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ABSTRACT

The high-throughput sequencing of nuclease-
protected mRNA fragments bound to ribosomes, a
technique known as ribosome profiling, quantifies
the relative frequencies with which different regions
of transcripts are translated. This technique has re-
vealed novel translation initiation sites with unprece-
dented scope and has furthered investigations into
the connections between codon biases and transla-
tion rates. Yet the location of the codon being de-
coded in ribosome footprints is still unknown, and
has been complicated by the recent observation of
footprints with non-canonical lengths. Here we show
how taking into account the variations in ribosome
footprint lengths can reveal the ribosome aminoa-
cyl (A) and peptidyl (P) site locations. These loca-
tion assignments are in agreement with the proposed
mechanisms for various ribosome pauses and fur-
ther enhance the resolution of the profiling data. We
also show that GC-rich motifs at the 5′ ends of foot-
prints are found in yeast, calling into question the
anti-Shine-Dalgarno effect’s role in ribosome paus-
ing.

INTRODUCTION

Protein production, one of the most fundamental biologi-
cal processes, determines the ability of cells to adapt to their
environments. Variations in gene expression allow a cell to
modulate which proteins are produced, which in turn estab-
lishes the levels of key cellular actors. For example, bacte-
ria have evolved intricately regulated protein synthesis and
are able to complete the production of new protein within
minutes of stimulation (1). Of the three stages of transla-
tion (initiation, elongation and termination), initiation rates
are the primary determinants of protein abundance (2,3)
and therefore have the largest impact on protein produc-
tion. There is increasing evidence that differential transla-
tion ‘elongation’ influences the folding of nascent polypep-
tides (4–6), but the extent to which translation elongation is

regulated, and how this regulation affects protein folding, is
poorly understood.

Pioneering studies using the ribosome profiling technique
have addressed key issues of translation by quantitatively
sequencing nuclease-protected, ribosome-bound transcript
fragments (7–9). The patterns underlying these ribosome
‘footprints’ give clues to nature of the forces behind trans-
lation elongation and the relationships between translation
kinetics, cellular milieu and the genetic code. The canonical
ribosome footprint was determined to be 28 nt long (10,11).
As revealed by deep sequencing, however, there are small
but substantial populations of footprints which are shorter
(12). A priori, there is no clear way to compare footprints of
different lengths and such differences obscure the exact po-
sition of a ribosome along a message. The extra nucleotides
could conceivably occur at either end of the ribosome, an
issue that remains unresolved.

Although ribosome profiling data have proven to be
highly informative, the location of the codon being decoded
within a footprint is still unclear. A growing body of evi-
dence suggests that, under certain conditions, the transla-
tion of specific amino acids can impair ribosomal processiv-
ity, including proline (13,14), serine (8) and histidine (12).
Prolines are thought to impair ribosome processivity dur-
ing peptidyl transfer, whereas pausing at serine and histi-
dine codons is the result of an increased delay while waiting
for ternary complex at the A site. Yet other ribosome paus-
ing, due to the anti-Shine-Dalgarno (aSD) effect (8,15), can
presumably occur because of interactions outside the ribo-
some active site region and thereby require other mecha-
nisms. The relative contributions of all these effects to ri-
bosome pausing are unclear. We hypothesized that a better
understanding of how the sequence of a footprint, which re-
ports on the codons being translated, is related to the num-
ber of times it occurs in the sequencing library and there-
fore the pausing propensity, could give us insight into both
the location of the ribosome A site and the determinants of
ribosome pauses. To test this hypothesis, we analyzed pub-
lished datasets, both from yeast and Escherichia coli.
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Figure 1. Statistical analysis of footprint codon composition. We count
how many times each type of codon occurs in ribosome footprints, while
keeping track of the position within the footprint as well as the length of the
footprint. This information is stored in a matrix, where the color represents
a type of codon and the number is the positioning away from the 3′ end of
the footprint.

