used for credit scoring and fraud detection. In the medical field, it aids in disease prediction and medical 
image analysis. In computer vision, BPNN supports the recognition and classification tasks of complex images [8]. The remarkable 
nonlinear mapping prowess of BPNN empowers it to discern and model intricate nonlinear relationships, thus augmenting the pre-
cision of evaluation. The significance of this paper lies in the recognition that, amid the rapid evolution of society, community security 
risks are burgeoning in complexity, rendering traditional assessment methods inadequate to meet contemporary demands. By har-
nessing BPNN to refine community security risk assessment, potential risks can be identified and forecasted with heightened accuracy. 
Moreover, the community’s capacity to confront diverse security threats can also be significantly bolstered, furnishing robust support 
for safeguarding community security and residents’ well-being. Despite BPNN’s widespread utilization in realms such as pattern 
recognition, prediction, and classification, and its proven efficacy in grappling with intricate relationships and nonlinear challenges, it 
still grapples with certain constraints when applied to community security risk assessment. On the one hand, BPNN’s performance is 
intricately tethered to the caliber and abundance of training data. In community safety risk assessment, securing high-quality and 
meticulously labeled data may pose challenges, potentially limiting the efficacy and accuracy of model learning. On the other hand, 
owing to its complex network architecture, BPNN may occasionally hyper-learn the minutiae and noise within training data, 
diminishing the model’s generalization prowess on novel data. This issue is particularly salient in dynamic community security risk 
assessment scenarios and warrants mitigation through apt regularization techniques and parameter adjustments. 

This paper also faces several challenges in employing BPNN to optimize the security risk assessment model. On one hand, designing 
a BPNN model that can handle high-dimensional data while adapting to dynamic changes is a formidable task. Careful consideration 
must be given to network architecture, selection of appropriate activation functions, and adjustment of learning rates to achieve 
optimal risk assessment performance. On the other hand, high-dimensional data may contain a plethora of noise and irrelevant fea-
tures, necessitating effective data preprocessing and feature selection before model training to ensure that the model learns the most 
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valuable information. This paper embarks on a transformative journey by first delving into an in-depth analysis of previous research, 
shedding light on the limitations of traditional methodologies. Subsequently, it ventures into the intricate realm of factors influencing 
community safety events, constructing a robust framework for community safety risk assessment, inclusive of diverse indicators. The 
culmination of these endeavors materializes in the development of a novel security risk assessment model, integrating the optimized 
BPNN, whose rationality and efficacy are rigorously scrutinized through empirical experimentation. In conjunction with the research 
findings, the experiments posit certain assumptions. Primarily, it is postulated that the risk assessment indicators delineated 
comprehensively encapsulate the primary determinants of community safety, spanning natural disasters, public health crises, acci-
dents, and social security issues. Moreover, it is conjectured that the BPNN model stands as an apt candidate for community safety risk 
assessment, adept at processing and analyzing relevant data to discern risk patterns and furnish precise risk predictions. The salient 
contributions of this paper are threefold. First, it harnesses the nonlinear modeling prowess of BPNN to adeptly capture and portray the 
intricate relationships inherent in community safety risk. The algorithm dynamically adjusts weights and biases during modeling, 
enhancing model accuracy and generalization. Next, it attains the capacity to discern and quantify a myriad of potential influencing 
factors through systematic collection and processing of pertinent data. The BPNN model systematically incorporates these factors, 
scrutinizing their impact levels on community safety risk. Lastly, the paper undertakes extensive experimentation and performance 
evaluation of the proposed algorithm, leveraging authentic community datasets, and effectively showcasing the advantages of BPNN in 
community safety risk assessment. In essence, this paper endeavors to pioneer the development of a BPNN-based community safety risk 
assessment algorithm, concurrently undertaking a comprehensive analysis of factors influencing community safety. The delineated 
contributions underscore the significance of this endeavor within the academic discourse. The intended audience for this paper 
comprises two distinct groups: community managers and policymakers, entrusted with formulating and implementing community 
safety management measures, necessitating accurate safety risk assessments to guide decision-making. The research findings empower 
them to comprehend the security risks confronting the community and formulate more effective security strategies and emergency 
plans. The other group encompasses academic researchers and scholars. Researchers operating in security risk assessment, artificial 
intelligence, ML, and allied fields may find that the methods and findings of this paper enrich their research endeavors or serve as the 
foundation for subsequent investigations. The primary avenue for disseminating and exchanging research findings among recipients is 
through academic publications. Research papers will be disseminated in academic journals and conferences in related fields, facili-
tating the sharing of research outcomes and garnering feedback and suggestions from peers. 

