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A B S T R A C T   

Introduction: Numerous complex physiological models derived from intracranial pressure (ICP) monitoring data 
have been developed. More recently, techniques such as machine learning are being used to develop increasingly 
sophisticated models to aid in clinical decision-making tasks such as diagnosis and prediction. Whilst their po-
tential clinical impact may be significant, few models based on ICP data are routinely available at a patient’s 
bedside. Further, the ability to refine models using ongoing patient data collection is rare. In this paper we 
identify and discuss the challenges faced when converting insight from ICP data analysis into deployable tools at 
the patient bedside. 
Research question: To provide an overview of challenges facing implementation of sophisticated ICP models and 
analyses at the patient bedside. 
Material and methods: A narrative review of the barriers facing implementation of sophisticated ICP models and 
analyses at the patient bedside in a neurocritical care unit combined with a descriptive case study (the CHART- 
ADAPT project) on the topic. 
Results: Key barriers found were technical, analytical, and integrity related. Examples included: lack of inter-
operability of medical devices for data collection and/or model deployment; inadequate infrastructure, hindering 
analysis of large volumes of high frequency patient data; a lack of clinical confidence in a model; and ethical, 
trust, security and patient confidentiality considerations governing the secondary use of patient data. 
Discussion and conclusion: To realise the benefits of ICP data analysis, the results need to be promptly delivered 
and meaningfully communicated. Multiple barriers to implementation remain and solutions which address real- 
world challenges are required.   

1. Background 

Intracranial pressure (ICP) monitoring can capture waveform quality 
data. The analysis of these ICP waveforms is of interest within neuro-
critical care settings and in the management of neurological disorders 
such as hydrocephalus. Sustained periods of raised ICP can be detri-
mental to a patient and prompt treatment aims to keep the mean ICP 
below around 20 mmHg (Carney et al., 2017), although this threshold 
will differ between patient populations and is likely to require 
individualisation. 

To guide patient treatment or predict a patient’s status or outcome, 
ICP has been analysed using a range of techniques or combined with 

other parameters to create numerous indices and couplings. One such 
clinically useful index is cerebral perfusion pressure (CPP). CPP is the 
pressure difference between the mean arterial pressure (MAP) and the 
venous outflow pressure, considered equivalent in pressure to the 
intracranial pressure (ICP). The RAP index is the correlation coefficient 
between the mean ICP and ICP wave amplitude and provides a measure 
of the pressure-volume reserve capacity (Balestreri et al., 2004). ICP 
values can also be used in models which represent a measure of the 
patient’s cerebrovascular reactivity (i.e. reflecting a patient’s autor-
egulatory state). For example, the pressure reactivity index (PRx) is a 
Pearson’s correlation between arterial blood pressure (ABP) and ICP 
(Czosnyka et al., 1997). PRx is calculated with data every 6 seconds and 
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for an overall duration of between 1 min and 3 min. Low resolution 
autoregulation index (LAx) is also a Pearson correlation between ICP 
and ABP (Depreitere et al., 2014). However, it is based on the more 
readily available data frequency of per minute, with the standard cor-
relation window duration of between 10 and 30 min. CPPOpt (Aries 
et al., 2012) calculates the CPP required for a patient’s optimal autor-
egulatory state. CPPOpt is achieved through a process of data thinning 
and collation, resulting in a quadratic polynomial linear regression 
model fit; the optimal value is found at the minimum turning point of the 
fit, this is calculated over a duration of 4 hours which is then moved 
through time and the estimate updated. The dynamic adaptive target of 
active cerebral autoregulation (DATACAR) methodology (Depreitere 
et al., 2014) was proposed to address the situation where no turning 
point can be found due to lack of data. DATACAR is a more computa-
tionally expensive methodology and repeatedly updates window lengths 
(for which autoregulation is to be calculated and collection of CPP 
values) to cover a spectrum of data possibilities to maximise the chance 
of finding the optimal point. 