MATERIALS AND METHODS

Computing codon frequencies

Briefly, using previously reported datasets, ribosome foot-
prints were processed by determining where they align to
the genome with Bowtie (16) and then categorized by length
(in codons) using a Perl program. For each length category,
the frequencies of codons at each position within the foot-
print were tabulated, where the position is defined relative
to either the 5′ or 3′ end of the footprint. The resulting were
structured as 64 2D matrices, where each matrix represents
one of the 64 codons and each matrix position represents
a codon of a particular footprint length and at a particular
footprint position (Figure 1).

Computational processing of ribosome profiling sequencing
libraries

Data obtained from E. coli cells grown in LB medium
are from SRR364368 and SRR364370 (Gene Expression
Omnibus (GEO) accession number GSE33671) (17). All
other ribosome footprinting data for E. coli cells grown
in 3-morpholinopropane-1-sulfonic acid (MOPS) medium
come from SRR1067765, SRR1067766, SRR1067767 and
SRR1067768 (GSE53767) (18). Yeast data were from
cycloheximide datasets SRR1363415 and SRR1363416,
untreated datasets SRR1363412-SRR1363414 and 3-AT
datasets SRR1363420-SRR1363423 (GSE58321) (12) or
SRR950450, SRR1040415, SRR1040423 and SRR1040427
for proline enrichment analysis (GSE50049) (19). Initial
processing of the sequencing data was done largely as out-
lined previously (20). In detail, sequence read archive (SRA)
files were converted to FASTQ files using SRA toolkit
2.3.2–5, program fastq-dump. Ends were trimmed using
FASTX toolkit version 0.0.13.2, program fastx clipper, us-
ing options -Q33 -a NNN -l 21 -c -n -v, where the se-
quence NNN was either CTGTAGGCACCATCAAT or
AAAAAAAAAAAAAA, depending on the library prepa-
ration method.

A Bowtie library of rRNA and tRNA sequences was
compiled and Bowtie 1.0.0 was used to remove these se-
quences from the trimmed fastq file with options –quiet
-p 8 -l 23 –un = SRRxxxx.norrna.fq rrna seqs -q SR-
Rxxxx.trimmed.fq > /dev/null (where SRRxxxx is the in-
put file name of the SRR dataset).

The remaining sequences were aligned using Bowtie
against the E. coli MG1655 or Saccharomyces cerevisiae
S288c reference genome with options -S -p 8 -l 21 –
sam-nohead genome name -q SRRxxxx.norrna.fq > SR-
Rxxxx.aligned.SAM. Any unaligned reads were discarded
using GNU grep version 2.18 by keeping only those lines
not matching the pattern ‘XM:i:0’ (grep -v -E ‘XM:i:0’
SRRxxxx.aligned.SAM > SRRxxxx.matched.SAM). A
merged file of multiple experimental replicates was then cre-
ated using GNU cat version 8.21.

The SAM file was converted to a simplified file using a
program executed by Perl version 5.18.2. Briefly, sequence
mismatches relative to the genomic reference were cor-
rected, based on the reasonable assumption that the ma-
jority of mismatches are due to sequencing errors and not
to biological variability. These corrected sequences were
grouped into sets of identical sequences and mapping posi-
tions, keeping track of their mapped genomic positions and
the number of occurrences. A Perl program was used to dis-
card reads which were not mapped within coding regions
or were within 10 codons of the ends of coding regions.
For calculations involving codons, frame was maintained
either by adding and/or removing 0 or 1 nt at either end, or
by shifting the sequence upstream 0, 1 or 2 nt and making
the length a multiple of three. Sequences were then divided
into sets of 3 nt, representing the in-frame codons and the
codons at each position were tallied, keeping into account
the total length of the sequence and the number of times the
sequence occurred. The resulting tallies were normalized to
percentages and output to a file aligned to either the 5′ or
3′ end. A similar procedure was used to compute nucleotide
frequencies, except the footprints were neither divided into
sets of triplets nor corrected for reading frame.