2. Literature review 

In the arena of community safety risk assessment research, Ezugwu et al. (2022) introduced a pioneering natural heuristic meta- 
heuristic algorithm known as the Prairie Dog Optimization Algorithm. This innovative approach emulated the behavioral strategies of 
prairie dogs in their natural habitats to fulfill optimization tasks. Abstracted into two optimization stages, namely exploration and 
development, this behavior strategy effectively navigated the solution space to identify the optimal solution. By incorporating the 
natural behavior strategy into the Prairie Dog Optimization Algorithm, the performance of the community safety risk assessment 
model was enhanced, enabling it to manage complex community safety data more effectively and provide precise and reliable decision 
support for community safety management [9]. In contrast, Formica (2022) fused hazard factors with the vulnerability of exposed 
elements, elucidating their intricate interplay in risk assessment contexts. Employing sequential analysis, weight coefficients were 
computed for each hazard factor and the vulnerability of exposed elements. Furthermore, a method was devised for calculating weight 
coefficients in the absence of certain data. This approach culminated in the determination of a comprehensive risk value for the 
community [10]. Acknowledging the heightened population density in communities, Adomah et al. (2022) advocated for a multi-
faceted approach to disaster risk assessment. This approach integrated hazard factors, the vulnerability of exposed elements, and 
residents’ protective capacity. The assessment embraced the fusion of multiple data sources, leveraging linear fusion and fuzzy entropy 
weighting methods. Utilizing the fuzzy comprehensive evaluation method, a set of evaluative comments was established, and a 
single-factor evaluation fuzzy matrix was constructed. The entropy weighting method was then employed to ascertain the weight of 
factors to be assessed, resulting in a comprehensive evaluation [11]. Conversely, Agushaka et al. (2022) proposed the Mongoose 
Optimization Algorithm, a novel meta-heuristic algorithm aimed at solving classical and CEC 2020 benchmark functions and 12 
continuous/discrete engineering optimization problems. The algorithm adapted compensatory behavior, considering prey size, space 
utilization rate, population size, and food supply. The application of the Mongoose Optimization Algorithm could simulate complex 
traffic flow and determine optimal paths by mimicking the hunting and social behavior of mongooses [12]. 

Agushaka et al. (2023) introduced the Gazelle Optimization Algorithm, a novel population-based meta-heuristic algorithm inspired 
by the resilience of gazelles in predator-dominated environments. This breakthrough held profound significance in the development of 
intelligent transportation systems capable of real-time responsiveness to dynamic changes in traffic conditions [13]. Meanwhile, Sheng 
and Gengxin (2022) delved into the realms of artificial intelligence, employing the Recurrent Neural Network (RNN) and the Con-
volutional Neural Network (CNN). However, it is worth noting that while these models were designed for network security monitoring 
and defense, their application in community safety risk assessment and impact factor analysis remains relatively unexplored [14]. On a 
different front, Wang et al. (2023) pioneered the optimization of network systems through blockchain technology. They constructed a 
robust risk management system via smart contracts and leveraged risk correlation tree technology to track public sentiment through 
smart ledgers. The outcomes of their experiments underscored the efficacy of these innovative approaches in conducting risk pre-
diction and credibility detection [15]. Meanwhile, Zhang et al. (2022) found that utilizing deep learning methods to analyze com-
munity safety data could effectively enhance the accuracy and timeliness of disaster prediction, especially in complex and dynamically 
changing urban environments [16]. Wu et al. (2023) discovered that by integrating geographic information systems and ML 
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technology, security risks could be pinpointed more accurately, and emergency response plans were optimized. It was particularly 
crucial in managing natural disasters such as floods and earthquakes [17]. Li et al. (2023) revealed that community residents’ 
involvement was vital for improving the effectiveness of community safety risk assessment models. Data collection through community 
participation significantly enhanced the model’s ability to predict locally specific risks [18]. 

Table 1 illustrates the details. 
Traditional methods of community safety risk assessment often fail to adequately account for the intricate relationships and 

nonlinear dynamics among various factors, leading to limited accuracy in assessment outcomes. Moreover, these conventional models 
may struggle to offer precise and generalized insights across diverse community settings. In contrast, this paper presents a pioneering 
approach by integrating BPNN into the realm of community safety risk assessment, leveraging its robust data processing capabilities 
and nonlinear modeling advantages to significantly enhance the accuracy and reliability of risk assessment outcomes. By systemati-
cally incorporating multidimensional factors such as community crime rates, traffic accident frequencies, and probabilities of natural 
disasters, this paper establishes a comprehensive community safety risk assessment index system. This not only amplifies the breadth of 
assessment coverage but also enhances the scientific rigor and practical applicability of the assessment findings. 

3. Establishment of community safety risk assessment indicator system 

3.1. Analysis of influencing factors of community safety accidents 

A community is a geographic and activity-centered human settlement comprising residents with specific associations within a 
defined geographical area. In the context of this country, risk is typically defined as the impact of uncertainty on targets, encompassing 
both process uncertainty and the uncertainty of events that influence the degree of impact on the target [19]. Community safety risk 
primarily refers to the consequences of uncertainty on the community, with a predominant focus on adverse impacts, exploring the 
likelihood and consequences under specific hazardous conditions. In this context, safety considerations are paramount, and identical 
consequences can yield varied outcomes for different communities. The determination of community safety risk largely revolves 
around identifying risks that pose a threat to the community itself [20]. 

The origins of risk events, known as risk sources, are fundamental components of prevailing evaluation models in community safety 
risk assessment [21]. These sources encompass factors directly contributing to the loss of life or property, capable of inflicting damage 
on community structures and their surroundings. This encompasses considerations such as the duration, intensity, and type of di-
sasters. The diverse nature of disasters necessitates distinct approaches to mitigation, with variations in intensity and duration leading 
to differing impacts on community safety [22]. Understanding the characteristics of disasters is pivotal in grasping community risk. A 
thorough understanding of these characteristics facilitates the implementation of targeted measures to mitigate risk sources. Conse-
quently, the primary thrust of community risk management efforts lies in identifying these risk sources [23]. The criteria for selecting 
risk sources in this paper adhere to principles encompassing scientific rigor, comprehensiveness, operational feasibility, rationality, 
and a synthesis of quantitative and qualitative logic. Fig. 1 displays the details. 