In addition to using the absolute ICP value, the morphology of the 
ICP waveform can be examined. The ICP waveform is a tripartite 
structure, comprising of a percussive wave (P1), a tidal wave (P2), and a 
dicrotic wave (P3) (Cardoso et al., 1983). The P1 wave is indicative of 
arterial pulsations, the P2 wave represents intracranial compliance, and 
the P3 wave corresponds to the closure of the aortic valve. Normally 
P1>P2>P3, however, deviations in these waves may be suggestive of 
pathological conditions, such as raised ICP or impaired cerebral 
compliance. When displayed against time, patterns can also be observed 
at a macroscopic level. These macroscopic patterns are known as 
Lundberg waves and defined as A-waves, B-waves, and C-waves 
(Lundberg, 1960). A-waves are considered as plateau waves occurring 
during very high ICP and associated with a poor prognosis, B-waves are 
short-duration ICP elevations with variable pressure levels, possibly 
representing poor compliance and C-waves have more frequent eleva-
tions up to around 30 mmHg which are associated with respiratory and 
cardiac cycles. The Morphological Clustering and Analysis of ICP 
(MOCAIP) algorithm performs automated analysis of the ICP waveform 
and can identify and measure non-artifactual ICP peaks, designating the 
three previously defined sub-components of the ICP pulse (Hu et al., 
2009). 

More recently, techniques such as machine learning are being used in 
ICP analysis. Machine learning is a subfield of artificial intelligence (AI). 
The aim of machine learning is the development of algorithms which 
extract patterns (or models) from datasets which can then be applied to 
other (unseen) data to aid in clinical tasks such as classification, pre-
diction, and prognosis (Shillan et al., 2019). Whilst such approaches 
often produce models with high performance, many use ‘black box’ 
techniques which produce complex models for which a clinician has 
very little (or no) ability to understand the process applied or the 
resulting model (Arrieta et al., 2020). 

Currently, the use of ICP monitoring data with machine learning 
approaches has mostly focused on the creation of models which predict 
ICP or use ICP as a variable in a prediction model (e.g. to predict mor-
tality). An example of the former are recurrent neural networks, which 
have been used by both Ye at el (Ye et al., 2022) and Schweingruber at el 
(Schweingruber et al., 2022) to build models to predict ICP. In another 
example, Teplan et al. (2017) have used a hierarchical Gaussian Mixture 
Model (hGMM) for clustering extracted features which represent ICP 
time sub-sequences, the application of this work has been for the crea-
tion of optimum thresholds for ICP alarms. With respect to ICP as a 
variable in a prediction model, examples include the prediction of 
intracranial hypertension (Lee et al., 2021), identification of patients for 
a permanent cerebral spinal fluid shunt implantation (Mládek et al., 
2022), and prediction of patient outcome (Rajagopalan et al., 2022), 
(Raj et al., 2019). 

Whilst the potential clinical impact of indices and models derived 
from ICP measurements may be significant, few are routinely available 

for clinical use at the patient’s bedside (Carra et al., 2020). Further, the 
ability to refine models using ongoing patient data collection is rare. 

There are some examples which move ICP analysis closer to the 
patient bedside. The ICM+ software enables real-time multimodality 
monitoring, analysis, and data storage in neurological intensive care 
environments (ICM+). Several relevant indices, such as PRx, RAP and 
CPPOpt, can be calculated when using the software. However, the 
software is not available for routine clinical use (just for research pur-
poses). The CHART-ADAPT platform (further details in Section 3) 
demonstrated the possibility of implementing complex models (such as 
those from machine learning), in real-time, at the patient bedside by 
providing sufficient computational infrastructure and integrating with 
existing patient monitoring equipment (Moss et al., 2021). This study 
implemented the following: PRx, LAx, HMF, CPPOpt, and DATACAR and 
machine learning models are planned. However, again, this platform is 
not widely available. 

Whilst there has yet to be a formal review of the clinical imple-
mentation of ICP models resulting from machine learning approaches, 
Citerio has identified and discussed the lack of routine integration of AI 
and machine learning approaches within neurocritical care settings and 
identifies that whilst models concerning ICP exist, they have not been 
integrated into clinical reasoning and the selection of strategies is not 
guided by AI (Citerio, 2022). This gap between the known capabilities of 
AI/machine learning and its full integration into a real-world applica-
tion is often referred to as the “AI chasm” (Aristidou et al., 2022) and is 
reflected more widely in medicine. Adegboro et al. reviewed the use of 
AI techniques to improve patient outcomes in the neonatal and paedi-
atric critical care settings and showed that few models were in an 
implementation phase or deployed within an intensive care unit (ICU) 
environment (Adegboro et al., 2022). Further, van de Sande reviewed 
the use of AI in critical care and out of over 400 studies, the vast majority 
remained in testing and prototype stages; none reported outcome of an 
AI model integrated into routine clinical practice (van de Sande et al., 
2021). 

