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DNA methylation and gene expression as
determinants of genome-wide cell-free DNA
fragmentation

Michaël Noë1,2, DimitriosMathios1, AkshayaV. Annapragada 1, Shashikant Koul1,
Zacharia H. Foda 1, Jamie E. Medina1, Stephen Cristiano1, Christopher Cherry1,
Daniel C. Bruhm1, Noushin Niknafs1, Vilmos Adleff1, Leonardo Ferreira1,
Hari Easwaran1, Stephen Baylin 1, Jillian Phallen 1, Robert B. Scharpf 1 &
Victor E. Velculescu 1

Circulating cell-free DNA (cfDNA) is emerging as an avenue for cancer detec-
tion, but the characteristics of cfDNA fragmentation in the blood are poorly
understood. We evaluate the effect of DNA methylation and gene expression
on genome-wide cfDNA fragmentation through analysis of 969 individuals.
cfDNA fragment ends more frequently contained CCs or CGs, and fragments
endingwith CGs or CCGs are enriched or depleted, respectively, atmethylated
CpG positions. Higher levels and larger sizes of cfDNA fragments are asso-
ciated with CpG methylation and reduced gene expression. These effects are
validated in mice with isogenic tumors with or without the mutant IDH1, and
are associated with genome-wide changes in cfDNA fragmentation in patients
with cancer. Tumor-related hypomethylation and increased gene expression
are associated with decrease in cfDNA fragment size that may explain smaller
cfDNA fragments in human cancers. These results provide a connection
between epigenetic changes and cfDNA fragmentation with implications for
disease detection.

Cell-free DNA (cfDNA) has been the focus of research in blood-based
biomarkers for early detection and monitoring of cancer. Normally,
nuclear DNA is packaged and condensed within chromosomes in part
bywrapping aroundhistone cores1,2. In the process of and after cellular
death, DNA is digested by DNAses, in part to prevent the release of
unbound DNA which can act as auto-antigens3–6. DNA fragments that
are tightly wrapped around histone cores, collectively called nucleo-
somes, appear to be protected from further digestion7. These frag-
ments are those that are typically represented in cfDNA and can be
collected with a simple blood draw.

With the development of high-throughput sequencing meth-
ods, it has become possible to study genome-wide features of
cfDNA fragmentation, or the cfDNA fragmentome, including those
related to the underlying nucleosomes. In healthy individuals, the

positioning of nucleosomes as well as chromatin states shows
striking similarity to those of myelocytic and lymphocytic cells8–10.
Similarly, methylation profiles of cfDNA from individuals without
cancer are very similar to DNA methylation of leukocytes11,12.
Although epigenetic changes are related to genome packaging13 and
chromatin structure14 as well as gene expression15, until now there
have been limited studies of the connection between methylation,
expression and cfDNA fragmentation16,17. A recent study identified an
increase in cfDNA fragment ends at sites of CpG methylation18.
However, none of these studies have examined the underlying
impact of these changes on cfDNA motifs and fragment size at
locations of recurrent fragment breakpoints nor demonstrated a
direct connection between epigenetic changes and cfDNA
fragmentation.
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In this study, we analyze the features related to motifs associated
with nucleosome positioning and breakpoints of cfDNA fragments in
both healthy individuals and patients with cancer. We show how epi-
genetic marks give rise to specific patterns of fragmentation of cfDNA
and how these are related to both methylation and gene expression.
Using this information, we illustrate how differentially methylated
CpG’s in specific sequence contexts can be used to identify differences
in cfDNA fragmentation between healthy individuals and cancer
patients.

Results
Enrichment of genomic sequences at preferred cfDNA fragment
end positions
We investigated the frequency and composition of cfDNA start and
end sequences, as these have been previously described as non-
random and potentially related to cleavage by endogenous
DNAses19–21. To rigorously identify cfDNA end positions, we pooled
cfDNA sequence data from low-coverage whole-genome sequencing
from a cohort of healthy individuals (n = 543) and investigated the
frequency of cfDNA breakpoints at every evaluable position in the
genome. We only considered fragment reads with high sequence and
mapping quality and calculated the ratio of the number of cfDNA
fragments starting or ending at a particular position compared to the
number of fragments with start or end positions within 50 bp sur-
rounding that location. We used this approach to account for differ-
ences in cfDNA fragment size, coverage across the genome, and local

copy number polymorphisms8, as well as to identify “preferred” frag-
ment end positions which we defined as genomic locations with a
higher number of fragment ends than would be expected by random
fragmentation (see “Methods” section).

