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In view of recent reports documenting pervasive translation outside of canonical protein-

coding sequences, we wished to determine the proportion of major histocompatibility

complex (MHC) class I-associated peptides (MAPs) derived from non-canonical reading

frames. Here we perform proteogenomic analyses of MAPs eluted from human B cells using

high-throughput mass spectrometry to probe the six-frame translation of the B-cell

transcriptome. We report that B10% of MAPs originate from allegedly noncoding genomic

sequences or exonic out-of-frame translation. The biogenesis and properties of these ‘cryptic

MAPs’ differ from those of conventional MAPs. Cryptic MAPs come from very short proteins

with atypical C termini, and are coded by transcripts bearing long 30UTRs enriched in

destabilizing elements. Relative to conventional MAPs, cryptic MAPs display different MHC

class I-binding preferences and harbour more genomic polymorphisms, some of which are

immunogenic. Cryptic MAPs increase the complexity of the MAP repertoire and enhance the

scope of CD8 T-cell immunosurveillance.

DOI: 10.1038/ncomms10238 OPEN
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B
reathtaking advances in genomics and proteomics are
drastically changing our perspective of cell biology and, in
particular, our understanding of protein synthesis and

degradation. For instance, next-generation sequencing analyses
have shown that three-quarters of the human genome is capable
of being transcribed1. Meanwhile, high-throughput mass
spectrometry (MS) studies in normal and infected human cells
have resulted in the identification of proteins representing more
than 80% of canonical human and viral protein-coding genes2,3.
Recently, a quantum leap in systems biology was made possible
by the emergence of a new field, proteogenomics, that leverages
on next-generation sequencing to perform ‘genomically informed
proteomics’4. In conventional shotgun proteomics, peptide
sequencing is achieved by matching tandem MS spectra from
an experimental sample against a reference protein sequence
database (for example, UniProt). As a result, conventional MS
sequencing suffers from a major limitation: it can only identify
peptides encoded by the canonical reading frame of classic exons.
The crux of proteogenomic studies is to perform MS-based
peptide sequencing by searching customized databases containing
the six-frame translation of genomic or transcriptomic sequences.
In this way, proteogenomics studies can identify peptides encoded
by all reading frames of any genomic region5.

Proteogenomics has rapidly revolutionized our vision of the
proteome of cells from numerous living organisms, including
normal and neoplastic human cells4,5. A fundamental issue
tackled by proteogenomics is the landscape of genomic regions
that are expressed at the protein level. Ribosome-profiling
experiments have provided strong evidence for pervasive
translation outside of annotated protein-coding genes6.
However, the definite proof of a genomic locus being protein-
coding is the detection of its corresponding protein7. Accordingly,
one salient concept emerging from proteogenomic analyses is that
the proteome is more complex than previously thought. The
proteome contains peptides arising from a variety of RNAs that
were not supposed to encode proteins (noncoding RNAs) and are
therefore not included in annotated protein databases. Many
long noncoding RNAs, short open reading frames (ORFs) and
pseudogenes, mislabelled as ‘noncoding’, were ultimately found
to code for peptides2–9. Moreover, numerous peptides originate
from non-canonical reading frames with non-AUG start
codons10.

We therefore hypothesised that proteogenomics might allow us
to elucidate a fundamental question: the contribution of proteins
derived from non-canonical transcripts to the repertoire of major
histocompatibility complex (MHC) class I-associated peptides
(MAPs). Endogenous MAPs are collectively referred to as the
immunopeptidome and represent the essence of self for CD8
T lymphocytes11,12. Despite the fundamental importance of the
immunopeptidome, its genesis remains ill-defined13,14. MAPs
derive from proteolytic degradation of proteins found in all cell
compartments; however, the immunopeptidome is not a random
sample of the proteome: many abundant proteins do not generate
MAPs, while some low-abundance proteins generate large
amounts of MAPs13–16. In a series of seminal studies, Shastri
and colleagues made startling observations showing that,
similarly to the proteome, the immunopeptidome might be
more complex than anticipated. Using an alloreactive T-cell clone
as a probe, they screened a splenic cDNA library in transfected
antigen-presenting cells (APCs) and isolated a cDNA clone that
encoded the MAP recognized by the T-cell clone. The salient
finding was that this MAP derived from a non-canonical reading
frame initiated with a non-AUG start codon17. They discovered
that synthesis of this peptide was initiated with a CUG codon
decoded as a leucine rather than a methionine18. Studies by other
groups provided evidence that MAPs could arise not only from

alternate translational reading frames but also from untranslated
regions (UTRs or introns)19,20. However, the structure of only a
handful of these ‘cryptic MAPs’ has been confirmed with MS20,21.
Therefore, in the absence of proteomic evidence, the existence of
most reported cryptic MAPs must be considered with some
scepticism because their identification relied on indirect methods
fraught with high false discovery rates (FDRs). We therefore
developed a novel proteogenomic approach to define the
landscape of the cryptic immunopeptidome and answer the
following questions: what proportion of MAPs derives from
non-canonical reading frames and how are they generated?
To this end, we performed an all-frames translation of the
transcriptome of human B lymphoblastoid cell lines to generate
databases of predicted peptides/proteins. These databases were
used to identify MAPs using high-throughput MS sequencing.
Integration of transcriptomic and proteomic data revealed that
cryptic MAPs constitute B10% of the immunopeptidome and
that their biogenesis and properties differ in many ways from
those of conventional MAPs.

Results
Novel proteogenomic strategy to identify cryptic MAPs. MAPs
were eluted from an Epstein-Barr virus-transformed B-cell line
(B-LCL) obtained from a blood donor bearing the HLA-A*03:01,
-A*29:02; -B*08:01, -B*44:03 MHC class I molecules (referred
to as subject 1). Peptides were fractionated with strong
cation exchange chromatography and analysed with liquid
chromatography-MS/MS using high-resolution precursor and
product ion spectra, as previously described22. To identify both
conventional and cryptic MAPs present at the surface of this
B-LCL, peptides were matched to two personalized databases
referred to as the ‘control’ and the ‘all-frames’ databases (Fig. 1a).
Both databases were built by in silico translation of
RNA-sequencing (RNA-seq) data from subject 1’s B-LCL using
the pyGeno python package (https://github.com/tariqdaouda/
pyGeno)23. Two reasons led us to focus on the transcriptome
rather than the genome of our B-LCL for database construction:
(i) MAPs can only derive from transcripts expressed in the cell of
interest and (ii) in proteogenomics, the risk of false discovery
increases with the size of the database used for MS sequencing4,5.