In this paper we identify and discuss some of the challenges faced 
when converting insight from data analysis (in particular, machine 
learning) into deployable knowledge at the patient bedside; Section 2 
explores existing literature on the topic and Section 3 details a relevant 
case study in which particular issues regarding implementation of 
models were identified and subsequently resolved. 

2. Barriers to implementation of complex ICP models 

There are many different reasons why a promising clinical model 
may not successfully transfer into a clinical environment. These may be 
highly dependent on the individual hospital environment (e.g. local 
policies, finances), but most reasons are ubiquitous and can typically be 
classified into three broad reasons: technical, analytical and integrity. In 
the following sections these categories are explored from the perspective 
of complex ICP modelling and its implementation within ICP related 
clinical contexts. 

2.1. Technical barriers to model implementation 

2.1.1. Data collection & integration 
A lack of ICP data harmonization can be both an impediment to 

offline model creation and online model deployment. 
Many models or indices derived from, or relevant to ICP, include 

parameters which are collected from different monitoring devices. These 
devices often use assorted platforms and output data in various formats, 
diverse devices can also have different internal time clocks which makes 
data synchronization very difficult (van de Sande et al., 2021), devices 
generally do not have standardized device interfaces which enable 
extraction of data (Alkhachroum et al., 2022). 

Another data collection challenge is the availability of patient data to 
be processed in real time. In most units, patient data will be recorded in 
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real time and stored in a patient management system. Timely access to 
this data is required and there are multiple ways in which this could be 
achieved. For example, live patient data could be copied to a secondary 
dataset for models to process the data, or devices, such as ICM+ can be 
installed to enable data to be extracted from these systems and be pro-
vided for analysis. 

With regards to data integration, there are no widely accepted 
standard data formats for ICP recordings and associated neurocritical 
care data (Alkhachroum et al., 2022). Integrating data from other spe-
cialities (e.g. radiology) is also a significant challenge, again due to 
differing data types and informatics architectures (van de Sande et al., 
2021). Consequently, ICP data can be poorly integrated. Software such 
as Moberg’s Component Neuromonitoring System (CNS Monitor) and 
ICM+ have improved the integration of some of the relevant data 
sources. However, each still has its own storage format (although ICM+

can output data in an open file format, HDF5). Agreement across the 
community on the data formats/standards to use or development of 
translations between standards would help with integration of data. 

Additionally, there is not always standardisation of what data to 
collect. For example, annotations of clinically relevant events which 
may affect interpretation of ICP values recorded in the data (e.g. turning 
a patient) (van de Sande et al., 2021). If agreement can be found with 
respect to the structure and content of the data, then it would make 
development and implementation of models at the bedside easier. 
However, this is not an easy task, nor a new endeavour. Common Data 
Elements (CDE) which define useful information to collect have been 
specified as part of some initiatives such as BrainIT (BrainIT) and 
CENTER-TBI (CENTER-TBI) but are not necessarily routinely applied 
outside of these initiatives. Further, over time and with differing 
research priorities, even established CDEs will require updating. 

Data harmonization is not only hindered by differences in storage 
formats and structure, it can also be affected by differences in the 
meaning of the variables in the data (i.e. data semantics). For example, 
how to identify the same variables when different terms have been used, 
e.g. MAP vs. Mean Arterial Pressure. Semantic data integration enables 
the integration of different data based on the meaning of the data 
(Cheatham et al., 2017). This is often done by using information about 
the variables and the relationships between them which can be repre-
sented in ontologies. Ontologies provide a computational representation 
of a domain describing the elements in that domain and the relationships 
between them. 

In the approaches discussed so far, the aim has been to pull together 
data from different sources to create one dataset for analysis or for the 
application of a model to. However, another approach is that the data is 
instead kept local, and analysis is performed in a distributed manner 
with results aggregated (can also be considered as federated learning). 
Whilst this approach may resolve some issues (e.g. permissions to 
transfer data), it can still be affected by differences in semantic meaning, 
structure of the data and differing data formats. 

2.1.2. Infrastructure 
Many clinical environments do not have the technical infrastructure 

for the storage and real-time processing of large volumes of ICP data 
required by complex models (such as those involving waveform anal-
ysis). This makes it difficult to deploy new complex models on existing 
equipment at the patient bedside, as analysis of live data in clinically 
meaningful timescales requires sufficient bandwidth and processing 
capacities. Instead, high-resolution data (e.g. waveform data) is often 
integrated and visualised through third-party enterprise solutions, 
which are increasingly being located off-site. These platforms may 
provide technical solutions, but issues surrounding privacy, security, 
and access, can be controversial and need resolving (van de Sande et al., 
2021), (Sanchez-Pinto et al., 2018). High performance infrastructure 
can also be expensive and therefore prohibitive in resource constrained 
settings. 