We evaluated cfDNA fragments with more frequently observed
end-positions and found that these were enriched for specific motifs.
These typically included a thymine or an adenine before the start of the
cfDNA fragment and two cytosines (A/T|CC) or a cytosine followed by a
guanine (A/T|CG) as the first two nucleotides of the cfDNA fragment
(Fig. 1a and Supplementary Fig. 1). We reasoned that end sequences
that occurred recurrently among cfDNA fragments would likely
represent those locations protected by nucleosome occupancy, and
found that the frequency of these base motifs increased further at
preferred recurrent ends among healthy individuals (Fig. 1a, b). A/T|CC
and A/T|CG preferred cfDNA fragment ends were observed at rates
much higher than theoretically expected in the genome (26.5x for A/T|
CC and 5.5x for A/T|CG) (Fig. 1a; p <0.0001, t-test), while the fre-
quencies of DNA ends from fragments generated through sonication of
genomic DNA from lymphoblastoid cell lines were close to theoretical
abundances. Consistent with the observations above, the genome-wide
locations of preferred cfDNA ends were observed to be higher in the
first exons of genes, regions known to have highly ordered nucleo-
somes, and lower in the remaining gene bodies, which are more likely
to contain less consistent nucleosome structures (Fig. 1c).

To understand the underlying basis for the enrichment of A/T|CG
end sequences, we examined available x-ray crystal and cryo-EM
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Fig. 1 | Enrichment of motifs at the ends of cfDNA-fragments and at preferred
cfDNA-fragment ends. The 3 bpmotifs are located around the fragment, with one
base outside the fragment and the first two bases of the fragment. The vertical line
indicates the start of the fragment. a Frequency of 3 bp DNA-motifs at the ends of
DNA fragments after shearing by sonication (n = 9), at the ends of cfDNA fragments
(n = 543), and at “preferred ends” of cfDNA that were observed at genomic posi-
tions where at least 5% of cfDNA fragments started at that position (n = 543)
(“Methods” section). The relative frequencies are normalized by the observed
occurrence of 3 bpmotifs in the human genome. Themiddle hinge corresponds to
the median, while the lower and upper hinges correspond to the first and third
quartiles. The upper whisker extends from the hinge to the largest value no further

than 1.5 × interquartile range from the hinge. All frequency box plots have error-
bars, although the confidence intervals or individual data points may be too small
to be visible. b Increased preference of motifs in preferred cfDNA-fragment end-
positions, as measured by an increased ratio of the number of cfDNA-fragments
starting or stopping at a certain position, over the total amount of cfDNA frag-
ments overlapping a window of ±50 bases around that position. These included
enrichment of T|CC and A|CC as well as T|CG and A|CG at these recurrent cfDNA
end-positions. c Frequency of preferred ends of cfDNA in different functional
genomic regions. d X-ray crystal structure of PDB entry 7COW67. TCG motifs
colored red, nucleosome protein shown in gray surface with the histone H1 linker
at the top. Bases within 5 Å of H1 linker shown as spheres.
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structures of DNA bound to nucleosomes. We found that in 76% of
unique structures an A/T|CG motif was found close to the H1 linker
(within 5 Å) or centered 167 bp away, a distance that was identical to
the known median fragment length of cfDNA molecules in healthy
individuals (Fig. 1d)8. In contrast to fragment end sequences, we
observed that interior regions of cfDNA fragments were enriched in
adenines and thymines, with a 10–11 bp periodicity in the frequency of
these nucleotides over the length of the fragment (Supplementary
Fig. 1). These observations are consistent with current predictions of
DNA wrapping around a histone-core and the necessity to alternate
rigid DNA regions (C and G-rich) with more flexible regions (A- and T-
rich) to wrap nearly two turns around the nucleosome22.