The control database corresponds to the canonical proteome of
the B-LCL and was generated as follows (Fig. 1a, left): RNA-seq
reads were mapped on the reference genome (version
GRCh37.75) to identify subject 1-specific high-quality non-
synonymous single-nucleotide polymorphisms (ns-SNPs), which
were then integrated in the reference genome to build the
personalized genome of subject 1. All putative protein-coding
genes were then in silico translated in their conventional reading
frame to obtain the canonical proteome of the B-LCL. The
all-frames database was built using the six-frame translation of
RNA-seq data from the B-LCL (Fig. 1a, right): reads passing the
Illumina quality filters were in silico translated into six possible
reading frames using a sliding window of 33 base pairs (bp), since
the vast majority of MAPs are known to be 8–11 amino acids
long and only rare MAPs contain more than 11 residues.
Translation products having a length inferior to eight amino
acids, due to the presence of a stop codon within the sliding
window, were excluded. By not aligning the reads before
translating them, we are able to leverage the whole output of
the sequencer, including reads resulting from rare elongation
events that might otherwise be discarded. However, this approach
also prevents us from using established filtering approaches such
as coverage measures or base quality filters. To address the
necessity of sequence filtering, we computed for each translated
peptide an S-value (or Seen-value) that represents the number of
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times a peptide was seen following the in silico translation
(Supplementary Fig. 1a). The higher the S-value, the more
confidence we have that the peptide sequence is indeed not due to
a sequencing error. We therefore elected to use a stringent
approach and kept only peptides having an S-valueZ10 to
(i) obtain a database whose size was manageable using the Mascot
search engine (Supplementary Fig. 1b) and (ii) to minimize the
risk of false discovery4,5,24.

In our search for cryptic MAPs, the key question was whether
the all-frames database would lead to the identification of MAPs
missed with the control database, which only contains the in silico
translation of sequences assumed to be translated (for example,
protein-coding transcripts). Out of 3,037 MAPs identified by the
all-frames database, 2,686 MAPs were also identified by the
control database among which 2,435 were unambiguously
assigned to a single gene (Fig. 1b). However, the salient finding
is that 351 MAPs were solely identified by the all-frames database.
After these 351 putative cryptic MAPs were subjected to four
stringent filtering and validation steps (see Methods), we found
that 168 of them were unambiguously assigned to a single
genomic region (Fig. 1b). We validated 18 cryptic MAPs using the
synthetic version of them (Supplementary Fig. 2). Furthermore,

we found that the Mascot score distribution (the confidence level
of a peptide assignation using MS) and the transcriptomic
coverage of the peptide-coding regions (PCRs) were similar
for these 168 cryptic and the 2,435 conventional MAPs
(Supplementary Fig. 3). It should be noted that the multiple
filtering steps were designed to be particularly stringent. We
therefore expect that some of the 183 discarded peptides may,
nevertheless, be genuine cryptic MAPs (Fig. 1b), thereby
increasing their total number up to 351 (13% of the immuno-
peptidome). However, at this discovery stage, we chose to
conduct further analyses using only the 168 cryptic MAPs
identified using our most stringent criteria (6.5% of the
immunopeptidome).

The cryptic MAPs’ repertoire is linked to the HLA genotype.
Various human leukocyte antigen (HLA) allotypes have different
peptide-binding motifs and therefore present different MAP
repertoires. Accordingly, if a peptide eluted from cells of subject 1
is a genuine MAP, its presence on cells from other individuals
should depend on the presence of the HLA allotype, presenting
this peptide on cells from subject 1. In other words, the presence
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Figure 1 | Proteogenomic workflow used for high-throughput identification of cryptic MAPs. (a) General overview of the proteogenomic workflow

used to identify conventional (Conv.) and cryptic (Crypt.) MAPs. Peptides were eluted from the cell surface of subject 1’s B-LCL and were sequenced with

liquid chromatography-MS/MS (LC-MS/MS). To determine the amino-acid (aa) sequence of those peptides, we built two databases (DBs), both derived

from the analysis of RNA-seq data obtained from subject 1’s B-LCL: the control DB and the all-frames DB (see Methods and Supplementary Fig. 1).

(b) Peptides solely identified by the all-frames DB were considered as Crypt. MAP candidates and further filtered to remove ambiguous and false-positive

identifications. See also Supplementary Figs 2 and 3.
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of authentic MAPs should be ‘HLA-restricted’. The restriction
should be strong but it does not need to be perfect because there
are some overlap in the MAP repertoires presented by various
allotypes25. On the contrary, no HLA restriction should be seen
between the HLA genotype and the presence of MHC-unrelated
peptides. Therefore, to test whether our cryptic MAPs were
HLA-restricted, we analysed the immunopeptidome of three
other subjects who shared four, two or no HLA allotypes with
subject 1 (Supplementary Fig. 4). For both conventional and
cryptic MAPs, we found a very strong positive dependence
between peptide detection in subjects 2–4 and the presence of the
corresponding HLA-A or -B allotype (two-sided Fisher’s exact
test, Po2.2� 10� 16; Fig. 2a,b). The degree of HLA allotype
restriction was similar for conventional and cryptic MAPs.
Moreover, most of the MAPs detected in the absence of the
relevant HLA allele were predicted to be promiscuous binders
(Fig. 2c). These data further validate that cryptic peptides
detected with our proteogenomic approach are genuine MAPs.