Models are often created using large datasets consisting of data 

purposely combined offline from multiple sources. However, if the data 
in the clinical application of the model is not collated or available in the 
same way, then the model cannot be deployed or will not perform as 
well (due to reduced availability of parameters). Additionally, it is not 
desirable to have to re-code a model each time it is deployed in a new 
clinical environment because different equipment is used. 

One solution to this problem is to centralise the model and decouple 
the model from the data (Richards, 2022). Decoupling the model from 
the data is a concept in which the layers of a software architecture, i.e. in 
this simple example, the model layer and the data layer, are made in-
dependent of each other. Often this requires the creation of a translation 
‘layer’ which sits between the model and the data. For example, this 
translation layer could map between a variable in a new dataset (e.g. 
Mean Arterial Pressure) and the variable defined in the model (e.g. 
MAP). Decoupling means that any layer of the architecture can be 
changed and/or expanded without having to significantly change the 
other layers. For example, an improved model could be implemented in 
the model layer, but it would require no changes to the way it interacts 
with the data layer. This means that models only have to be imple-
mented once and multiple healthcare settings, equipment, and providers 
could apply that model simultaneously to their data stream. This also 
makes it easier for clinical trials of models. Refinement of models can 
take place in real-time as the data flows through the platform and each 
user has instant access to the most up-to-date model. Although a unit 
would have access to a centrally deployed model, they would still be 
able to make their own decisions. 

2.2. Analytical barriers to model implementation 

2.2.1. Clinical utility 
It has been suggested that one of the reasons why models may not 

transfer well to clinical environments is the lack of clinical utility of the 
developed model (Carra et al., 2020). A plethora of machine learning 
models are published, but without their real clinical impact studied, 
their advancement will only be minimal (Bellini et al., 2022). Where the 
clinical impact has been explored, the impact of AI has been shown to be 
limited; in a review by Zhou et al., 40% of randomised controlled trials 
(RCT) evaluating AI-based clinical interventions found there was no 
clinical benefit of using AI prediction tools compared to routine standard 
of care; this was often despite a model having good area under the 
receiver operator characters (AUROC) in model development and 
evaluation (Zhou et al., 2021). 

Another aspect of a model’s suitability for clinical application is 
whether interaction with the clinicians using the model has been 
considered. Clinicians should be considered in the development and 
evaluation of AI-driven models, otherwise there is a risk that models do 
not reflect the required needs of clinicians (and hence there is then little 
motivation from clinicians to ensure they are implemented). As argued 
by Citerio (2022), neurointensivists and neurointensive care unit nurses 
are central to the delivery of patient care and for models to be suc-
cessfully adopted in the neurocritical care environment, the models 
should reflect this by augmenting their role rather than aiming to 
replace it. Future human factors research into the interaction between 
clinicians and models is required. 

2.2.2. Generalizability 
For a model to be accepted and routinely used in local clinical 

practice, the model will need to demonstrate adequate generalizability 
across different patient populations and settings. Therefore, it is 
important to understand the data used to train and evaluate a model. 
Performance of a machine learning model is likely to worsen when the 
data to which it is to be applied to differs from the data used to train it 
(Adegboro et al., 2022). Models are generally trained on a specific pa-
tient population and do not necessarily capture heterogeneity in 
real-world patient data (Carra et al., 2020). To ensure a model performs 
as well on unseen data, external validation of the model should be 
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performed. Alkhachroum et al. (2020) make several points on this topic: 
external evaluation should be executed on prospective datasets and not 
retrospective clinical data, this point is also made by Adegboro et al. 
(2022); using data from RCTs could introduce selection bias due to in-
clusion and exclusion criteria and therefore carefully curated datasets 
have less value for machine learning validation; and testing using 
diverse datasets, ideally from multi-centre cohorts, is essential to 
external validation studies, examples of these within ICP research 
include; BrainIT (BrainIT), The Collaborative European Neuro Trauma 
Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) and 
Transforming Research and Clinical Knowledge in Traumatic Brain 
Injury (TRACK-TBI). 