Impact of CpG methylation on cfDNA fragmentation
Given the preponderance of fragment ends containing CGs, we won-
dered whether epigenetic marks of these sites could affect cfDNA
fragmentation. We mapped cfDNA fragments to the genome and
evaluated their ends with respect to previously identified methylated
and unmethylated CpG sites of cfDNA from healthy individuals
(comprised of men and women across young and old age groups)
obtained frommethylation arrays evaluating 850K high-fidelity cfDNA
CpG sites11 of 97 individuals, as well as 23.6M CpG sites from whole-
genome bisulfite sequencing of cfDNAof 23 individuals12.We observed

methylated CpGs were enriched at the ends of A/T|CG cfDNA frag-
ments, while unmethylated CpGs were distributed evenly over the
length of thesemolecules (Fig. 2a and Supplementary Figs. 2 and 3). To
quantitatively assess the enrichment of fragment ends at CpGs, we
calculated for each CpG the fraction of cfDNA fragments starting or
ending at this dinucleotidepositionover thenumber of fragmentswith
a start or end at any position within 50bp around each CpG. We
observed that the mean fraction of preferred ends increased as much
as 2.4 fold with higher levels ofmethylation (p <0.0001, t-test) (Fig. 2b
and Supplementary Fig. 4a). Furthermore, CG cfDNA fragment ends
were enriched as much as 2.2 fold at locations of methylated CpG’s
throughout the genome, including in CpG islands, shores, shelves and
open sea regions (Supplementary Figs. 5 and 6), revealing that
enrichment of methylated CpG fragments was a universal character-
istic of cfDNA in these regions.

We observed that methylated CG end sequences were pre-
ferentially enriched even when they overlapped frequently observed
CC fragment end sequences. When N|CC sequences were followed by
guanine resulting in N|CCG, the typical N|CC end motifs were reduced
in frequency as these competed with the overlapping C|CG motif that
was enriched when CpG sites containing these sequences were
methylated (Fig. 2b, c and Supplementary Figs. 3 and 4). The overall
impact of this competition resulted in a dramatic reduction ofmeanN|

Fig. 2 | DNA methylation and cfDNA-fragmentation. a The frequency of
observedCpG’s atdifferentpositions in cfDNA fragments, counted from the cfDNA
break, differed between methylated and unmethylated CpG sites per healthy
individual (n = 543). The bar represents the mean value and the whiskers corre-
spond to the standard deviation. While unmethylated CpG’s showed a more equal
distribution over the cfDNA fragments, methylated CpG’s showed enrichment at
the beginning of cfDNA-fragments.bThe preference of fragments to start at a CpG
increases with higher levels of methylation of that CpG. The preference for cfDNA-
fragments to start at a CpG is measured in aggregate in 543 healthy individuals by
the ratio of cfDNA-fragments starting with a CpG, over the total amount of cfDNA
fragments overlapping a window of ±50 bases around the first base of that CpG.
The degree of methylation at each CpG is indicated as the beta value in the hor-
izontal axis using methylation data from cfDNA of healthy individuals at ~850K
CpG positions11. c The opposite relationship is seen when a CpG is preceded by a

cytosine: there is a preference for cfDNA fragments to start with CCG, when the
CpG in this motif is not methylated. d CpG’s on chromosome X are known to be
differently methylated in male (n = 264) and female individuals (n = 279). Due to
X-inactivation by methylation of CpG-islands, these CpG’s show a difference in the
preference of cfDNA-fragment end-positions. With increased methylation, more
fragments start with a CpG, while less fragments start with a CCG. P-values were
calculated using a two-sample t-test, without correction for multiple testing. e On
autosomes, we do not observe a difference inmethylation betweenmale (n = 264)
and female individuals (n = 279). P-valueswerecalculatedusing a two-sample t-test,
without correction for multiple testing. The middle hinge in the boxplots corre-
sponds to themedian,while the lower andupper hinges correspond to thefirst and
third quartiles. The upper whisker extends from the hinge to the largest value no
further than 1.5 × interquartile range from the hinge.
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CCG fragment end sequences at methylated CpG positions that was
even greater than the corresponding increase in fragment ends at N|
CG, as seen for example, with the 3.69 fold reduction in mean T|CCG
end sequences (95% CI: 3.46-3.92), compared to a 2.23 fold increase in
C|CG end motifs (95% CI: 2.20-2.26). Similar results for N|CG or N|CCG
end motifs were observed throughout the genome, including in CpG
islands, shores, shelves, and open sea regions (Supplementary
Figs. 5 and 6), as well as when using largerwindows (75–125 bp) around
the CpG site (Supplementary Fig. 7).