Cryptic MAPs derive from both coding and noncoding RNAs.
Next, we analysed the origin of cryptic MAPs. A notable finding
was that 20.2% of cryptic MAPs unambiguously allocated to one

gene could be assigned exclusively to non-annotated antisense
transcripts (transcribed from non-template DNA strand; Fig. 3a).
This suggests that, although antisense transcripts are generally
assumed to be noncoding26, their translation can generate
substrates for the MHC class I antigen presentation pathway.
Next, we focused our efforts on sense cryptic MAPs, as
annotations were available for their respective gene source, and
made two observations. First, by using the gene biotype
nomenclature that classifies genes according to their biological
relevance27, we observed that 86.6% of sense cryptic MAPs
derived from protein-coding genes, 9% from genes assumed to be
noncoding such as pseudogenes, annotated antisenses, long
intergenic noncoding RNAs or processed transcripts and finally
4.5% from unannotated intergenic regions (Fig. 3b). Second, by
analysing the location of sense cryptic MAPs within their
respective gene source, we observed that 48.5% of them were
produced by out-of-frame translation of exonic sequences. The
remaining 51.5% originated from translation of allegedly
noncoding sequences (Fig. 3c). Among those, cryptic MAPs
predominantly derived from the translation of 50UTRs as
opposed to 30UTRs (24.6% versus 7.5%). This observation is
coherent with the reinitiation model for translation initiation,
which implies that the probability of translation initiation
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decreases along the transcript28. A small proportion of peptides
(5.2%) derived from intronic sequences, a finding consistent with
a report showing that a construct coding for the model SIINFEKL
peptide, could generate MAPs after insertion into an intronic
sequence29. Finally, we observed that 9.7% of cryptic MAPs
derived from UTR–exon or intron–exon junctions and thus
corresponded to translation products of overlapping short ORFs
or retained intron transcripts, respectively. Overall, these results
highlight the complexity of the immunopeptidome by showing
that the landscape of cryptic MAPs includes both sense as well as
antisense coding and noncoding RNAs.

Cryptic MAPs derive from ORFs with a 50 end positional bias.
We next sought to determine whether specific types of genes
would preferentially generate cryptic as opposed to conventional
MAPs. We first noted that very few genes generated both con-
ventional and cryptic MAPs: (i) among the 121 cryptic MAP
source genes, only 17 (that is, 14%) also gave rise to conventional
MAPs and (ii) only 1% of the 1,731 conventional MAP source
genes generated cryptic MAPs (Fig. 4a). The small overlap
between genes coding cryptic versus conventional MAP suggests
that these two gene sets possess some intrinsic differential
feature(s). Further analyses highlighted two conspicuous differ-
ences between genes coding conventional versus cryptic MAPs.
First, cryptic PCRs were located much closer to the 50 end of their
source transcript than conventional PCRs (Fig. 4b). This shift in
PCR location was observed not only for cryptic MAPs coded by
50UTRs and 50UTR/exons but also for the entire set of exonic
cryptic MAPs (Supplementary Fig. 5a). Second, the expression
level of genes coding cryptic and conventional MAPs was
different. Conventional MAPs have been shown to derive pre-
ferentially from abundant transcripts30,31, and we observed that
this was also the case for cryptic MAPs. However, the expression
of cryptic MAP-coding genes was slightly but significantly
inferior to that of conventional MAP source genes (Fig. 4c).

MAPs derive primarily from rapidly degraded proteins, and
evidence suggests that the nonsense mediated decay (NMD)
pathway plays a significant role in this process via translation-
dependent degradation32,33. NMD targets messenger RNAs
(mRNAs) containing a premature termination codon or normal
mRNAs containing upstream ORFs33,34. Premature termination
is predicted to result in more MAPs originating from the 50 end of
the transcript35, as we observed for cryptic but not conventional
MAPs (Fig. 4b). In addition, we found that the proportion of
MAP-coding transcripts that harboured at least one upstream
ORF was significantly higher for cryptic than for conventional
MAPs (30% versus 13%), while transcripts generating both types
of MAPs showed an intermediate percentage (20%, Fig. 4d). Since
transcripts with an upstream ORF generated cryptic MAPs from
50UTRs but also from exons and 30UTRs (Supplementary Fig. 5b),
NMD appears to be involved in the generation of all types of
cryptic MAPs. Moreover, NMD was also reported to target
transcripts bearing long 30UTRs or 30UTRs containing intronic
sequences. While the transcript source of conventional and
cryptic MAPs displayed the same frequency of 30UTR introns
(Supplementary Fig. 5c), cryptic MAP source transcripts had
longer 30UTRs than conventional MAP source transcripts (1,100
versus 687 nt, Fig. 4e). Taken together, these observations suggest
that NMD contributes to the generation of cryptic MAPs while
lowering the abundance of cryptic MAP source transcripts
relative to conventional ones (Fig. 4c) because NMD reduces
the steady-state levels of its target RNAs. Besides NMD, mRNA
stability is also regulated by cis-regulatory elements that are
located in 30UTRs and interact with RNA-binding proteins36. In
line with this, relative to conventional MAP source transcripts,
the 30UTRs of cryptic MAP source transcripts contained similar
numbers of stabilizing elements but an increased number of
destabilizing elements (Fig. 4f). In other words, cryptic MAP
source transcripts display longer 30UTRs with a selective
enrichment in destabilizing elements. Taken together, our data
suggest that cryptic MAPs derive from unstable transcripts
targeted by NMD or 30UTR-destabilizing elements.

Cryptic MAPs derive from precursors with atypical C termini.
To gain further insights into the mechanisms responsible for the
generation of cryptic MAPs, we analysed the nucleotide sequence
of MAP source transcripts to predict their translation start and

Exo
n

5'U
TR

3'U
TR

Int
ro

n

Ju
nc

tio
n

In
te

rg
en

ic

0

10

20

30

40

50

60

48.5

24.6

7.5 5.2
9.7

4.5

51.5 % of noncoding sequences

P
er

ce
nt

ag
e 

of
se

ns
e 

cr
yp

tic
 M

A
P

s

Pro
te

in

co
din

g

Ant
ise

ns
e

Lin
cR

NA

Una
nn

ot
at

ed
0

20

40

60

80

100

Pse
ud

og
en

e

Pro
ce

ss
ed

tra
ns

cr
ipt

86.6

4.5 4.51.51.5 1.5

P
er

ce
nt

ag
e 

of
se

ns
e 

cr
yp

tic
 M

A
P

s

0

20

40

60

80

100

79.8

20.2

P
er

ce
nt

ag
e 

of
 c

ry
pt

ic
 M

A
P

s

Sense Antisense

a

b

c

Figure 3 | Crypt. MAPs derive from both coding and noncoding

transcripts. (a) Some Crypt. MAPs derive from novel antisense transcripts.