Over the past half-decade, a comprehensive compilation of community safety incidents occurring within the domestic sphere has 
been meticulously curated. This compilation process involved harnessing platforms like the Safety Management Network and the 
China Occupational Safety and Health website, with a rigorous analysis conducted on data sourced from statistical yearbooks. Table 2 
meticulously outlines the paramount community safety incidents identified during this specific timeframe. 

The cumulative total of the percentages attributed to the five identified event categories surpasses 50 %, underscoring their 
substantial impact. Notably, high-altitude falls have consistently emerged as the predominant factor influencing both community 

Table 1 
Summary of literature review.  

Author Year Main content 

Sheng and Gengxin 2022 Using RNN and CNN, it is mainly designed for network security monitoring and defense. The 
security of communication and data transmission within the community can be monitored and 
protected through RNN. 

Ezugwu A E, Agushaka J O, Abualigah L, Abualigah 
L, Mirjalili S, & Gandomi A H. 

2022 A meta-heuristic method inspired by nature is proposed to optimize parameter selection and 
feature weight adjustment in risk assessment model. 

Formica S. 2022 The method of sequence analysis and weight calculation can help to accurately evaluate the risk 
level even if the data is missing. 

Adomah E, Khoda Bakhshi A, Ahmed M M. 2022 A multi-faceted disaster risk assessment method is advocated, which combines risk factors, 
vulnerability of exposed elements and protection ability of residents, and adopts linear fusion and 
fuzzy entropy weight method. 

Agushaka J O, Ezugwu A E, Abualigah L. 2022 The foraging behavior inspiration of the Mongoose optimization algorithm can be used to optimize 
the algorithm search strategy in community security risk assessment, especially in the face of 
complex and changeable security risk factors, to improve the search efficiency and the quality of 
the solution. 

Wang Z, Zhang S, Zhao Y, Chen C, & Dong X. 2023 Blockchain technology is used to optimize the network system, the risk management system is built 
through the smart contract, and the risk correlation tree technology is used to track the public 
opinion in the smart account book. 

Agushaka J O, Ezugwu A E, Abualigah L. 2023 The adaptability and flexibility of the gazelle optimization algorithm may bring additional 
advantages when dealing with a dynamic environment and high uncertainty risk assessment.  
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safety and building safety in recent years [24–26]. These incidents have presented significant threats to the overall safety of com-
munities. Concurrently, the escalating ubiquity and extensive utilization of electric vehicles in recent years have given rise to a notable 
surge in fire incidents attributed to electric vehicle charging. This phenomenon has led to a heightened incidence and proportion of 
fire-related occurrences. 

3.2. Building a Community Safety Risk Indicator System 

The term “risk sources” in this paper refers to a comprehensive classification encompassing events that can have adverse conse-
quences on the environment crucial to the survival of urban communities and their residents. This classification mainly includes two 
basic aspects: natural causes and human causes. Natural disasters are the traditional description of disasters stemming from natural 
factors. In addition, human causes involve disasters caused by human factors, including but not limited to traffic accidents and in-
fectious diseases. The division of risk sources involves four different types of classifications: natural disasters, public health, accidents 
and disasters, and social security. In the process of establishing a comprehensive system of community safety risk assessment in-
dicators, this paper adopts a hierarchical classification mechanism based on expert knowledge and statistical analysis results. Spe-
cifically, through expert interviews and analysis of community safety accident data nationwide, a method combining qualitative and 
quantitative approaches is used to summarize and classify risk indicators. This approach aims to ensure that the selected indicators are 
both scientifically based and accurately reflect reality, thereby enhancing the accuracy and practicality of community safety risk 
assessment. Compared with the study by Richards and Richards (2022), it focuses on supervised classification techniques in remote 
sensing digital image analysis. Although supervised classification is highly effective in image processing and interpretation, this paper 
focuses on community safety risk assessment, which involves significantly different types of data and application scenarios from 
remote sensing image analysis. Community safety risk assessment requires comprehensive consideration of various types of risks and 
factors, rather than a single classification of image data [27]. Mavrogiorgou et al. (2017) compared the clustering and classification 
capabilities in data mining. Although data mining techniques have their advantages in identifying patterns and relationships, this 
paper focuses on building a comprehensive risk assessment system based on expert knowledge and statistical data analysis. Clustering 
and classification techniques are mainly used in data-driven scenarios. The method in this paper combines data analysis and expert 

Fig. 1. Statistical analysis of the top five community safety accidents.  

Table 2 
Statistics of the top five security incidents.  

Accident type Number Proportion in total (%) 

Falling from height 90 24.7 
Gas accident 50 13.7 
Fire accident 37 10.2 
Mechanical injury 31 8.5 
High-altitude parabolic motion 30 8.2  
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experience, aiming to construct a more comprehensive and customized risk assessment framework [28]. Meanwhile, Choi and Lim 
(2020) explored ML techniques for target advertisement classification. Although the findings provided ML solutions for a specific type 
of data classification, it mainly focused on applications in the advertising field. Compared to the community safety risk assessment in 
this paper, the two studies had significant differences in application background, objectives, and data types. Community safety risk 
assessment requires comprehensive consideration of various risk sources, rather than just a single classification task [29]. Accordingly, 
this paper proposes specific indicators for risk sources as illustrated in Table 3. 