To provide additional biological evidence for the link between
methylated CGs and cfDNA fragmentation, we compared cfDNA frag-
ments arising from the X chromosome among healthy individuals, as it
is well established that one copy of the two X chromosomes is inacti-
vated by methylation of CpG islands in women, while these regions on
the single X chromosome in men are not methylated23,24. In line with
our observation of methylation-induced fragment end enrichment,
cfDNA fragments ending with CG were enriched 1.23 fold in women
compared to men (95% CI: 1.18–1.30), and fragment ends with CCG
were preferentially reduced by 0.81 fold (95% CI: 0.74–0.87) at loca-
tions of X chromosome CpG islands, but these differences were not
observed on the autosomes in men and women (median fold changes
of 1.0 (95% CI: 0.99–1.03) and 1.0 (95% CI: 0.98–1.01) for CG and CCG
ends, respectively) (Fig. 2d). Although this trend continued in CpG
shores, we observed higher CG fragment end enrichment in men
compared to women in CpG shelves and open sea, consistent with the
previously reported increasedmethylationon themaleXchromosome
in these regions (Supplementary Fig. 8)13,25.

Effects ofmethylation andgene expression on coverage and size
of cfDNA fragments
In addition to the enrichment of cfDNA fragment-end positions at sites
of epigenetic marks, we observed that cfDNA sequence coverage (the
average number of cfDNA molecules overlapping a specific position)
was related to methylation levels (r =0.6, p <0.0001, Pearson corre-
lation test; Supplementary Fig. 9a), andwas up to 1.7 fold higher across
regions of CpG islands that were methylated compared to those that
were not methylated (p < 0.0001, t-test; Fig. 3a). Given the connection
between CpG island methylation and expression, we evaluated the
relationship between gene expression at transcription start sites (TSS)
and cfDNA fragmentation patterns. There was an inverse relationship
between cfDNA coverage at TSS and expression levels of nearby genes
(r = −0.48, p <0.0001, Pearson correlation test; Supplementary
Fig. 9b). Overall levels of cfDNA fragments that overlapped TSSs of
unexpressed genes were up to 3.7 fold higher than at regions of
expressed genes (p <0.0001, t-test; Fig. 3b), likely due to the lack of
destabilizing effects of transcription factors on nucleosomes and
increased nucleosome occupancy26.

Concordant with higher cfDNA coverage, we observed changes in
cfDNA fragment sizes at these regions, including fragments 4-5 bp
smaller at areas 800-1000 bp upstream of TSSs of highly expressed
compared to unexpressed genes (164.5 bp vs 168.6 bp, respectively,
p <0.0001, t-test) or in regions surrounding unmethylatedCpG islands
compared to highly methylated CpGs (165.1 bp vs 167.3 bp, respec-
tively, p < 0.0001, t-test; Fig. 3c, d). Examining broader regions sur-
rounding TSS or CpG islands continued to reveal differences between
expressed or unexpressed genes and between unmethylated or
methylated islands in regions as far as 500 kb around these sites
(Supplementary Fig. 10).

An analysis of cfDNA fragments adjacent to genes in KEGG and
Hallmark gene sets revealed that cfDNA coverage reflected gene
expression and CpG methylation11 across all significant gene sets
identified in white blood cells (WBCs; p <0.1, gene set enrichment
analysis; Fig. 3e and Supplementary Data 7). These included higher
cfDNA coverage at regions of CpG islands and TSSs when methylation
was increased and expression was decreased, and lower cfDNA

coverage with decreased methylation and increased expression. For
example, gene pathways not typically expressed in WBCs, including
neuronal receptor-ligand interactions or olfactory receptor transduc-
tion, were typically methylated andmore highly represented in cfDNA
fragments at regions containing CpG islands or TSSs (Supplementary
Fig. 11). In contrast, genes utilized in hematopoiesis, including in E2f
transcription factor targets and blood cell metabolism genes were
highly expressed, more frequently unmethylated, and represented at
lower cfDNA levels at CpG or TSS regions of these genes (Fig. 3e).
Overall, we found that cfDNA coverage was related to both CpG
methylation and expression of nearby genes (Supplementary Fig. 12a),
but that recurrent cfDNA fragment end enrichment at CpG sites was
more closely related to methylation levels than gene expression
(Supplementary Fig. 12b). A multivariate regression model evaluating
DNAmethylation (Fig. 3a, c), gene expression (Fig. 3b, d), nucleosome
positioning (Supplementary Fig. 13), and the interaction of these terms
revealed that each of these elements contributed independently to
cfDNA coverage and fragment size (Fig. 3f and Supplementary Fig. 14).
The relationship between methylation and coverage was qualitatively
similar inmore complexmodels that included additional terms for the
interaction of DNA methylation and nucleosome positioning, and the
three-way interaction of DNA methylation, gene expression, and
nucleosome positioning (Supplementary Fig. 14). These results high-
light that DNA methylation is a fundamental feature affecting cfDNA
fragmentation.