Bar plot showing the percentages of Crypt. MAPs derived from sense and

antisense transcriptions. (b,c) For Crypt. MAPs derived from sense

transcription, we determined the percentage of each gene biotype in MAP

source genes (b) and the proportion of Crypt. MAPs generated by six types

of genomic regions (c). The ‘exon’ class refers to out-of-frame Crypt.

MAPs, while the ‘junction’ category corresponds to peptides encoded by

intron–exon or UTR–exon junction. LincRNA, long intergenic noncoding

RNAs.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10238 ARTICLE

NATURE COMMUNICATIONS | 7:10238 | DOI: 10.1038/ncomms10238 | www.nature.com/naturecommunications 5

http://www.nature.com/naturecommunications


stop sites. Notably, we observed that translation initiation
occurred at a known initiation codon for 69% of cryptic MAPs:
AUG was used more often than near-cognate start codons, which
differ from AUG by a single nucleotide (62% versus 7%).
This suggests that, even for those atypical proteins, AUG is the
preferential translation initiation codon (Fig. 5a). Among near-
cognate start codons, CUG was the most commonly observed
(Fig. 5b). This observation is in agreement with several reports
demonstrating that CUG is the most efficient near-cognate start
codon to initiate translation18,37,38. Other near-cognate start
codons that were used more than one time included ACG and
GUG, which were both shown to be enriched at translation
initiation sites by ribosome profiling38. Finally, 31% of cryptic
MAPs did not display any of the known translation initiation
codons upstream of their respective PCR (Fig. 5a). In accordance
with similar observations based on analyses of ribosome-profiling
data38, these data suggest that translation can be initiated at other
codons than the classical AUG or near-cognate start codons.

The median length of conventional proteins is B400 amino
acids and, simply by virtue of their size, longer proteins generate
more MAPs than shorter proteins14. Accordingly, the median

length of conventional MAP source proteins in our data set was
523 amino acids. In stark contrast, the median length of cryptic
MAP source proteins was 39 amino acids, and 75% of them had
less than 62 amino acids (Fig. 5c). The shortest predicted cryptic
proteins (3 out of 168) had a length of 10 amino acids and
generated cryptic MAPs of 9 amino acids; MHC processing of
these cryptic MAPs only required trimming of the N-terminal
methionine. The generation of conventional MAPs is initiated by
proteasomal cleavage followed in general by exopeptidase
trimming of the N terminus but not the C terminus39–41.
Therefore, with few exceptions, the C terminus created by the
proteasome remains intact in conventional MAPs42,43. Given
the remarkably short size of cryptic MAP source proteins, we
hypothesized that many cryptic MAPs may not need proteasomal
degradation before entering the MHC class I antigen presentation
pathway. We reasoned that, if cryptic MAPs were proteasome-
independent, their C terminus might be different from that
of (proteasome-dependent) conventional MAPs. To test this
hypothesis, we analysed amino-acid usage at the four C-terminal
amino acids of individual MAPs and the four amino acids
downstream of the C terminus (in the source protein) for

0

1

2

3

4

Crypt. Conv.

3’
U

T
R

 le
ng

th
 (

×
10

3 
nt

)

P = 1.0×10–2

1,100
687

a

Gene source of MAPs

1,731 17 104

Conv. Crypt. c

b

0.00 0.25 0.50 0.75 1.00
Normalized position
on source transcript

C
on

v.
C

ry
pt

.
P = 2.8×10–10

f

e

PAll versus Conv. and PAll versus Crypt. < 2.2×10–16

PConv. versus Crypt. = 2.5×10–6

d

0

10

20

30

Conv. Both Crypt.

P
er

ce
nt

ag
e 

of
 tr

an
sc

rip
ts

be
ar

in
g 

uO
R

F
s

P = 2.1×10–4

All expr.
genes

Conv. Crypt.

MAPs source genes

–2

0

2

4

Lo
g 1

0(
F

P
K

M
)

–2.5

0

2.5

5.0

Crypt. Conv.

Lo
g 2

 (
nu

m
be

r 
of

 e
le

m
en

ts
 p

er
 s

ou
rc

e 
tr

an
sc

rip
t)

Destabilizing elements
(P = 4.2×10–2)

–2

0

2

4

6

Crypt. Conv.

Stabilizing elements
(P > 0.05)

Figure 4 | Crypt. MAPs preferentially derive from unstable mRNAs. (a) Venn diagram showing minimal overlap between the gene source of Conv. and

Crypt. MAPs. (b) Crypt. MAPs preferentially derive from the 50 end of their source transcript. The length of each source transcript was normalized to 1, and

the start of each MAP was then positioned on a 0–1 scale (x axis), where 0 represents the 50 end of the source transcript. Crypt. MAPs deriving from

intergenic and intronic regions were excluded from this analysis. See also Supplementary Fig. 5a. (c) Log10 expression values, in FPKM, of all genes

expressed in B-LCL versus the subset of the gene source of Conv. and Crypt. MAPs. (d) Crypt. source transcripts preferentially bear upstream ORFs

(uORFs). For each MAP source transcript, we predicted the 50UTR and 50UTR–exon ORF initiating at an AUG embedded in an optimal or strong Kozak

context. The bar graph shows the proportion of source transcripts bearing at least one uORF and generating a Conv. MAP, a Crypt. MAP or both. See also

Supplementary Fig. 5b. (e) Crypt. source transcripts display long 30UTRs. Using pyGeno, we retrieved the 30UTR of MAP source transcripts (when

available) and computed their length in nucleotide (nt). The boxplot displays the resulting 30UTR length distribution for Crypt. and Conv. MAP source

transcripts excluding the upper outliers that represented 6 and 107 values out of 97 and 1,770 transcripts, respectively. (f) 30UTRs of Crypt. but not Conv.