4. Optimization of the community safety risk assessment algorithm based on the BPNN 

4.1. Principles of information propagation and training in the BPNN 

During the forward propagation of the BPNN, each neuron receives input signals from other neurons, which are then multiplied by 
their corresponding weights and summed to yield the total input value for the neuron. Following this, the neuron evaluates whether 
this value exceeds its threshold. If it does, the neuron applies the activation function to produce the output value. The Sigmoid 
function, depicted by Eq. (1), is the most frequently utilized activation function: 

Sigmoid(x)=
1

1 + e− x (1) 

In Eq. (2), the function Sigmoid(x) denotes the activation function, x represents the input data, and e represents the natural constant. 
In the context of backpropagation within BPNN, the core idea revolves around adjusting weights and propagating errors between the 
output and the desired output from the output layer back to the input layer through the hidden layers in a reverse manner. This process 
comprises three key steps: error backpropagation, gradient computation, and weight updating. Backpropagation initiates at the output 
layer once forward propagation, where the difference between the predicted output and the actual value is computed. At this stage, the 
discrepancy between the actual and expected outputs is evaluated using a loss function, defining the error. This error is then retro-
actively transmitted through each layer of the network, cascading back to the input layer. During this error backpropagation, the 
influence of each weight on the loss is assessed using the chain rule, facilitating the calculation of the derivative of a composite 
function. These gradients signify the partial derivatives of the loss function concerning each weight, revealing how variations in 
weights impact overall loss. For each weight in the network, its corresponding gradient is computed, guiding the magnitude and 
direction of weight adjustments required to minimize overall loss. Optimization algorithms like gradient descent are then deployed to 
update network weights iteratively. Gradient descent, an iterative procedure, refines weights in the opposite direction of their gra-
dients during each iteration. In this update process, the learning rate governs the magnitude of weight adjustments. An excessively 
large learning rate may lead to over-adjustment and oscillation, whereas a too-small rate may impede learning progress. Back-
propagation serves as an efficient algorithm empowering deep neural networks to optimize weights through iterative learning, 
enhancing predictive accuracy in intricate tasks. Through this mechanism, neural networks learn from errors, perpetually adapting 
parameters to fulfill given objectives. 

From the perspective of neurons within the hidden layer, data traverses from the input layer to the hidden layer. After computing 
weight parameters, these parameters propagate back to the input layer, while each neuron maintains a threshold. Initially, parameters 
are randomly set, and the BPNN algorithm iteratively adjusts these initial randomizations towards desired values, thereby completing 

Table 3 
Risk index system.  

Risk factor Risk source 

Natural calamities Rainstorm 
Strong wind 
Thick fog 
Catkin 
Ground Subsidence 

Accident disaster Traffic accident 
Production safety accidents 
Fire accident 
Gas accident 
Drowning accident 
Electric shock accident 
Public facilities and equipment accidents 
Falling accidents 

Public health Infectious disease events 
Animal invasion 
Food poisoning 
Group unknown diseases 

Social security High-altitude parabolic motion 
Robbery incidents 
Terrorist incidents 
Mass incident  

S. Zhou et al.                                                                                                                                                                                                           



Heliyon 10 (2024) e30185

7

neural network training [30]. 
In BPNN, the number of nodes in the input layer corresponds to the count of independent variables directly influencing prediction 

outcomes. Conversely, the number of nodes in the output layer indicates the quantity of dependent variables serving as the output 
results [31–35]. 

4.2. Optimization of the community safety risk assessment model based on BPNN 

Enhancing the BPNN model for optimizing the process in community safety risk assessment involves the following steps: 
Key Indicator Selection: Four main indicators are carefully selected from the index system of community safety risk assessment as 

input variables for the BPNN model. These indicators include natural disasters, public health, accident disasters, and social security. 
This step ensures that the model inputs are directly relevant to the core content of community safety risk assessment, thereby 
enhancing the model’s specificity and accuracy. 

Data Preprocessing: The selected four key indicators undergo data preprocessing, including normalization and outlier removal, to 
reduce noise during model training and improve the model’s responsiveness to critical risk factors. 

Model Structure Adjustment: The structure of the BPNN model is adjusted based on the characteristics of the selected indicators, 
including the number of hidden layers and nodes in each layer. This step aims to find the most suitable network architecture for 
community safety risk assessment tasks, enhancing the model’s learning efficiency and predictive capability. 

Training Parameter Optimization: The model’s training process is optimized by adjusting parameters such as learning rate, weight 
initialization, and regularization parameters. Optimizing these parameters helps accelerate model convergence, reduce the risk of 
overfitting, and improve the model’s generalization ability to unseen data. 

Cross-Validation: Cross-validation methods are employed to evaluate the model’s performance and stability. This step involves 
training and testing the model on different data subsets to ensure the accuracy and consistency of model predictions and assess the 
reliability of the model in real-world applications. 

Fig. 2 presents the data architecture diagram of the optimized BPNN community security risk assessment model. 
The process of the model running is as follows.  

1) Input Data: The model receives input data through Placeholder, which typically consists of feature data used for model training and 
prediction.  

2) Forward Propagation: 

Dense 1: The input data are first passed through a Dense layer, where each input node is connected to all nodes in the subsequent 
layer. 

Fig. 2. Optimized BPNN architecture diagram. 
(Const: Defines constant values or parameters; Mean: Average value of parameters; Train: The process of learning and optimizing weights and biases; 
Softmax Cross: Loss function; Placeholder: Dynamically receives input data during runtime; Dimension: Shape of data or size of arrays; Cast: Data 
type conversion; Equal: Used for comparing whether two values or arrays are equal; Argmax: Selects the category with the highest probability from 
the output layer’s probability distribution; Gradients: Indicates how to adjust parameters to minimize the loss function; RMSprop: Root Mean Square 
Propagation; Save: Saves the state of the model; Variable: Parameters that can change during the training process; Dense: Layer where each neuron 
is connected to all neurons in the preceding layer.) 
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Dense 2: The data then flows to another Dense layer for further feature processing.  