To provide a direct and independent analysis of the effect of
methylation or gene expression with cfDNA coverage, we assessed
human cfDNA fragmentation coverage in the plasma of mice with
implanted human tumors with or without a knock-in of the isocitrate
dehydrogenase (IDH1) chromatinmodifierwith amutation at R132 that
was known to be activating through our previous work27 and lead to
widespread genome-wide methylation and expression changes28–30.
Mice were injected with U87 glioblastoma cell line that was wild-type
for IDH1 (n = 3) or isogenically altered to contain the R132H mutation
(n = 3) and evaluated at 20–30 days after tumor implantation. After
selecting human-derived cfDNA fragments from the mouse plasma,
high coverage of human cfDNA was observed at areas of increased
methylation, while low coverage of cfDNA was present at regions of
increased expression (Fig. 3g) (p <0.053, Monte Carlo simulation),
consistent with our previous analyses. This well-controlled analysis
provides a direct causal link between genome-wide changes in epige-
netic features and cfDNA fragmentation.

As it has been widely reported that the overall size of cfDNA is
smaller in patients with cancer compared to that of healthy
individuals31–38, we wondered whether genome-wide changes in DNA
methylation and gene expression during tumorigenesis39 may have an
effect on cfDNA fragmentation in cancer patients. To unambiguously
compare tumor-derived with WBC cfDNA, we examined changes in
cfDNA fragment sizes of mutated tumor-derived and wild-type WBC-
derived cfDNA using ultrasensitive NGS targeted sequencing from 98
patients with cancer8,40. We found an average shift of 3.9 bp in tumor-
derived cfDNAof thesepatients thatwas similar to theobserved cfDNA
size differences at TSS regions of high and low expression and CpG
sites in methylated versus unmethylated regions of healthy cfDNA
(Fig. 3h). As we observed that tumors typically have an increased
number of expressed genes and are hypomethylated compared to
WBCs (Supplementary Fig. 15), consistent with previous studies39,41,42,
these results support the notion that changes in expression and
methylation in cancer cells may in part be responsible for the overall
smaller cfDNA fragments observed in patients with cancer.

Altered cfDNA fragmentation at regions of differential methy-
lation to detect patients with cancer
To identify the impact of differences in CpG methylation on cfDNA
fragment ends between healthy individuals and patients with cancer,
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we evaluated regions previously identified by comparison of reduced
representation bisulfite sequencing (RRBS) data from laser capture
microdissected pancreatic ductal adenocarcinoma and normal pan-
creatic tissues, and where these regions were confirmed in cfDNA
using methyl-DNA immunoprecipitation (MeDIP)43. We then assessed
the fragment end representation at CG and CCG sites through low-
coverage whole-genome cfDNA analyses of patients with pancreatic
(n = 34), colorectal (n = 27), ovarian (n = 28), lung (n = 39), or breast
cancer (n = 54) as well as from individuals without cancer (n = 244)8. In
regions with increased CpG methylation in non-cancer tissues, we
observed a preferential decrease in cfDNA fragments ending with N|
CCG in individuals without cancer compared to the abundance of
these fragments in patients with pancreatic and other cancers (Fig. 4a).
In contrast, in regionswith increasedmethylation inpancreatic cancer,
we sawan increase in cfDNA fragments endingwith CG in patients with
cancer compared to levels in individuals without cancer (Fig. 4a). In all
cases the strongest signal was observed in the patients with pancreatic
cancer, suggesting that the use of tumor-specific sites of methylation
resulted in improved performance in this tumor type. Incorporation of

the distribution of fragment endpositions at theseCG andCCG sites in
a gradient boosted tree machine learning model successfully dis-
tinguished individuals with pancreatic cancer compared to those
without (cross-validated AUC=0.87). Combining this approach with
genome-wide fragmentation analyses (DELFI)8 that incorporate frag-
ment coverage and size improved the sensitivity of the combined
method (AUC=0.93, 95% CI = 0.88–0.97; Fig. 4b). These observations
suggested that DNA methylation information may enhance detection
of individuals with cancer using genome-wide cfDNA fragmentation.