MAP source transcripts are enriched in destabilizing elements. We looked for destabilizing and stabilizing elements identified in ref. 36 in the 30UTR of

Crypt. and Conv. MAP source transcripts. For each source transcript, we computed the number of destabilizing and stabilizing elements contained in its

sequence. The resulting distributions are plotted for Crypt. and Conv. MAP source transcripts as the log2 number of destabilizing (top panel) or stabilizing

elements (bottom panel) per transcript. See also Supplementary Fig. 5c. Statistical significance was assessed with a two-sided (b,c,e) or one-sided

(f) Wilcoxon rank sum test, or a two-sided Fisher’s exact test (d). On box plots, boxes represent second and third quartiles, whiskers ±1.5 the interquartile

range, and dots the outliers.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10238

6 NATURE COMMUNICATIONS | 7:10238 | DOI: 10.1038/ncomms10238 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


conventional versus cryptic MAPs. The 20 amino-acid residues
were grouped into four categories based on their bulkiness and
hydrophobicity44, and we analysed these data to determine which
categories were enriched or depleted at each position for the two
types of MAPs. We found that, out of the eight considered
positions, five displayed significant differential amino-acid class
usage between cryptic and conventional MAPs (Fig. 5d).
Together, the facts that cryptic MAPs originate from very short
proteins and that amino-acid usage around their C termini is
different from that of conventional MAPs suggest that processing
of cryptic MAPs may be proteasome-independent.

Cryptic MAPs display distinct features and are immunogenic.
We next evaluated relevant structural and functional features of
cryptic MAPs per se. Relative to conventional MAPs, we found

that cryptic MAPs exhibited three distinctive characteristics: they
were shorter, had different allotype-binding preferences and
harboured more genomic polymorphisms (Fig. 6). The length
distribution of cryptic MAPs revealed a significant enrichment in
8-mers and depletion in 10–11-mers when compared with con-
ventional MAPs (Fig. 6a). This further supports the idea that
cryptic and conventional MAPs are processed differently by
peptidases. Unexpectedly, we found that cryptic MAPs were
preferentially presented by HLA-A*03:01, while conventional
MAPs were preferentially presented by HLA-B*44:03 in subject 1
(Fig. 6b). Proteogenomic studies of MAPs presented by other
HLA allotypes will be required to assess whether differential
allotype preferences of cryptic and conventional MAPs can be
generalized. If it were the case, one implication would be
that the HLA genotype dictates the breadth of the cryptic
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immunopeptidome presented at the cell surface. No bias in favour
or against ns-SNPs was found in conventional MAP PCRs22.
However, we found that cryptic MAP PCRs contained a
significantly higher frequency of ns-SNPs than conventional
MAP PCRs (Fig. 6c; P¼ 5.625� 10� 3). In other words, cryptic

MAPs derive from genomic sequences that are more polymorphic
at the population level than conventional protein-coding
sequences.

Finally, we wished to determine whether cryptic MAPs could
be immunogenic. To this end, we studied the T-cell response
of subjects 2 and 3 against four randomly selected cryptic
MAPs, whose sequence was validated using synthetic peptides
(Supplementary Fig. 2a–d), and that were not detected on their
own B-LCLs but were present on B-LCLs from subject 1. Two of
these MAPs were present on B-LCLs from subject 1 but not
subject 2 (HLA-identical to subject 1) because of an unshared
ns-SNP in the genomic sequence coding for these MAPs
(Table 1). Two other MAPs were detected in subject 1 but not
subject 3, presumably because of an unidentified trans-acting
factor since the MAP-coding transcripts and the relevant HLA
allotypes were expressed in both subjects (Table 2). Peripheral
blood mononuclear cells (PBMCs) from subject 1, 2 or 3 were
co-cultured with autologous monocyte-derived dendritic cells
(DCs) pulsed with one of the four cryptic MAPs (synthetic
peptides). After culture for 12 days in the presence of interleukin
(IL)-7 and IL-15, cells were harvested and CD8þ cells were
separated from CD8� cells using FACS. Elispot was then used to
quantify interferon (IFN)-g-producing cells in wells containing
either CD8 T cells alone or together with peptide-pulsed or
-unpulsed CD8� APCs. Non-polymorphic MAPs did not elicit
a MAP-specific response (Fig. 7a). However, polymorphic
MAPs elicited a MAP-specific response since the frequency of
IFN-g-producing cells was much higher in the presence of
peptide-pulsed than -unpulsed APCs (Fig. 7b). We conclude that,
at least in vitro, polymorphic cryptic MAPs can be immunogenic.

Discussion
The present work demonstrates that proteogenomics can provide
a systems-level perspective on the landscape of the cryptic
immunopeptidome. The fact that a sizeable proportion of MAPs
are cryptic (6.5–13% depending on stringency criteria) enhances
the complexity of the immunopeptidome. If anything, we might
have underestimated the proportion of cryptic MAPs in the
immunopeptidome because our RNA-seq was performed on
poly(A) tailed RNAs. The prevailing dogma holds that
polyadenylation of RNA precursors is required for nuclear export
and stability of mature transcripts and for efficient translation
of mRNAs45. However, recent reports suggest that immature
mRNA precursors can be translated in the nucleus and
generate MAPs29,46. Further proteogenomic studies will
therefore be needed to assess the potential contribution to the
MAP repertoire of RNAs without poly(A) tail. In addition,
RNA-seq-based proteogenomic studies may miss the rare
MAPs derived from non-contiguous protein sequences via
proteasome-mediated splicing14.

About 50% of cryptic MAPs result from out-of-frame
translation and the other half from translation of allegedly
noncoding sequences. The ultimate biological role of cryptic
translation remains elusive. However, it might be unwise to
assume that this phenomenon merely represents ‘translational
noise’. Protein synthesis is demanding: it is the most
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Table 1 | Features of polymorphic cryptic MAPs presented in Fig. 7.