3) Loss Calculation: 

Softmax Cross: The Softmax cross-entropy function is applied to calculate the difference between the model output and the actual 
labels, resulting in a loss value.  

4) Backward Propagation: 

Gradients: The gradients of the loss function with respect to the model parameters are computed, indicating how the parameters 
should be adjusted to minimize the loss. 

RMSprop: The Root Mean Square Propagation optimizer is utilized to update the model parameters based on the gradients.  

5) Parameter Update: 

Variable: Model parameters (such as weights and biases) that can be changed during the training process are stored. 
Save: The model’s state can be saved at specific time points during the training process.  

6) Performance Evaluation: 

Argmax: The class with the highest probability from the output layer’s probability distribution is selected as the predicted result. 
Equal: The predicted result is compared with the true labels to assess the model’s accuracy. 
Cast: Data type conversion may be necessary for comparison. 
Dimension: Adjustments to the shape of data or array size may be required for comparison. 
Mean: The average accuracy is computed, often used as an indicator for model performance.  

7) Optimization and Feedback: 

Train: It indicates that the model is in the training phase, which includes the aforementioned loss calculation and backward 
propagation. 

Const: The defined constant values or parameters may be used during training to set parameters such as learning rate and regu-
larization terms. 

While four key indicators have been chosen as input variables for the model, it is crucial not to misconstrue this as disregarding the 
significance of other indicators. Community safety risk is a nuanced and multifaceted issue, influenced by numerous additional factors. 
Therefore, in practical contexts, a comprehensive examination of multiple indicators and factors is indispensable for a thorough 
assessment of community safety risks and the subsequent implementation of appropriate measures to bolster community safety. This 
paper presents two hypotheses. First, it posits that the risk assessment indicators outlined herein can comprehensively encompass the 
primary factors impacting community safety, encompassing natural disasters, public health, accidents, and social security. Next, it 
proposes that the BPNN model is well-suited for community safety risk assessment. This model is believed to adeptly process and 
analyze pertinent data, discern risk patterns effectively, and furnish precise risk predictions. 

4.3. Experimental design 

In order to validate the rationale behind the algorithm proposed, experiments are conducted utilizing the Emergency Events 
Database (EM-DAT), a comprehensive global repository of disaster events maintained by the Catholic University of Louvain in 
Belgium. EM-DAT meticulously records thousands of disaster occurrences, with continuous updates to accommodate new data each 
year. These events are categorized into primary types, comprising natural disasters and man-made disasters. Natural disasters are 
further delineated into meteorological disasters (such as hurricanes and floods), geological disasters (such as earthquakes and volcanic 
eruptions), and biological disasters (including droughts and disease outbreaks). Meanwhile, man-made disasters encompass industrial 
accidents, traffic accidents, and other human-induced calamities. The database encompasses a global scope, incorporating data from 
both developed and developing nations. Each recorded event in the EM-DAT database includes crucial information regarding the 
affected population, including statistics on fatalities, injuries, missing persons, and overall impact. Moreover, for numerous disaster 
events, estimations of economic losses are also provided. The EM-DAT database is regularly updated to include the latest disaster 
events. Data integrity is ensured through rigorous verification processes conducted by expert teams, drawing from reliable sources 
such as government reports, international organizations, non-governmental organizations, and media outlets. Users can access and 
download data from the EM-DAT database for tailored inquiries through its official website (http://www.emdat.be/). In order to 
commence the validation process, disaster event data directly pertinent to community safety are extracted from the EM-DAT database. 
This selection primarily focuses on the major categories of natural and man-made disasters, encompassing meteorological, geological, 
and biological disasters, and industrial and traffic accidents. By classifying and further subdividing the data according to the types of 
disasters, the model conducts a detailed risk assessment. This approach allows for a more nuanced understanding of the various 
subcategories within natural and man-made disasters, enhancing the accuracy and comprehensiveness of the risk assessment process. 
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Through the method proposed by Biran et al. (2022), inconsistencies and errors in the data are identified, such as incorrect 
timestamps or misspelled locations. Rule-based automated data cleaning processes, including standardizing naming conventions, 
formats, and data types, are applied [36]. Combining this with the research of Mavrogiorgos et al. (2022), natural language processing 
tools are utilized for the analysis and preprocessing of textual data, such as extracting keywords and phrases, eliminating ambiguity, 
and removing duplicates. Techniques, like named entity recognition and sentiment analysis, are employed to extract more precise 
information regarding disaster events [37]. Table 4 presents the specific information on the experimental environment. 

The models utilized in the experiment encompass a diverse range of cutting-edge technologies. They are CNN, Long Short-Term 
Memory Network (LSTM), Bidirectional Encoder Representations from Transformers (BERT), Generative Pre-trained Transformer 
(GPT), and eXtreme Gradient Boosting (XGBOOST). These models have gained widespread recognition across various fields for their 
exceptional performance in real-world applications, making them prime candidates for comparative analysis. Importantly, they offer 
varying levels of complexity, allowing for a thorough examination of performance under different model complexities. Furthermore, 
these models often serve as benchmarks for evaluating new methodologies, highlighting their comparative advantages and innovative 
features relative to conventional approaches. In order to optimize data utilization and ensure fairness in the experimental setup, 
standardized parameters are employed. These parameters include setting the output nodes to 5, defining the initial weight range as (0, 
1), maintaining a learning rate ranging from 0.01 to 0.8, fixing the number of iterations at 500, setting the learning rate at 0.0001, 
establishing a training period of 40, implementing a weight decay of 0.001, and utilizing a batch size of 128. Adopting this approach 
ensures the rationality of initial weights, mitigates the potential impact of overly large or small weights on model training, and 
effectively manages model complexity to prevent overfitting. 