Discussion
In this study, we have shown that specific DNA sequences at regions of
CpG methylation have a profound impact on cfDNA fragmentation
genome-wide. Preferred breakpoints of cfDNA fragments were asso-
ciatedwith specific sequencemotifs, both before andwithin the cfDNA
fragment, including A/T|CC and A/T|CG. Recurrent cfDNA sequences
with CG fragment ends were enriched at sites of methylation,
increasing at N|CG and decreasing at competing N|CCG sites in a
manner that was dependent on the level of methylation. Structural
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Fig. 3 | Effect of CpGmethylation and gene expression on coverage and size of
cfDNA fragments. a Sequence coverage in regions of CpG-islands, ordered by
average methylation of the CpG-island. b Sequence coverage in regions of tran-
scription start sites, ordered by the average expression of genes in myeloid cell
lines. c Average cfDNA fragment sizes in regions of CpG-islands, ordered by
average methylation of the CpG-island. d Average cfDNA fragment sizes in regions
of transcription start sites, ordered by the average expression of genes in myeloid
cell lines. e A correlationmatrix (right) of significant gene-set enrichment analyses
of gene-expression, DNA-methylation at the CpG-islands, cfDNA fragment cover-
age over the transcription start sites, and cfDNA coverage over the CpG-islands, all
associated with the same genes. f (top) Average values of regression coefficients
with 95% CI from a multivariate model evaluating the contribution of nucleosome
positioning as portrayed by the windowed protection score (WPS, WPS2, and
WPS3), gene expression scaled to have unit standard deviation (RNA), DNA
methylation (Meth = 1 if beta ≥0.5 and 0 otherwise), and their interaction on cfDNA
coverage. All coefficients have error-bars, although the confidence intervals may
be too small to be visible. f (bottom) Average values of regression coefficients with
95% CI from a multivariate model evaluating the contribution of nucleosome

positioning as portrayed by the windowed protection score (WPS, WPS2, and
WPS3), gene expression scaled to have unit standard deviation (RNA), DNA
methylation (Meth = 1 if beta ≥0.5 and 0 otherwise), and their interaction on cfDNA
fragment size. All coefficients have error-bars, although the confidence intervals
maybe too small to be visible.gData fromhuman isogenic xenografts (IDH1 R132H
mutant compared to IDH1 wild-type human glioblastoma cell lines) showing
increased coverage of human cfDNA in areas of increased methylation and
decreased coverage in areas of increased gene expressionover the top n regions of
differential methylation or gene expression. h cfDNA fragment size distributions
(top) and cumulative representations (bottom) for fragments with a mutation
(tumor-derived) compared to wild-type fragments (mainly white blood cells),
fragments from regions of high expression transcription start sites compared to
fragments from regions of low expression transcription start sites, and fragments
from regions of methylated CpG-islands compared to fragments from regions of
unmethylated CpG-islands. The cfDNA fragment profiles were obtained from tar-
geted sequencing analyses of patients with colorectal, breast, lung, or ovarian
cancer as well as individuals without cancer40. TSS transcription start site, IDH
isocitrate dehydrogenase, TPM transcripts per million.
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analyses of DNA bound to nucleosomes showed that CG sequences
were typically located close to the histone H1 linker. These observa-
tions, together with previous molecular dynamic simulations44, sug-
gest that methylation of CG sequences may provide a more stable
interaction between the methylated DNA and the H1 linker, thereby
protecting nucleosome-bound cfDNA fragments from degradation.
Our observations are in part consistent with recent studies that have
shown methylation associated differences in cfDNA fragmentation
around CG sites18. However, due to the high prevalence of fragments
starting with CC, we found that our newly identified methylation-
associated changes atN|CCG-motifswere stronger thanchanges at CG-
motifs alone.