Polymorphic MAPs Cryptic status HLA IC50 (nM) Subject 1 Subject 2

I/MKQIKGGSL Novel antisense B*08:01 (I) 5,071.92/(M) 335.50 I/M I
QPNF/LRVSTV Exon—out B*08:01 (F) 739.13/(L) 784.45 F/L F

HLA, human leukocyte antigen; IC50, half-maximal inhibitory concentration; MAP, MHC class I-associated peptide; MHC, major histocompatibility complex; MS, mass spectrometry.
The columns Subject 1 and Subject 2 indicate the peptide variant coded by transcripts found in each subject as well as a positive MS detection when the amino acid is underlined.
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energy-consuming process in the cell as it monopolizes 45% of
cellular ATP supplies47. Furthermore, any RNA sequence subject
to translation will experience selection against encoding a protein
with detrimental impact on cell function6. In any case, noncoding
RNAs are vital, and our demonstration that several noncoding
RNAs generate MAPs means that CD8 T cells have an
opportunity to scrutinize these transcripts.

The gene source of conventional MAPs are enriched in
microRNA-binding elements, suggesting that mRNA destabiliza-
tion favours MAP generation30. By comparing transcripts coding
conventional and cryptic MAPs, we obtained meaningful
evidence suggesting that cryptic MAPs derive from particularly
unstable transcripts targeted by NMD or 30UTR destabilizing
elements: (i) cryptic MAP transcripts were enriched in upstream
ORFs and their PCRs showed a strong 50 end positional bias
(suggestive of premature termination) and (ii) cryptic MAP
transcripts displayed longer 30UTR enriched in destabilizing but
not stabilizing elements when compared with conventional
source transcripts. Together with previous work by us and
others, these data allow for the development of an emerging
model in which mRNA instability is instrumental in the genesis
of all types of MAPs. This model is an extension of the idea that
most MAPs derive from defective ribosomal products32,48,49:
unstable RNAs targeted by NMD, microRNAs or other 30UTR-
destabilizing elements would generate more defective ribosomal
products and therefore more MAPs. The validity of this model
can be submitted to high-throughput experimental validation: if it
is correct, mRNA half-life should be negatively correlated to MAP
generation. We do not exclude that translation efficiency, which
partly depends on codon usage50, might also regulate MAP
generation. Indeed, although we did not find evidence for a codon

bias in conventional source transcripts versus cryptic MAP source
ORFs (P¼ 0.34, odds ratio¼ 1.02), we observed that MAP source
transcripts or ORFs in general use rare codons slightly
more frequently than transcripts that do not generate MAPs
(Po2.2� 10� 16, odds ratio¼ 1.14; Supplementary Tables 2 and
3). Therefore, it might be interesting to further investigate the
impact of codon bias on MAP generation.

Some 25 years ago, Boon and van Pel51 proposed that
MAPs might derive in a proteasome-independent manner from
translation of short subgenic regions (peptons). This unorthodox
hypothesis has progressively fallen into disfavour because no such
MAPs were discovered with MS39. The present work argues that
such MAPs do exist but can, in practice, be detected only by
proteogenomics. Indeed, our cryptic MAPs were coded by
extremely short ORFs, and the amino-acid composition of their
C termini suggests that they are, at least in part, proteasome-
independent.

One area where cryptic MAPs may be most relevant is cancer
immunology. Although the vast majority of cancer mutations
involve non-exomic regions, searches for tumour-specific
antigens (TSAs) have focused on exomic mutations31,52–54.
Nonetheless, since numerous noncoding transcripts are
expressed only in cancer cells55,56, a number of cryptic MAPs
may be genuine TSAs. Furthermore, we demonstrated that
(i) cryptic MAP PCRs displayed a higher frequency of germline
polymorphisms (ns-SNPs) than the conventional exome (Fig. 6c)
and that (ii) polymorphic cryptic MAPs discovered by
proteogenomics were immunogenic (Fig. 7b). Hence, it is
reasonable to expect that cryptic MAPs bearing somatic
mutations (that is, TSAs) should also be immunogenic.
Accordingly, in melanoma and renal cell carcinoma, pioneering

Table 2 | Features of non-polymorphic cryptic MAPs presented in Fig. 7.

Non-polymorphic MAPs Cryptic status HLA IC50 (nM) Subject 1 Subject 3

AEARPTTVGF Exon—out B*44:03 119.38 AEA AEA
VMKEKLLF Intron A*29:02 883.60 VMK VMK

HLA, human leukocyte antigen; IC50, half-maximal inhibitory concentration; MAP, MHC class I-associated peptide; MHC, major histocompatibility complex; MS, mass spectrometry.
The columns Subject 1 and Subject 3 indicate the peptide variant coded by transcripts found in each subject as well as a positive MS detection when the amino acid is underlined.
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studies using more traditional approaches have uncovered unique
immunogenic cryptic TSAs derived from noncoding regions19,21.
Assuming that cryptic MAPs may be a rich source of heretofore
overlooked TSAs, it is imperative to directly explore the presence
of cryptic TSAs using systems-level approaches. Expanding the
repertoire of TSAs would be highly beneficial because the low
number of immunogenic exome-derived TSAs is a major hurdle
for cancer immunotherapy57–59.

Methods
Subject recruitment. Written informed consent was obtained from all study
participants. The study protocol was approved by the Comité d’Éthique de
la Recherche de l’Hôpital Maisonneuve-Rosemont. Relative to subject 1
(HLA-A*03:01, -A*29:02; -B*08:01, -B*44:03), subjects 2–4 were HLA-identical,
HLA-haploidentical (HLA-A*02:01, -A*29:02; -B*57:01, -B*44:03) or
HLA-disparate (HLA-A*01:01, -A*02:01; -B*18:01, -B*39:24). See also
Supplementary Table 1.