Computational processing of mRNA-seq sequencing libraries

SAM files were prepared from SRA files as above
(SRR1067773 and SRR1067774, GEO # GSE53767)
(18) or (SRR950758, SRR950896, SRR951829 and
SRR1040263, GEO # GSE50049) (19). The entire lengths
of the reads were aligned to their respective genes and
the mean read density across all positions was taken
to represent the expression level of a gene. Background
mRNA codon frequencies were computed by counting the
codons per gene and multiplying by the expression level,
and then summing these tallies across all protein coding
genes. Unlike Artieri et al. (14), codon-resolution read
density corrections were not performed.

Hierarchical clustering of ribosomal footprint codon occu-
pancies

Ribosome footprints were 3′-aligned and the footprint po-
sitions were summed across the length classes and normal-
ized, such that, for any position, the sum of the values across
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all codons at that same position (column) equals 1. Hier-
archical clustering of the data was performed using pvclust
(21) in R 3.1.1, command pvclust(data, method.dist = ‘cor’,
method.hclust = ‘average’, nboot = 100000). The absolute
5′ position, and any positions 12 codons or more from the
3′ end, were ignored to avoid effects from different footprint
lengths as a result of the reported 5′ end biases.

GC content visualization of a sequence

To visualize the GC content over a particular sequence
range, first the position-specific GC content, defined as 1 for
G or C and 0 for A or U, was computed for the entire se-
quence. Next, a Savitzky-Golay smoothing algorithm, with
window size 27 and polynomial degree 4, was applied to the
resulting data to help visually discriminate between regions
of high or low GC content. The algorithm was implemented
in a Perl program.

Visualization of footprint ends over a gene using 2D heat
maps

A pre-processed SAM file, with sequencing reads corrected
to the genome and identical sequences and mapping po-
sitions merged and with the number of identical reads
recorded, was scanned line by line and for each read a PTT
file was scanned in parallel until a gene was found whose
range contained the read mapped position. If a match was
found, then the two endpoints were tracked, however many
times the read occurred. The end result produces a separate
file, for any gene with at least one mapped read, containing
the locations of the endpoints for each mapped read as well
as their occurrence numbers. These pairs of endpoints were
then re-arranged in a two-dimensional (2D) tab-delimited
text file, the position within the file (line and tab number)
representing the footprint whose 3′ and 5′ ends spanned
those regions. At each position in the text file, the number
of footprint reads was recorded. Places with no reads were
marked with a ‘-,’ and were considered missing when plot-
ting with Gnuplot (version 4.6 patchlevel 3).

Source code

All source code is made available on the GitHub repository
https://github.com/atmartens/ribosome profiling.

RESULTS

LB induces serine pauses 4 codons from the 3′ end in E. coli

It was previously shown that, when grown in LB medium,
E. coli ribosome footprints are more likely to contain ser-
ine codons than expected (8). This effect was attributed to
a depletion of intracellular serine, and thus of aminoacy-
lated tRNASer, due to the preferential metabolism of serine
amino acids in the absence of other carbon sources. This
mechanism is thought to slow ribosomes at the A site, be-
cause the low levels of aminoacylated tRNASer in the cell
will cause the ribosome to pause while waiting until a cog-
nate tRNA molecule arrives. We thus reasoned that the
analysis of serine codon frequencies in ribosome footprints
could reveal the location of the A site in E. coli.

To address this question, the frequencies of serine codons
in footprints were calculated. As predicted, all six serine
codons are enriched in ribosome footprints (Figure 2). In-
terestingly, we find that the enrichment is positioned rela-
tive to the 3′ end and not the 5′ end. The codon positions 3
through 5 upstream of the 3′ end are highly enriched in ser-
ine, with position 4 being the strongest. This result suggests
that, in bacteria, the A site is located 4 positions from the 3′
end and that comparisons between ribosome footprints of
different lengths require alignments relative to the 3′ end,
but not the 5′ end.

Although the most obvious pattern in this dataset is the
serine enrichment, we wondered if other codons might like-
wise have important position-specific biases. To address this
question in an unbiased way, we used hierarchical clustering
to groups codons by their position-specific enrichments. As
expected, we find that all six serine codons cluster together,
confirming the serine effect (Supplementary Figure S1) and
no other codons exhibited position-specific biases as impor-
tant as serine in these data.