Methylated CpGs affected not only fragment end positions, but
also resulted in a higher amounts of circulating cfDNA at these regions
compared to unmethylated CpG sites. cfDNA fragmentation was
inversely affected at TSS, affecting individual genes as well as gene
pathways. cfDNA fragment sizes were altered by bothmethylation and
expression changes, and could be observed nearby CG and TSS loca-
tions, as well as at distances hundreds of thousands of bases away. Our
observations of cfDNA fragmentation at regions of CpG methylation
and decreased gene expression were independently validated in
mousemodels implantedwith human tumors with or without isogenic
mutant chromatin modifier IDH1, providing a direct link between
epigenetic changes and cfDNA coverage.

Although our studies focused onmononucleosomal cfDNA, other
studies have shown an enrichment of methylation marks in

multinucleosomal cfDNA fragments in cfDNA of pregnant women45,46.
Additionally, our analysis of gene expression used myeloid cells as a
reference because these are thought to give rise to the majority of
cfDNA in the circulation, but analyses of other blood cell types and
cancers, as well as analyses of cfDNA fragment level-data of fragmen-
tation and methylation, could further improve the connection
between gene expression and cfDNA fragmentation.

The effect of CpG methylation and gene expression on cfDNA
size, coupled with an overall increase in gene expression and decrease
in methylation in human cancers observed in this study, suggest a
mechanism for the global reduction of cfDNA fragment lengths
observed in cancer patients. Others have suggested that changes in
intracellular and plasma nucleases affect cfDNA fragmentation and
may lead to specific end-motifs in cancer patients20,47,48. However, our
observations appear to be independent of these proposed mechan-
isms aswe showed that cfDNA fromhealthy individuals, largely derived
from the samewhite blood cellswithpresumably the sameexposure to
nucleases, display cfDNA fragment length differences that were asso-
ciated with sites of CpG methylation and gene expression
genome-wide.

The incorporation of cfDNA fragment end features at CpG sites
into a cross-validatedmachine-learning model suggested an approach
that could be used to detect cancer independently of other cfDNA
characteristics. This approach appeared complementary to the DELFI
cfDNA fragmentation analyses and together resulted in a method that
may improve performance. Improved analyses of genome-wide
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Fig. 4 | Comparison of cfDNA fragment end motifs in regions of differential
methylation in individuals with and without pancreatic cancer. a Aggregated
ratios of cfDNA fragments starting or ending at specific motifs containing CpG’s
which showed differential methylation between cfDNA of healthy individuals and
pancreatic cancer tissues. The largest increase in signal was found in pancreatic
cancer patients (n = 34) (p values across different fragment end contexts for
patients with pancreatic ranged from 3.3 × 10−13 for pancreatic cancer (C|CCG) to
0.85 for breast cancer (T|CCG)), while cfDNA from patients with other cancers
(colorectal n = 27, ovarian n = 28, lung n = 39, and breast cancer n = 54) showed
intermediate signals compared to individuals without cancer (n = 244; p values

across different fragment end contexts ranged from1.4 × 10−8 forpancreatic cancer
(C|CG) to0.76 for lung cancer (T|CG)). P-values were calculated using a two-sample
t-test, without correction for multiple testing. The middle hinge in the boxplots
corresponds to the median, while the lower and upper hinges correspond to the
first and third quartiles. The upper whisker extends from the hinge to the largest
value no further than 1.5 * interquartile range from thehinge.bThepredictive value
of this signal for detecting pancreatic cancer is shown as receiver operating
characteristic curve in comparison with the DELFI, while combining the DELFI
approach with the methylation-based signal in an ensemble-model showed the
best prediction. AUC area under the curve.
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methylation and expression differences in isolated tumor cell popu-
lations may provide avenues for better understanding cfDNA frag-
mentation and new methods for assessing these in the future.
Concurrent sequence andmethylation analyses using the same cfDNA
molecules may improve these studies, although the current approach
benefits by avoiding biases that may be introduced through harsh
conditions of bisulfite sequencing or preferential selection ofmultiple
adjacent methylated sites using precipitation methods11. Extension of
these analyses to larger cohorts, including with screening populations,
and other cancer types will be necessary to validate these initial
observations for potential clinical applications. Integration of methy-
lation and expression changes with other genome-wide epigenetic
marks49 in well-controlled experimental systems may provide com-
plementary insights into the origins and mechanisms of cfDNA
fragmentation.