2.2.3. Data quality 
Models created in research settings generally use high quality data, 

curated specifically for a research study. However, when such models 
are transferred to clinical practice, this level of data quality does not 
always reflect reality and real-world, unfiltered patient data, can be 
incomplete, inaccurate, and unlabelled (Orphanidou, 2019); this can 
make model deployment difficult or impossible. Data quality can vary 
depending on monitoring equipment and its placement and mainte-
nance. Artifacts are a particular challenge when using ICP data. On 
average between 5% and 20% of ICP data contains artifacts (Feng et al., 
2011). Removal of artifacts in ICP data is a significant challenge. Manual 
removal is impractical, can introduce variability through different an-
alysts and is not appropriate during the live deployment of models. 
Automated, online, ICP artifact removal has been studied (Feng et al., 
2011), (Lee et al., 2019), (Feng et al., 2012), (Martinez-Tejada et al., 
2021), (Megjhani et al., 2019) but, as yet, is not routinely implemented 
in clinical settings. 

2.3. Integrity barriers to model implementation 

An absence of consideration for model transparency, reproducibility, 
ethics, and effectiveness can result in a lack of translation of clinically 
promising models into clinical practice (Vollmer et al., 2020). Some of 
these topics are reflected upon in more detail in the following sections. 

2.3.1. Ethics 
Ethical challenges and considerations regarding the deployment of 

models may, if not resolved, hinder implementation into a real-world 
clinical setting. Some ethical challenges are straightforward to resolve, 
whereas others, such as the reliance on AI as the source of medical 
knowledge raise potentially broad ethical concerns (Char et al., 2018). 
Further, the use of machine learning in complicated care practices will 
require ongoing consideration, since the correct diagnosis in a particular 
case and what constitutes best practice can be controversial (Char et al., 
2018). 

The impact of machine learning or automated decision making on 
the patient-clinician relationship (or family-clinician relationship) is an 
important factor to consider. Currently, this relationship is grounded in 
the principles of medical ethics. However, the introduction of automated 
decision making will extend it from a two-party relationship to a three- 
party relationship and introducing this new moral actor will challenge 
this existing grounding (Čartolovni et al., 2022). Furthermore, the 
introduction of automated decision making may exclude the patient 
from the decision-making process and lead to a more distant 
patient-doctor relationship (Al-Mufti et al., 2019). 

2.3.2. Trust 
Lack of trust in a model can be a limiting factor for its widespread 

clinical acceptance. Generally, it has been suggested that to achieve an 
optimal level of trust in a machine learning model (or AI system) for use 
in healthcare environments, there are three factors which should be 
considered: fairness, transparency, and robustness (Asan et al., 2020). 
Whilst these are most likely universal concepts, further research is 

required into the factors specific to increasing trust between machine 
learning and AI in ICP settings and its impact on workflow (Adegboro 
et al., 2022). 

2.3.3. Fairness 
Bias minimization is an important element of gaining trust in a ma-

chine learning model (Asan et al., 2020) (and consequently will help its 
adoption into a clinical environment). Bias can lead to unfair model 
outcomes, therefore, to ensure fair modelling, biases should be identi-
fied and resolved. There is concern that biases contained in training data 
will be reflected in the resulting model. The biases include those related 
to missing data and patients not identified by algorithms, sample size 
and underestimation, and misclassification and measurement error 
(Gianfrancesco et al., 2018). Bias can be introduced at all stages of 
model development and deployment. Vokinger et al. (2021) identify 
several ways in which bias can be introduced, for example, data used to 
train a model may be subject to sampling bias and may not reflect the 
patient population in which it is to be applied; modelling may propagate 
existing bias in the dataset as performance metrics concentrate on how 
good its predictions are on the average population, possibly at the cost of 
lower performance on underrepresented groups; model evaluation may 
be performed inadequately whereas it should examine how well the 
model performs across all groups of patients with errors examined; 
finally, when a model is deployed, it may not be applied to the cohort of 
patients for which it was designed for (known as domain shift). 

2.3.4. Transparency 
A lack of transparency can lead to reduced trust in a model. As 

suggested by Dhar et al., “it is unlikely that we will accept a machine’s 
decision to perform an invasive intervention on a patient without un-
derstanding what factors are driving this alert” (Dhar and Meyfroidt, 
2022). 

One route to improving transparency is for effective evaluation and 
reporting of machine learning studies (Carra et al., 2020). Recent ini-
tiatives to improve such reporting include the CONSORT-AI and 
SPIRIT-AI extensions; both make recommendations of the items which 
should be routinely reported for studies involving AI (Liu et al., 2020), 
(Rivera et al., 2020). 