5. Analysis of community safety risk assessment results using optimized BPNN 

5.1. Performance analysis of the community safety risk model 

In order to improve experimental precision, performance scores related to natural disasters, public health, accidents, and social 
security are utilized as input variables. The assessment of losses stemming from community safety risk issues in practical scenarios 
serves as the anticipated output. A total of two hundred datasets are selected for training. The experiment involves varying the number 
of nodes in the hidden layer, specifically testing configurations of 10, 15, 20, 25, 30, and 35 nodes. Increasing the number of nodes can 
bolster the model’s learning capacity, but an excessive amount may lead to overfitting, wherein the model becomes overly attuned to 
the training data and struggles to generalize well to new data. Conversely, too few nodes may result in underfitting, where the model 
fails to capture complex data patterns. Experimenting with different node quantities allows for pinpointing the optimal balance be-
tween model performance and complexity, and understanding the impact of network structure on predictive capability. 

Comparative indicators include model accuracy and function loss value. Accuracy gauges the correctness of the model’s pre-
dictions, representing the proportion of instances correctly predicted out of the total instances. The loss function, also known as the 
cost function, quantifies the discrepancy between the model’s predicted values and the actual values, playing a pivotal role in opti-
mizing model parameters during training. Fig. 3 depicts the accuracy and function loss. 

Combining the results from Fig. 3(a) and (b), it can be observed that under the maximum training iterations, compared to the BPNN 
model with 10 hidden layer nodes, the model using 15 hidden layer nodes achieves higher accuracy and lower loss. Additionally, the 
model with 15 hidden layer nodes exhibits a faster rate of accuracy improvement during the training process. Upon careful exami-
nation of Fig. 3(a), when the number of hidden layer nodes reaches 20, the model’s accuracy peaks at 99.1 %, surpassing other node 
configurations. These findings indicate that increasing the number of hidden layer nodes can enhance model performance. However, 
Fig. 3(b) suggests that as the number of hidden layer nodes continues to increase, the model’s accuracy begins to decline, while the loss 
also increases. This decline is primarily due to decreased model fitting. 

As the number of hidden layer nodes increases, the model’s complexity also escalates. Initially, augmenting the number of hidden 
layer nodes boosts the model’s expressive capacity, leading to improved accuracy and reduced loss. However, with further increases, 
the model may encounter overfitting, wherein it excessively tailors itself to the training data but struggles to generalize well to un-
familiar data, resulting in decreased accuracy and increased loss. Hence, when designing the BPNN model, it is crucial to strike a 
balance and adjust the number of hidden layer nodes accordingly. Optimal performance is achieved with an appropriate number of 
nodes, as too many or too few can lead to undesirable outcomes such as increased function loss and decreased accuracy. Determining 
the ideal number of hidden layer nodes through experimentation is essential for achieving superior model accuracy and generalization 
capability. 

Table 4 
Experimental environment.  

Facilities Model 

Central Processing Unit (CPU) 2.5G 
Operating system Windows7 
Web Apache-tomecat6 
Memory 12G  
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5.2. Comparative analysis of factors affecting the community safety risk model 

The experiment utilizes 300 sets of data as input to the model, undertaking identification and analysis of events pertaining to 
natural disasters, public health, accident disasters, and social security. The evaluation indicators comprise average accuracy and 
maximum accuracy. Average accuracy gauges the overall precision of the classification model across all categories, representing the 
mean accuracy across different categories. Meanwhile, maximum accuracy denotes the highest accuracy attained by the model within 
a single category among all categories. Fig. 4 illustrates the results of both average accuracy and maximum accuracy for various 
models. 

Fig. 4(a) displays the maximum accuracy of the optimized model as 99.6 %, while Fig. 4(b) illustrates the average accuracy of the 
optimized model as 98.5 %, demonstrating the outstanding performance of the optimized model in identifying community risks. 
Compared to traditional models, the optimized model presented enhances risk factor identification accuracy by approximately 9 %–11 
%. Simulation data underscores that the optimization model outperforms other advanced models across all four scenarios, demon-
strating its efficiency and accuracy in identifying and assessing community security risks, particularly in handling complex and dy-
namic data. The high accuracy underscores the optimization model’s applicability and generalization across various community 
security risk types, be it natural disasters, public health crises, accident disasters, or social security issues. Such accuracy is pivotal for 
implementing effective prevention and response strategies. Comparisons with advanced models like CNN, LSTM, BERT, GPT, and 
XGBOOST not only highlight the superiority of the optimization model but also underscore the significance of adopting novel strategies 
and technologies in model design and optimization. These comparisons offer valuable insights for future research, particularly in 
enhancing model performance and adaptability. In order to further verify the effectiveness of the optimization model presented, 

Fig. 3. Comparative results of model performance under different hidden layer nodes (a) comparative accuracy of models; (b) comparative function 
loss values of models. 