Prolines can induce pausing in both yeast and bacteria

The incorporation of proline, an imino acid, into a nascent
chain is potentially conformationally troublesome due to
steric and other effects (13), a property which should affect
all domains of life, as evidenced by the existence of special
elongation factors for proline in both eukaryotes and bac-
teria (22–24). This snaring effect has both been measured in
vitro, using stop-flow kinetics (13) and using ribosome pro-
filing in yeast (14). Given that this effect is robust, we asked
whether it could be used to calibrate the pause location in
footprints of different lengths, thus giving an indication of
where the ribosome P site was relative to the footprints.

We tallied the occurrences of proline codons at all posi-
tions in ribosome footprints, separated by footprint length
(Figure 1) and normalized these frequencies by the back-
ground frequencies from a parallel mRNA-seq experiment
(14). The resulting data can be visualized as a 2D heat map,
where hotter colors represent enrichment in ribosome foot-
prints relative to the mRNA background. We confirm that,
as previously described in yeast, all four proline codons
(CCN) are enriched (Figure 3). Overall, prolines are about
1.5–2.5-fold enriched, with CCA being the most and CCG
the least (Figure 3). Furthermore, we find that longer ribo-
some footprints show similar codon frequencies as shorter
footprints, if the footprints are aligned to the 5′ end. The
positions which are most enriched in prolines are conserved
between the lengths in vertical patterns. For example, pro-
line codon CCA is most highly enriched 4 codons down-
stream the 5′ end and enrichment is less at the other po-
sitions. Since proline incorporation is thought to retard ri-
bosome processivity at the P site, during peptidyl transfer
(13), we infer that the greatest enrichment at position four
indicates the P site location.

Curiously, a similar analysis of E. coli data does not re-
veal this trend. We find that, overall, proline frequencies in
ribosome footprints, at any position and of any length, are
similar to those in the mRNA background (Figure 4), sug-
gesting either that proline incorporation in E. coli is not
slow or that averaging all footprints together might mask

https://github.com/atmartens/ribosome_profiling
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Figure 2. Escherichia coli cells grown in LB display serine enrichment in ribosome footprints. The point of greatest enrichment is 4 codons upstream from
the 3′ end, regardless of footprint length, suggesting that longer E. coli footprints have extra sequence at the 5′ end of the ribosome. The codons to the left
of the jagged line were looked up from the genome, revealing the sequences of shorter ribosomes prior to nuclease digestion.

Figure 3. Prolines are enriched in yeast ribosome footprints. Comparing
the frequencies of proline codons in mRNA to those in footprints, we find
that all four proline codons are over-represented. In particular, the fourth
position downstream from the footprint 5′ end is the most enriched, re-
gardless of the length of the footprint, suggesting that yeast footprints align
naturally to the 5′ end. Since ribosome stalling during proline incorpora-
tion takes place during peptidyl transfer, these data suggest the P site is
located 4 codons downstream the 5′ end in yeast.

the effect. We posited that individual E. coli genes, contain-
ing long proline repeats, do experience ribosome pauses. For
example, the E. coli gene amiB has the longest stretch of
consecutive proline codons (eight). Contrary to the absence
of observed pausing for individual prolines, we do find that
repeat prolines coincide with a dramatic ribosome pause
(Figure 5), suggesting that, at least in extreme situations,
prolines can also induce ribosome stalling in E. coli.

Figure 4. Although the proline codon CCG, and to a lesser extent CCA, is
enriched in Escherichia coli footprints, the codons CCU and CCC are not.

3-AT causes histidine enrichment at all positions

The small molecule 3-AT (3-amino-1,2,4-triazole) was pre-
viously shown to specifically inhibit the incorporation of
histidines into nascent proteins by reducing the intracellu-
lar tRNAHis concentrations. The reduction in tRNA exclu-
sively results in in the enrichment of histidine codons, but
not other codons, in ribosome footprints (12). Since a re-
duction in tRNA will increase the time a ribosome waits at
the A-site, whereto tRNA molecules diffuse randomly, we
reasoned that a comparison of the histidine codon frequen-
cies in ribosome footprints would reveal the location of the
ribosome A site.