Models derived from machine learning (or other complex analyses) 
often perform well but the techniques used lead to models which tend to 
be less intuitive and cannot be fully interpreted by clinicians. For 
example, a neural network may consist of layers of artificial neurons 
with many thousands of parameters. With an understanding of neural 
networks, it may be possible to conceptually explain what is happening 
in the layers, however it is impossible to understand the computation 
and explain how the parameters worked together to generate the pre-
diction. These so called ‘black box’ models may be problematic for 
implementation in clinical environments and such tools cannot be 
questioned for their medicolegal implications (Nicholson Price Glenn 
Cohen et al., 2018). Further, legislation such as the European Union 
directive General Data Protection Regulation (GDPR) (EU Regulation 
(EU), 2016), generate a duty of transparency or explainability from 
decision making using personal data and hence models used in a clinical 
context, in particular for fully automated decisions, need to provide an 
explanation to enable a patient to obtain meaningful information about 
the logic used, express their point of view, and contest a decision; this 
can be difficult to achieve using black box models. 

It is suggested that to increase clinical acceptance of decision-making 
tools based on such black box algorithms, access should be increased to 
the information driving the algorithm (Alkhachroum et al., 2020). 
Consequently, there is growing interest in the field of interpretable 
machine learning. There are three main approaches to developing 
interpretable models: firstly, models, such as decision trees, which are 
intrinsically interpretable by a clinician can be used, secondly, inter-
pretation methods can be applied after a model has been created, and 
thirdly the behaviour of a model could be explained using 
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example-based methods. For a discussion on interpretable machine 
learning in neurocritical care see Moss et al. (2022). The level of inter-
pretability required for a model to be considered as trustworthy will be 
highly dependent on the context in which it is being applied and on 
centre-specific policies (Carra et al., 2020). 

2.3.5. Regulatory requirements 
Absence of sufficient organisational and regulatory frameworks may 

also be a contributing factor to a lack of model deployment at a patient’s 
bedside. For countries in which regulatory frameworks do exist, the 
procedures may be perceived as overly bureaucratic, time consuming, 
and expensive. It is unlikely that those involved in the creation of models 
in a research capacity have the resources to complete a regulatory 
process to enable the model to be widely used as a routine clinical de-
cision support tool. Therefore, the onus will be on the relatively few ICP 
medical device and software companies to shoulder that financial 
burden and to develop a model commercially. 

A further consideration is that regulatory standards will need to be 
updated to consider the use of machine learning/artificial intelligence 
which can independently learn and evolve. 

In addition, even if a model is made clinically available, there are still 
important legal considerations which require discussion. One of the 
main identified limitations to the application of machine learning into 
clinical environments is the accountability if a machine learning model 
makes an error (Chaudhry et al., 2020). For example, Al-Mufti et al. 
(2019), questions who is accountable when machine learning models (or 
AI driven systems) decide to intervene on a patient and cause an adverse 
event? Furthermore, if an error is made, it would currently be difficult to 
identify the source of the error due to the black box nature of the models. 

3. CHART-ADAPT case study 

The CHART-ADAPT (Connecting Healthcare And Research Through 
A Data Analysis Provisioning plaTform) project was the first to 
demonstrate a realistic approach to actionable analytics at the bedside of 
a single Scottish adult neurointensive care unit. The successfully 
implemented platform facilitated, as a proof of concept, the online, 
bedside, deployment of models and analysis of data. In this section we 
describe experiences from the research project and how some of the 
challenges faced in converting promising clinical models into mean-
ingful clinical impact were addressed in the hope that it may be useful 
for those about to encounter similar issues. The aim of the CHART- 
ADAPT project was to demonstrate proof of concept and was consid-
ered a research project. The CHART-ADAPT platform is not a product 
and is not commercially available. 

CHART-ADAPT was implemented in the Neurocritical Care Unit, 
Institute of Neurological Sciences, Glasgow, UK. 831 patients, admitted 
to the unit between 1/4/2015 and 31/3/2017, were transferred through 
CHART-ADAPT, of which 34 included waveform data to demonstrate 
the platform’s ability to handle waveform quality data. Clinical research 
studies were conducted as part of the platform’s evaluation including a 
comparison of several models of cerebral autoregulation and calculation 
of optimal cerebral perfusion pressure (CPPOpt); some of these indices 
were previously restricted to use within research settings or not clini-
cally applied due to their computational requirements. 