Analysis of RNA-seq data. RNA-seq was performed as described22. Paired-end
RNA-seq data of subject 1 were mapped on the human reference genome
(GRCh37.75) with the Casava 1.8.1 and Eland v2e mapping softwares (Illumina).
This alignment was used to perform SNP calling with the Casava 1.8.1 software as
previously described22. Only ns-SNPs having a Qmax_gtZ20 were used to build
the customized control database.

To obtain an expression value for each transcript of a given gene, paired-end
RNA-seq data from subject 1 were mapped on the reference genome (GRCh37.75)
using TopHat 2.0.10 (ref. 60). Cufflinks 2.2.1 (ref. 61) was then run on the output-
sorted BAM file in addition to the Ensembl gtf file to obtain FPKM (fragment per
kilobase of transcript per million mapped reads) values for all known transcripts.
Only transcripts having an FPKM value 40 were considered as expressed.

Generation of the control and all-frames databases. We generated two
customized databases based on the RNA-seq data of subject 1. To generate the
control database, we applied a workflow similar to the one of Granados et al.22:
ns-SNPs identified in subject 1 were integrated at their correct position in the
reference genome (GRCh37.75) to build a personalized genome. Using the
Ensembl gtf file, we extracted all known transcripts and further in silico translated
them in their canonical reading frame to obtain the canonical proteome of subject
1. To generate the all-frames database, we used all reads passing the Illumina
quality filters and in silico translated them in the six possible reading frames using a
sliding window of 33 bp to obtain all theoretical peptides having a length between 8
and 11 amino acids. For each peptide, we computed an S-value, that is, the number
of times it was seen following the in silico translation process. Only peptides having
an S-value Z10 as well as a length between 8 and 11 amino acids were included in
the predicted peptidome of subject 1. Both the canonical proteome and the
predicted peptidome of subject 1 were compiled in fasta files to obtain the control
and the all-frames database, respectively. Both databases were then concatenated
with their respective decoy counterpart and submitted to the Mascot database
search engine along with subject 1’s immunopeptidomic data.

MS analyses. Immunopeptidomics raw data from subjects 1 and 2 B-LCL were
obtained from a previous study30. For subjects 3 and 4, MAPs were eluted from
B-LCLs and sequenced using MS as previously described (three to four biological
replicates per subject)22. Each replicate was separated in six fractions using strong
cation exchange chromatography. Vacuum-dried fractions were then suspended in
5% acetonitrile and 0.2% formic acid and injected into the LTQ-Orbitrap Elite
operating at a resolving power of 60,000 (at m/z 400) for both full spectra and
MS/MS spectra modes. Up to 10 precursor ions were accumulated to the target
value of 50,000 with a maximum injection time of 100 ms. Mass spectra were
analysed using the Xcalibur software and peak lists were generated with Mascot
Distiller.

Control and all-frames database searches. The Mascot search engine
(Matrix Science) was used in combination with the control or the all-frames
database concatenated to their reverse database to identify peptides present in the
immunopeptidome of subject 1. Mass tolerances on precursor and fragment ions
were set to 5 p.p.m and 0.02 Da, respectively. Searches were performed without
enzyme specificity, and cysteinylation, phosphorylation (on Ser, Thr and Tyr),
oxidation (Met) and deamidation (Asn, Gln) were used as variable modifications.
Following each database search, we converted raw files to peptide maps containing
m/z values, charge state, retention time and intensity above detection threshold
(Z8,000) using ProteoProfile (http://proteomics.iric.ca/tools/ProteoProfile/)62. The
peptide maps were used to extract the abundance of the identified peptides across
the four replicates.

On the 8–11 amino-acid-long peptides identified with the control database, we
computed the FDR63 for all combinations of the Mascot score (which represents

the confidence level of a peptide assignation) and predicted MHC-binding affinity
(computed with NetMHCcons64). FDRs were computed as (number of decoy
identifications/number of target identifications)� 100. We then selected the
combination of the Mascot score and MHC-binding affinity yielding the higher
number of MAPs at 5% FDR, as described22. The same Mascot score (Z22) and
MHC-binding thresholds (r1,250 nM) were then applied to the peptide list
identified with the all-frames database. As expected, considering the unavoidable
effect of database size on FDRs calculated according to decoy approaches5,24,65,
applying the thresholds defined with the control database to the all-frames database
increased the decoy-based FDR to 9% for the all-frames database.

Identification of cryptic and conventional MAPs. Peptides identified with both
the control and the all-frames databases were considered as conventional MAPs.
Peptides solely identified by the all-frames database were considered as putative
cryptic MAPs. To validate whether they were genuine cryptic MAPs, we mapped
the subset of peptide-encoding reads using TopHat to discard peptides coming
from multiple locations in the genome. The remaining cryptic MAP candidates
were assigned to their respective source gene and their MS/MS spectra were
manually validated. To determine the type of sequence (within the source gene)
generating each cryptic MAP, we used the intersect function of the BEDTools suite
on the bed file of our cryptic candidates as well as Ensembl gtf file. Peptides
assigned to a gene source in the opposite orientation were classified as antisense
cryptic MAPs, those deriving from noncoding RNAs, 50UTR, intronic, 30UTR or
intergenic sequences were classified as sense noncoding cryptic MAPs. Peptides
deriving from exons of protein-coding genes were subjected to a reading frame
validation: only peptides produced by non-canonical reading frames were classified
as sense coding cryptic MAPs. For sense cryptic MAPs (except intergenic ones),
we retrieved the gene biotype of their respective gene source from Ensembl
annotations (when available) using pyGeno. Finally, since MAPs derive
preferentially from highly abundant transcript30,31,66, we assumed that the
conventional and sense cryptic MAPs passing all of our filtering steps were
generated by the most highly expressed isoform of their respective source gene.
A complete list of identified conventional and cryptic MAPs can be found in
Supplementary Data 1 and Supplementary Data 2, respectively.

Computation of PCR coverage. We computed the coverage of all identified PCRs
by using the coverage function of the BEDTools suite. The sorted BAM file
obtained following the TopHat alignment as well as the bed files of our cryptic
and conventional PCRs were used as entry files. This coverage metrics, which
represents the number of reads overlapping, by at least 1 bp, our PCRs were then
correlated with the S-value metrics, which approximates the number of read fully
overlapping the same PCRs (Supplementary Fig. 1a).