As before, the codons were tallied at all positions and
categorized by ribosome footprints of different lengths. As
shown previously, we find that histidine codons are enriched
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Figure 5. The Escherichia coli gene amiB has eight consecutive proline
codons (box, codons 130 to 138) which coincide with a sharp rise in ribo-
some footprint density, suggesting that, at least in extreme cases, proline
residues do retard translation.’

Figure 6. The depletion of intracellular tRNAHis using 3-AT causes a
sharp increase in histidines in ribosome footprints (top) compared to un-
treated cells (bottom). Unlike the proline enrichment, which had a clear
position-specific effect, this enrichment is more evenly spread across the
length of the footprints. However, a strongly conserved vertical pattern of
enrichment at position 5 might indicate the A site position.

after 3-AT treatment, at nearly all positions, comprising a
much higher fraction of the total number of codons in ri-
bosome footprints than from untreated cells (Figure 6). Al-
though the effect is not limited to a single position, the en-
richment at the position 5 codons downstream from the 5′
end is slightly stronger than at other positions. Despite the
weak signal, this position is the likeliest candidate of the A
site, for it agrees with the proline data, which set the P site
4 codons downstream the 5′ end. Aligning the footprints
to the 5′ end, as before, tends to conserve vertical enrich-
ment patterns across footprints of different lengths, again
suggesting that, in yeast, the additional mRNA in longer
footprints extends from the 3′ end of the ribosome.

GC-rich 5′ sequences are present both in yeast and E. coli

It was previously shown that E. coli and Bacillus subtilis, but
not yeast, ribosome footprints have GC-rich 5′ ends (8) and
that this effect correlates with footprint length (15). This ef-
fect has been explained by the interactions between G-rich

Figure 7. GC content analysis of Escherichia coli ribosome footprints.
Footprints were categorized by length and each nucleotide position was
measured for its average GC content across all footprints. Shorter foot-
prints were extended to the 5′ end, revealing what the mRNA sequence was
prior to nuclease digestion (red dashed line). We see that the 5′ and 3′ ends
of footprints, regardless of length, have some strong GC biases. Further-
more, the longer footprints have increasingly high GC content downstream
from the 5′ end.

mRNA and the C-rich rRNA (3′-CACCUCCU-5′), called
the aSD effect, and is a ribosome pausing mechanism which
happens away from the A, P or E sites. Given the previously
discussed pausing effects, which do take place at the A or P
sites, we asked how these different mechanisms contribute
to ribosome pauses as measured by ribosome profiling ex-
periments.

To address this question, we tallied the frequencies of
all codons, both by position and by footprint length. The
aSD model predicts that G-rich codons will be more present
than other codons, specifically at the 5′ ends, in a length-
dependent manner and will not be enriched in yeast. To see
what sequences are ‘missing’ from the shorter footprints,
these were extended to 45 nt by looking up the sequences
from the genome and aligned to the 3′ end. According to the
‘inch-worm’ hypothesis (15), the aSD model predicts that
longer footprints are able to fit inside the ribosome if they
bind the rRNA more strongly, giving rise to a correlation
between footprint length and 5′ G content. This hypothesis
also predicts that, in E. coli, the sequence occurring imme-
diately prior to ‘shorter’ footprints will not be high G, and
that in yeast there should be no difference between the nu-
cleotide content of the longer or shorter footprints.

We confirm that E. coli ribosome footprints 5′ ends are G-
rich and that this enrichment grows with footprint length
(Figure 7). Furthermore, the extended 5′ regions of the
shorter footprints are not enriched, supporting the aSD
model. However, we notice that the extreme 5′ end posi-
tion is GC-poor, an observation not predicted by the aSD
model. In addition, an analysis of yeast ribosome profiling
data also reveals GC-enriched sequence at the 5′ ends of
longer footprints (Figure 8), which was not expected.