As part of the platform, patient data was automatically integrated, 
de-identified and transferred to a securely hosted, cloud-based platform 
providing data storage, an analysis engine, and a specifically designed 
app to control applied analyses. Complex physiological models and al-
gorithms (as specified by the control app), were applied to live patient 
data and the results passed back into the clinical environment, re- 
identified, and integrated with the existing patient management sys-
tem for display at the patient’s bedside. 

Regulatory approval was required for CHART-ADAPT and consisted 
of Caldicott Guardian approval, NHS Research Ethics, and NHS Greater 
Glasgow and Clyde I.T approval from both technical and security 

perspectives. Acquiring these approvals took a considerable amount of 
the project’s timeline and was due to the nature of approval processes 
and the novelty of the project at the time. 

As part of these approval processes and to ensure patient confiden-
tiality, the project developed fully configurable software (Automated 
Neurointensive Care Anonymisation (ANCA)) to process patient data in 
accordance with the relevant policy and legal requirements and auto-
matically anonymise the patient data before it left the neurocritical care 
unit. A testing plan to identify lapses in confidentiality was followed and 
repeated at regular intervals. Additionally, an Information Governance 
Strategy was developed, making explicit the data handling and security 
procedures put in place and personnel responsible for information 
governance in both organisations (healthcare and commercial) worked 
closely together. 

To overcome data harmonization issues, a solution adopted in the 
CHART-ADAPT platform was to decouple the model from the data. To 
enable this separation of concern in the CHART-ADAPT platform, 
established data standards were used for data input to the models; 
Medical waveform Format Encoding Rules (MFER) waveform format 
(ISO/TS11073-92001) (Takeuchi et al., 2009) and HL7 (Health Level 7) 
Version 2 (HL7). In the unit in which CHART-ADAPT was being 
demonstrated, this required the Philips Rhapsody system (Philips med-
ical IB SC200 interoperability engine) to be configured to output HL7, 
and a custom piece of software written to convert the recorded wave-
form data into MFER. The entire flow of patient data was then auto-
matically transformed into HL7. Although HL7 is already an accepted 
standard in clinical environments, it is acknowledged that this is not a 
perfect solution as it still puts the responsibility on the manufacturer to 
output data in an established format, however it does at least make the 
implementation of the model itself easier. 

The CHART-ADAPT application domain also faced not having access 
to adequate technical infrastructure to run complex models. Using 
existing, local equipment, some of the ICP models implemented would 
not have run in clinically meaningful timescales. The choice made to 
resolve this issue was to transfer the anonymous patient data to a high- 
performance computing platform provided by an external commercial 
provider. The cloud-based service provision included Spark (Apache 
Software Foundationa), Hadoop (Apache Software Foundationb) and 
Greenplum (Greenplum). To highlight the possible performance gains 
from this approach, a comparison was made between implementing PRx 
in R versus Scala (Scala) (the language used for implementation on 
Spark). Experiments showed the runtime of R and Scala increasing lin-
early with data volume, in which Scala performed in the range of 
50–200 times faster than the R code (Moss et al., 2016). It is acknowl-
edged that the transfer of patient data from a clinical environment to an 
external provider can be challenging and not without confidentiality 
issues, but at the time it was the only feasible way to achieve the 
required processing power. 

The aims of the CHART-ADAPT project required technical and 
analytical knowledge alongside specialist clinical knowledge of ICP 
monitoring and neurocritical care. Without input from all these per-
spectives, there was a potential for the platform (and models developed 
to run on it) to not be fit for purpose. To mitigate this concern, a multi- 
disciplinary team was created for CHART-ADAPT consisting of neuro-
critical care clinicians, data scientists, clinical scientists (with special-
isms in computational sciences) and a medical device manufacturer 
(Philips). Having access to people with different skills and viewpoints 
ensured that the platform was suitable for the clinical environment in 
which it was to be implemented, met the clinical requirements, incor-
porated into existing clinical pathways, and integrated properly with 
existing technology in the unit, enabling it to be used at the bedside 
without further devices having to be installed. 

Another concern faced during the implementation of CHART-ADAPT 
was the lack of data science knowledge of the potential users in the 
neurocritical care unit. The creation and deployment of models requires 
knowledge of data science and of the computing infrastructure for which 
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it will be deployed to. Most clinical staff do not have these skillsets. 
Further, access to in-house expertise in these areas is sporadic. There-
fore, to ensure clinicians were not excluded from the project (and hence 
increase adoption of the models/platform), a control app was developed 
which allowed clinicians to easily: select which patients should have 
their data passed to the platform, which models should be applied to 
each included patient, view the platform’s technical performance, and 
define different user roles. 