Influence of the HLA genotype on the MAP repertoire. The Mascot search
engine was used to perform database searches on the raw data of subjects 2–4
against a validation database that contained all identifications made in subject 1 as
well as their decoy sequences. Mass tolerances on the precursor and fragment ions
were set to 5 p.p.m and 0.02 Da, respectively. Peptide lists identified in each subject
were extracted and compared with the 2,435 conventional and 168 cryptic MAPs
identified in subject 1 (Supplementary Fig. 4).

Prediction of upstream ORFs. For each transcript source of MAPs, we extracted
the personalized mRNA sequences of subject 1 using pyGeno. We scanned the
transcript from its 50end to its 30end to predict all possible ORFs initiating at an
AUG embedded in an optimal (GCC[R]CCstartG[V]) or strong ([R]NNstartG[V])
Kozak context. ORFs located in the 50UTR or at the 50UTR–exon junction were
considered as upstream ORFs. We computed the proportion of the transcript
source of cryptic and/or conventional MAPs that presented at least one upstream
ORF. Statistical significance between the cryptic and conventional source transcript
categories was assessed using a two-sided Fisher’s exact test. This analysis was
performed on sense cryptic MAPs for which a source gene and transcript were
available.

mRNA stability analysis. Using pyGeno, we retrieved the 30UTR sequences of
cryptic and conventional source transcripts to compute their length, their number
of intronic sequences and to look for exact match of all destabilizing and stabilizing
elements characterized by Zhao W. et al.36 The 30UTR length distributions as well
as the number of destabilizing and stabilizing elements per transcript were
compared between the transcript source of conventional and cryptic MAPs.
Statistical significance was assessed using a two- and a one-sided Wilcoxon rank
sum test, respectively. Statistical significance for the proportion of conventional
and cryptic MAP source transcripts containing no versus at least one intron was
assessed using a two-sided Fisher’s exact test. This analysis was performed on sense
cryptic MAPs for which a source gene and transcript were available.

Prediction of cryptic source proteins. To predict the probable start codon of
each cryptic PCR, we sequentially applied the following rules: (i) presence of an
upstream AUG within an optimal (GCC[R]CCstartG[V]), strong
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([R]NNstartG[V]) or weak (anything else) Kozak context, (ii) presence of an
upstream near-cognate AUG within an optimal or strong Kozak context, (iii) any
other codon downstream of the first upstream stop codon. The probable stop
codon was assumed to be the first in-frame stop codon downstream of the PCR.
This analysis was performed on personalized mRNA sequences of cryptic source
transcripts for most sense cryptic MAPs. Since no gene structures were known
for antisense, intronic and intergenic cryptic MAPs, we simply extracted the
personalized genomic sequences flanking the PCR (750 bp long) and performed the
same analysis.

C-terminal amino-acid signature. At each position analysed, we compared the
usage of each amino-acid class between cryptic and conventional MAPs using a
two-sided Fisher’s exact test. Hits were considered significant when they yielded a
P valueo0.05.

ns-SNP frequency analysis. We used dbSNP138 (common_all set) to determine
the frequency of ns-SNPs, at the population level, in the PCRs of conventional and
cryptic MAPs. Since some cryptic MAPs derive from out-of-frame exonic trans-
lation, we could not rely on the synonymous versus non-synonymous dbSNP
annotations. To circumvent this problem, we sequentially inserted all SNPs
intersecting with our cryptic and conventional PCRs (stored in bed files). Those
mutated PCRs were then in silico translated. If the resulting peptide was identical to
the MAP initially identified in subject 1, the SNP was classified as synonymous.
Otherwise, the SNP was classified as non-synonymous. Knowing the number of bp
encoding our cryptic and conventional MAPs, we computed the frequency of ns-
SNPs per bp observed in both types of PCRs. Statistical significance was assessed
using a two-sided Fisher’s exact test.

Rare codon usage analysis. Codons were classified as rare and common if their
observed usage frequency (http://www.genscript.com/cgi-bin/tools/codon_freq_
table)67 was lower and greater than their expected usage frequency (1/number
of codons encoding a given amino acid), respectively. Out of 64 codons,
30 were classified as rare and 34 as common. Using an in-house python script,
we computed the number of occurrence for each codon to further derive the
number of rare and common codons used by each class of transcripts across
(1) conventional source transcripts versus cryptic source ORFs and (2) MAP source
transcripts or ORFs versus all the other transcripts for which a cDNA sequence was
defined. Statistical significance was assessed using a two-sided Fisher’s exact test.

T-cell priming and IFN-c Elispot assays. Monocyte-derived DCs were generated
from frozen PBMCs, as previously described68. Peptide-specific CD8þ T cells
were expanded as described, with some minor modifications69. Briefly, thawed
PBMCs were first T-cell-enriched using the Easysep Human T Cell Enrichment Kit
(StemCell Technologies) and co-incubated with autologous peptide-pulsed DCs at
a DC:T cell ratio of 1:4 with the addition of IL-21 (30 ng ml� 1). Cells were cultured
in CellGro DC medium containing 5% human serum and L-glutamine. IL-15
(2.5 ng ml� 1) and IL-7 (2.5 ng ml� 1) were added on day 3 and every 3 days
thereafter. On day 12, cells were harvested and stained with an anti-human CD8-
PE as recommended by the manufacturer (clone RPA-T8, BD Biosciences). CD8þ

T and CD8– cells were sorted using a FACSAria apparatus and then used for the
Elispot assays, which were performed as described70. IFN-g production was
expressed as the number of peptide-specific spot-forming cells per 106 CD8þ

T cells after subtracting the spot counts from negative control wells (CD8 T cells
alone).

Data analysis and visualization. Unless stated otherwise, analyses were
performed using the pyGeno python package (https://github.com/tariqdaouda/
pyGeno)23. The ggplot2 package from the R software was used for data
visualization. All codes are available on request to the corresponding author.
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