We wondered if some of these nucleotide biases could be
due to artifacts from the library preparation or sequenc-
ing processes. Nucleotide analyses of mRNA-seq data show
how the library-generation process for both mRNA-seq
and ribosome profiling do cause nucleotide-level GC biases,
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Figure 8. GC content analysis of yeast ribosome footprints.The yeast
genome has a lower GC content than the Escherichia coli, as visible by
the cooler colors. Nevertheless, we observe, as in E. coli, sequence biases
at the ends of the footprints as well as a length-dependent increase in GC
content downstream from the 5′ end.

Figure 9. GC content analysis of mRNA seq data. To better understand
the sequence biases noticed in the ribosome footprinting data, they were
compared to mRNA-seq data, which underwent many of the same steps
but fundamentally report on different biological phenomena. We find that
these data have nucleotide biases near the 5′ ends of the reads, but that
there is little to no GC enrichment in a length-dependent manner.

but that these 5′ end GC enriched sequences are distinct
from the biases observed in the mRNA-seq data (Figure 9).
Therefore, a process specific to ribosome profiling likely im-
parts specific nucleotide biases in the sequencing data.

Visualizing footprint densities as a function of read length

The relationships between sequence composition and foot-
print length demonstrate the importance of accurately vi-
sualizing footprint density across transcripts. Given the po-
tential for ambiguity in the comparison of footprints of dif-
ferent lengths, we have developed a graphical method for
simultaneously displaying footprint density, along a tran-
script, of all different lengths. Importantly, this method al-
lows us to interrogate the relationships between ribosome
density and mRNA sequence of individual genes, thereby
avoiding the problems associated with genome-wide aver-
aging of the sequencing data, as shown above.

Figure 10. Plotting ribosome footprints by tracking the 3′ and 5′ end co-
ordinates and displaying the read count using a heat map. (A) A section
of the highly-expressed Escherichia coli gene rpsA shows areas of high and
low sequence coverage, indicating which parts of the transcript have, on
average, more or less ribosome density. Using the footprint length infor-
mation juxtaposed with the average GC content, we can see how there is
a strong relationship between the read length and the 5′ GC content. (B)
The lower expression level of the gene amiB is reflected by a lot of empty
space, but clearly the peak of reads at the eight consecutive prolines stands
out.

For example, we highlight a region within the E. coli gene
rpsA, which encodes a highly-expressed protein component
of the small ribosome subunit. By plotting the footprint co-
ordinate endpoints on the x and y axes, and the read number
as a heat map, we can see how footprint length heterogene-
ity varies across a gene (Figure 10). Remarkably, we find
that regions of low footprint density correlate with low GC
regions, exactly as seen in the previous analysis of total ribo-
some footprints. The nucleotide biases at the ends are also
apparent: footprints tend to be GC-poor at either extremity,
regardless of length. Similarly, using this method we can see
how the peak in read density along the E. coli gene amiB co-
incides with the eight consecutive proline codons and how
these footprints have a slightly altered length profile com-
pared to those from the rest of the gene, a feature which
would have remained hidden with more conventional plots.
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DISCUSSION

Understanding footprint length differences through position-
specific codon frequencies

The principle underlying the ribosome profiling technique
is the protection of mRNA from nuclease by the ribo-
some. Though a typical footprint is 28 nt long, recent ev-
idence has demonstrated that many footprints are longer
or shorter. For example, ribosomes which halt at truncated
mRNA molecules lack sequence at their 5′ ends, produc-
ing ∼15 nt footprints (25). Footprint length heterogeneity
has also been associated with different conformations of
the ribosome, which can be preferentially selected through
the use of small molecule inhibitors of translation elon-
gation (12). Furthermore, the distribution of sequencing
read lengths has been used to distinguish between true ribo-
some footprints and other nucleic acids, such as mRNA or
rRNA which is protected from nuclease treatment by non-
ribosomal molecular complexes and which therefore do not
constitute true ribosome footprints (26). The mechanism by
which elongation inhibitors generate footprint length het-
erogeneity is unknown and these length differences com-
plicate the analysis of ribosome footprinting data: a priori,
there is no default way to compare two footprints of differ-
ent lengths.