The role of commercial companies in the analysis of sensitive patient 
data is controversial and can be a barrier to model deployment and use. 
Due to the involvement of commercial partners in the CHART-ADAPT 
project, a survey was conducted to gain feedback on the topic (Kin-
sella et al., 2017). From this survey, most respondents felt that their 
medical data should be used for research purposes and would be happy 
to share their data. Additionally, most respondents trusted clinicians 
with this data, but when it came to the role of private companies in such 
studies, the response was mixed. To mitigate this possible barrier in the 
CHART-ADAPT project, engagement initiatives were implemented. For 
example, a public event was hosted to discuss patient data sharing 
within critical care, posters and leaflets about CHART-ADAPT were 
made available in the neurocritical care unit and staff were briefed and 
updated on project progress. Further, attendance at relevant academic 
and healthcare events provided opportunities to discuss the platform 
and gather feedback which was then fed back into the development of 
the project. 

The types of challenges encountered in the CHART-ADAPT project 
mostly focused on technical and analytical barriers. Integrity barriers 
were not considered in the design of the platform. For example, inter-
pretability and bias were not topics considered in the design of the 
CHART-ADAPT infrastructure. However, providing tools which help to 
counteract these problems would be important enhancements to the 
platform. For example, it would be possible to implement algorithms 
such as LIME (local interpretable model-agnostic explanations) (Ribeiro 
et al., 2016) on the CHART-ADAPT platform to automatically provide a 
local interpretable model to explain the individual predictions of a black 
box model. Further regulatory approvals in the project largely focused 
on the transfer of data. The platform was not used in clinical practice and 
therefore issues regarding the regulation of models running on the 
platform were not considered. 

4. Conclusion 

ICP research has the potential to significantly benefit from tech-
niques such as machine learning. However, complex models, for 
example those resulting from machine learning, rarely transfer into 
clinical practice. As demonstrated during the CHART-ADAPT project, 
hurdles to model implementation in a clinical environment can be sig-
nificant but ultimately overcome. Barriers to model implementation 
largely fall under the categories of technical, analytical, and integrity. 
Access to sufficient technical infrastructure in clinical settings needs to 
be improved, however some of the barriers to access to relevant tech-
nology are starting to be removed and increasingly processing power is 
becoming available in-house or through formal partnerships and 
agreements which make the transfer of patient data easier to external 
providers. As suggested by Moberg et al., issues regarding data inte-
gration require a consensus within the community to mitigate these 
challenges and develop a path forward for data ‘readiness’ for machine 
learning and artificial intelligence approaches (Moberg et al., 2022). 
Device manufacturers and other stakeholders will need to work closely 
together to agree upon standards which will, alongside the development 
of new techniques for artifact detection and removal, accelerate model 
development and deployment. Clinical end users should be put at the 
heart of model development and close attention paid to ensure the 
clinical utility of these models. Vollmer et al. propose a series of ques-
tions which should be asked of machine learning studies to ensure their 
transferability to a clinical environment. These range from questions to 

ensure a suitable clinical hypothesis is being explored, the correct data is 
being examined, appropriate techniques are being applied and the 
implementation and clinical impact is considered (Vollmer et al., 2020). 
Finally, models are only likely to gain widespread adoption when they 
are understood and trusted by clinicians. Interpretability, bias reduc-
tion, and robustness have already been identified as relevant for 
increasing trust in a model, but trust is a complicated concept and in 
order to increase levels of trust and consequently routine use of complex 
ICP modelling, future research is required to understand clinicians’ 
needs from machine learning and AI and its role within existing clinical 
workflows. 
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Westpha, l M., Czorlich, P., Gerloff, C., 2022. A recurrent machine learning model 
predicts intracranial hypertension in neurointensive care patients. Brain 145 (8), 
2910–2919. https://doi.org/10.1093/brain/awab453. 

Shillan, D., Sterne, J.A.C., Champneys, A., Gibbison, B., 2019. Use of machine learning to 
analyse routinely collected intensive care unit data: a systematic review. Crit. Care 
23, 284. https://doi.org/10.1186/s13054-019-2564-9. 

Takeuchi, H., Kumabe, A., Zhang, P., Kogure, Y., Akutagawa, M., Kinouchi, Y., Zhang, Q., 
2009. The development of remote monitoring system using international standard. 
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