Fig. 4. Comparative results of model accuracy (a) comparative maximum accuracy of models; (b) comparative average accuracy of models.  
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comparisons are made regarding system operation response time and resource utilization. Fig. 5 illustrates the experimental findings. 
Fig. 5(a) demonstrates that the optimized model exhibits significantly improved response times within the range of 100 ms–120 ms, 

outperforming the comparison model noticeably. This swift responsiveness is paramount for making critical decisions during emer-
gencies, particularly in the realm of community safety risk assessment, where timely analysis and feedback can mean the difference 
between saving lives or minimizing losses. The accelerated response time of the optimized model across diverse scenarios can be 
attributed to its innovative advancements in algorithm optimization, data processing, and model structure. Through strategies such as 
streamlining calculations, optimizing data flow, and leveraging efficient neural network architectures, the model’s processing speed is 
substantially enhanced. Furthermore, in terms of resource utilization, the optimized model demonstrates superior efficiency compared 
to other models across all four scenarios. Fig. 5(b) suggests that in the “natural disaster” scenario, the optimized model achieves a 
resource utilization rate of 75.0 %, whereas competing models range from 80.6 % to 98.2 %. This lower resource utilization not only 
signifies reduced computing resource requirements for community security risk assessment but also underscores the optimization 
model’s adeptness in tackling complex problems. Such efficiency is particularly valuable for deploying the model in resource- 
constrained environments, where it ensures maximal resource utilization without compromising performance. As a result, the 
research hypothesis 2 of this paper is validated. 

5.3. Community safety risk assessment and countermeasures 

A comprehensive risk assessment is conducted for Community A to further validate the efficacy of the optimized model presented. 
Risk indicators reaching or surpassing the threshold of 80 denote a heightened risk level within the area, demanding immediate 
attention and intervention. Meanwhile, indices falling between 60 and 79 signal a moderate risk level, necessitating ongoing moni-
toring and management efforts. Conversely, indices below 60 indicate a comparatively lower risk level, although vigilance should still 
be upheld. Table 5 displays the outcomes of the safety risk assessment for Community A. 

Based on the insights gleaned from this paper, a series of recommendations and strategies are formulated to address community 
safety risks across multiple domains, including natural disasters, public health concerns, accident disasters, and social security issues. 
Hypothesis 1 studied in this paper is verified. Table 6 displays the precise details. 

These control methodologies and strategies play a vital role in reducing the risks linked to natural disasters, public health issues, 
accidents, and social security within communities. It is crucial to implement comprehensive measures, strengthen collaboration and 
coordination across various sectors, and increase safety awareness and community participation. Continuous monitoring, evaluation, 
and improvement are essential components to ensure community safety. 

6. Discussion 

The experimental results indicate that when the training iteration is set to 5000 times, the BPNN model with 15 hidden layer nodes 
exhibits superior performance compared to 10 hidden layer nodes. When the number of hidden layer nodes increases to 20, the model’s 
accuracy reaches 99.1 %, surpassing other node configurations. Increasing the number of hidden layer nodes enhances the model’s 
representation capability, thereby improving accuracy and reducing loss. However, further increments may lead to overfitting, 
impairing the model’s generalization ability, causing accuracy to decline and loss to increase. The model is highly sensitive to 
hyperparameters introduced during the training process, such as the number of hidden layer nodes. Excessive or insufficient numbers 
of nodes may both affect model performance. Overreliance on hyperparameter tuning can elevate model complexity, increase 
computational resource requirements, and even lead to overfitting. The optimized model provides decision-makers with more reliable 

Fig. 5. Comparison of model functional indicators (a) Model response speed (b) Resource utilization rate.  
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data by enhancing the accuracy of identifying different risk factors. Despite the complexity of the BPNN model’s internal operations, its 
performance can be partially explained by observable indicators such as accuracy, loss rate, and response time. The optimized model 
demonstrates advantages in resource consumption and processing speed, indicating its potential application in larger or more complex 
community environments. Considerations must be made for increasing data volume and the availability of computational resources to 
ensure stability and efficiency when scaling the model. The application of the optimized model in community safety risk assessment 
has yielded significant results, which may be applicable to other fields or industries such as natural disaster prediction and public 
health emergency management. Stakeholders including community managers, policymakers, emergency response teams, and resi-
dents benefit from the high accuracy and rapid response of the risk assessment model developed. The research findings can be 
disseminated to these stakeholders through professional papers, policy reports, workshops, training sessions, and demonstration 
meetings to facilitate practical applications. 

Informed by the experimental discoveries, this paper articulates recommendations and strategies to address community safety 
risks, recognizing it as a multifaceted and critical endeavor. The proposed methods and strategies spanning natural disasters, public 
health, accidents, and social security effectively mitigate safety risks within communities, safeguarding residents’ lives, properties, and 
community stability. It is crucial to acknowledge that community safety risk control is an ongoing, long-term process that requires 
continuous improvement and refinement. Moreover, coordinating and harmonizing methods and strategies across various domains are 
pivotal in establishing a cohesive community safety management system. Only through such an approach can a novel management 
system ensure community safety and stability, ultimately enhancing residents’ quality of life and well-being. In comparison with Yoon 
et al.’s study (2023) [38], this paper introduces deep learning technology, notably BPNN, for community security risk assessment. This 
not only enhances the accuracy of assessment but also enables the model to address more complex nonlinear relationships, thereby 
effectively identifying and predicting potential security risks. Similarly, compared with Kumar et al.’s study (2023) [39], this paper 
constructs a comprehensive community safety risk assessment index system, encompassing multiple dimensions such as natural di-
sasters, public health, accident disasters, and social security. This ensures the thoroughness and inclusivity of the assessment, rather 
than being limited to the evaluation of a single risk factor. 