Without any further information, it is conceivable that
footprints should be aligned to the 5′ end, to the 3′ end,
somewhere in between, or that no single alignment is cor-
rect. We have empirically found that aligning yeast foot-
prints to the 5′ end preserves the same position-specific
codon frequency differences between the different lengths
and agrees with previously reported alignment methods in
yeast (12). Crucially, two steps of translation, which take
place at either the A or P sites and are located one codon
apart, are found to cause codon enrichments which are also
one codon apart. The distinct mechanistic explanations for
these two types of pauses agree with our knowledge of ribo-
some structure. This agreement is particularly compelling
given that the experiments were peformed independently
and confirms that ribosome profiling is sensitive enough to
detect these types of translation rate differences.

This alignment places the ribosomal P site 4 codons
downstream the 5′ end of the footprint and the A site 5
codons away. Longer footprints thus appear to, on average,
have extra mRNA at the 3′ end. E. coli footprints, however,
align to the 3′ end, as demonstrated by the sharp serine en-
richments 4 codons upstream from the 3′ end; the expla-
nation of this difference remains unclear, but suggests that,
unlike in yeast, additional mRNA extends past the 5′ end
of the mRNA and that different computational methods
need to be applied when examining eukaryotic or bacterial
datasets.

Sequencing longer footprints to distinguish artifacts from bi-
ological mechanism

In addition to the aforementioned position-specific codon
biases in footprints, which we can attribute to specific steps
during protein synthesis, we also find, as previously re-
ported (14,27), that sequencing data contain substantial GC
biases, only some of which are shared between mRNA-seq

data and ribosome profiling data. Although these biases are
problematic because they complicate the estimates of true
molecular levels, in principle it should be possible to par-
tially correct for over- or under-representation of ribosome
footprints by using the mRNA-seq data as a reference (14).
However, we also notice biases present in the ribosome pro-
filing data, both in yeast and in E. coli, which are absent
from the mRNA-seq data. These biases could either be due
to library generation steps unique to ribosome profiling or
to true translation events. For instance, the 5′ ends of foot-
prints are GC-rich, while the ends of mRNA sequencing
reads show no such bias. This type of 5′ enrichment was
previously attributed to the aSD effect in E. coli (8,15), but
the same effect is also present in yeast, calling into question
the hypothesis.

The efficiencies of several in vitro processing steps, such
as linker ligation, reverse transcription or polymerase chain
reaction, could be impacted by terminal sequence compo-
sition. However, these three steps were also used when gen-
erating the mRNA-seq data. The defining step during ri-
bosome profiling experiments, which is absent from other
sequencing experiments, is the treatment of the sample with
nuclease (7). Given that nucleases tend to cut GC-poor se-
quences (28,29), rather than GC-rich sequence, we propose
that longer ribosome footprints result from incomplete nu-
clease digestion at mRNA 5′ ends. This was hinted at us-
ing experiments looking at ribosome stacking on a single
bovine transcript, where lesser nuclease treatment revealed
longer footprints (11), and could easily be tested by per-
forming ribosome profiling experiments with variable nu-
clease treatments. If nuclease sensitivity explains footprint
length heterogeneity, it would also suggest that different
ribosome conformations, such as those induced by small
molecule inhibitors of translation (12), have different nucle-
ase susceptibilities. Likewise, the length differences of ‘con-
taminant’ sequences could be explained by variable nucle-
ase susceptibility in these other molecular complexes (26).

The possible role library generation plays in introducing
sequence biases highlights some key steps of the ribosome
profiling methodology which must be carried out carefully,
lest the data become skewed or misinterpreted. Although
a canonical footprint is 28 nt in length, in practice we ob-
serve footprints as long as 45 nt. This means that sequenc-
ing reads should be at least 50 nt long and that the gel pu-
rification of size-selected fragments should likewise include
longer molecules. Omitting these precautions will result in
the under-representation of GC-rich sequences in the final
datasets and might explain why GC-rich 5′ footprint ends
were not noticed in the original yeast studies.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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