7. Conclusion 

Accurately assessing the magnitude of community safety risks and understanding the influential factors are crucial for community 
development and residents’ well-being. Therefore, this paper refines the community safety risk assessment model by enhancing the 
BPNN. Initially, an analysis of the factors influencing community safety incidents is conducted, leading to the formulation of a 
comprehensive set of evaluation indicators for community safety risk. Subsequently, the BPNN model undergoes optimization, 
improving the safety risk assessment model through the application of the refined BPNN. Finally, the proposed model’s reliability is 
validated through experimental investigations. The experimental results reveal that when the model’s hidden layer node count is set to 
20, the recognition accuracy reaches 99.1 %, accompanied by a significantly lower final function loss compared to models with 
different node quantities. However, further increasing the number of hidden layer nodes leads to overfitting symptoms, resulting in a 
decline in accuracy. Compared to conventional models, the optimized model exhibits an average accuracy of 98.5 % in community risk 
identification, with a maximum accuracy of 99.6 %. This represents an improvement of approximately 9 %–11 % in the identification 
accuracy of various risk factors compared to traditional models, underscoring the reliability of the proposed optimized model. 

Table 5 
Safety risk assessment results for community A.  

Dimensions comprehensive risk index 

natural disaster 67 
public health 64 
accident disaster 62 
safe society 58  

Table 6 
Control methods and strategies for community safety risk.  

Dimension Countermeasure 

Natural 
calamities 

Establish a comprehensive natural disaster warning system, including monitoring equipment, warning mechanisms, and information 
dissemination channels. 
Improve residents’ self-help ability and response awareness, and strengthen community-level organization and cooperation. 

Public health Strengthen the monitoring, prevention, and control of infectious diseases, including early detection, tracking of cases, isolating patients, and 
promoting health knowledge. 
Strengthen the cleanliness and hygiene management of the community environment, including garbage treatment, sewage treatment, and pest 
control. 

Accident disaster Strengthen the supervision and control of accidents such as hazardous chemicals and fires. 
Strengthen traffic safety management, including road planning, traffic signals, and traffic education. 

Social security Enhance residents’ awareness of safety precautions, organize community watch and assistance, and build neighborhood relationships. 
Strengthen research and prevention of social issues and promote community harmony and stability.  
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Nevertheless, this paper has certain limitations. The dynamic nature of community security risks has not been fully considered, 
particularly the influence of temporal dynamics on security risk assessment. The theoretical significance of this paper lies in uncov-
ering novel insights and providing a new approach to community safety risk assessment that extends existing risk assessment theories. 
Additionally, the paper applies and refines the BPNN algorithm, offering fellow researchers new methods and tools for similar research 
areas. The managerial significance of this paper is evident in providing data-driven decision support, aiding community managers and 
policymakers in more accurately assessing and managing community safety risks. Furthermore, the findings can guide practical safety 
management and the formulation of preventive strategies, particularly in the domains of natural disasters, public health, accident 
disasters, and social security. 

In subsequent research, this paper proposes a detailed research plan: 

Examine the Impact of Hyperparameters: Short-term (1–3 months): detailed experiments are conducted to determine the specific 
effects of hyperparameters such as the number of hidden layer nodes and learning rate on model performance. Mid-term (4–6 
months): an algorithm for adaptive adjustment of hyperparameters is developed to achieve better model performance and energy 
efficiency. 
Assess Model Generalization Ability: Short-term (3–5 months): the model’s generalization ability on unknown data is evaluated 
using techniques like cross-validation. Mid-term (6–9 months): regularization techniques such as dropout and L1/L2 regularization 
are employed to reduce overfitting and improve model generalization. 
Enhance Model Computational Efficiency: Short-term (1–3 months): the current model’s performance is evaluated in terms of 
energy consumption. Mid-term (4–6 months): model structure is optimized, such as employing sparse connections or weight 
sharing to reduce computational load. 
Explore Integrated Approaches: Mid-term (6–12 months): multiple ML methods are combined, such as ensemble learning, to 
enhance model accuracy and robustness. 
Incorporate Additional Data Sources: Long-term (more than 12 months): additional data sources, such as socioeconomic data or 
meteorological data, are integrated to improve the accuracy and comprehensiveness of risk assessment. 
Expand to Larger Community Environments: Long-term (more than 12 months): the study is expanded to larger or more complex 
communities to assess the scalability and efficiency of the model. 
Potential Cross-Domain Applications: Long-term (ongoing): it is to collaborate with community managers, policymakers, and in-
dustry experts to translate research findings into practical applications. 

In order to ensure ongoing progress tracking and plan adjustments, monthly checks are conducted to ensure consistency with the 
research timeline, making necessary adjustments as needed. Quarterly evaluations are conducted to assess the effectiveness of 
completed work and update research directions based on the latest trends. Throughout the study, particular attention is paid to the 
energy efficiency of the model, especially in environments with large data volumes and limited computational resources. Finally, 
research results should be disseminated through various channels to ensure stakeholders such as community managers, emergency 
response teams, and policymakers understand and apply these findings. This can be achieved through workshops, seminars, academic 
papers, and social media, providing not only research outcomes but also opportunities for feedback collection and inspiring public 
engagement, thus offering valuable insights for future work. 
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[31] S. Jiménez-Oyola, E. Chavez, M.J. García-Martínez, D. Bolonio, F. Guzmán-Martínez, P. Romero, Probabilistic multi-pathway human health risk assessment due 

to heavy metal (loid) s in a traditional gold mining area in Ecuador, Ecotoxicol. Environ. Saf. 224 (32) (2021) 112629. 
[32] G. Lu, W. Fan, D. Lu, Z. Liu, Lung-inspired hybrid flow field to enhance PEMFC performance: a case of dual optimization by response surface and artificial 

intelligence, Appl. Energy 35 (5) (2024) 122255. 
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