Methods
Study populations
The data analyzed in this study were obtained from previous reports
where patients provided written informed consent and their inclusion
in the respective studies was performed according to the Declaration
of Helsinki. These samples were originally obtained from two screen-
ing clinical trial cohorts for colorectal cancer in Denmark (Endoscopy
III) and the Netherlands (COCOS, Netherlands Trial Register ID
NTR182946) or as previously described8,50. The protocol for the
Endoscopy III Project was approved by the Regional Ethics Committee
and the Danish Data Protection Agency, and for the COCOS trial,
ethical approval was obtained from the Dutch Health Council. For
analyzing motif frequencies, recurrent ends, and the relationship with
gene expression and methylation, we used low-coverage whole-gen-
ome sequencing (WGS) of cfDNA (1-2x) from 787 individuals without
cancer (female n = 442; male n = 345) as well as 182 individuals with
cancer (female n = 130; male n = 52)8,50. cfDNA methylation from 97
individuals without cancer was previously analyzed using Illumina’s
Infinium methylationEPIC array11 and made available through NCBI’s
Gene Expression Omnibus (GEO) database (dataset identifier
GSE122126). The cells that contribute to cfDNA in individuals without
cancer, was used and validated previously9,11, showing most cfDNA
originates from myeloid-derived cells. Average gene expression sum-
marized as transcripts per million bases (TPM) was obtained from 6
myeloid cell lines, as previously published51.

Processing of cfDNA samples
Whole-genome libraries of cancer patients and cancer-free individuals
were sequenced using 100 bp paired-end runs (200 cycles) on the
Illumina HiSeq2500 platform at 1–2x coverage per genome. Prior to
alignment, adapter sequences were filtered from reads using the fastp
software52. Sequence reads were aligned against the hg19 human
reference genome using Bowtie253 and duplicate reads were removed
using Sambamba54. Only reads with a mapq score of at least 30 or
greaterwere retained. Post-alignment, each alignedpairwas converted
to a genomic interval representing the sequencedDNA fragment using
bedtools55.

Frequency of motifs around the ends of cfDNA fragments
The expected frequency of 3 bp motifs in the human genome was
calculated by counting the occurrence of each 3 bpmotif in the human
genome (hg19). For computing the empirical frequency of 3 bpmotifs
at the ends of sheared (sonicated) fragments, we used published
sequencing data from 9 lymphoblastoid cell lines56. The genomic DNA
from these lymphoblastoid cell lines was fragmented through soni-
cation with a Covaris M220 Focused Ultrasonicator. For this analysis,
the data were analyzed as described above for processing cfDNA
samples. For the 10 lymphoblastoid cell lines and the 543 low coverage
WGS of individuals without cancer, we counted the number of 3 bp

motifs at the start of the fragment and the reverse complement of the
3 bp motif at the end of the fragment. The 3 bp motif contains 1 base
outside the fragment, followed by the first 2 bases of the fragment.
Using these absolute numbers, we calculated the fraction of each of
the 64 3 bp motifs.

To quantify the preference for cfDNA fragments to end at a spe-
cific genomic location and adjust for local copy number polymorph-
isms in healthy individuals, we calculated the ratio of cfDNA fragments
ending at this location (recurrent fragment ends) divided by the
number of cfDNA fragments having a 1 bp or more overlap within
±50 bpof thisposition (neighboring fragments). This ratio ofpreferred
fragment ends to neighboring fragments was computed by aggregat-
ing cfDNA fragments across all 543 individuals without cancer. We
repeated this calculation for every evaluable position in the hg19
reference genome. “Preferred ends” were defined as genomic posi-
tions where at least 5% of cfDNA fragments started at that position and
where 200 or more high-quality cfDNA fragments (mapq > 30) over-
lapped the area around that position.

X-ray crystal structure of nucleosomes
To identify structures of the nucleosome bound to DNA we searched
PDB (https://www.rcsb.org/) for the term “Nucleosome” and filtered
the results for those structures derived from x-ray diffraction or cryo-
EM leading to 427 entries. We downloaded the DNA sequences from
these structures (648) and filtered for sequences that were at least
167 bp in length. This identified 80 unique sequences from 51 PDB
entries. These entries were visually inspected and those with less than
167 bases resolved or where the interaction with the H1 linker was
disrupted by another DNA binding protein were removed. This left
17 structures (Supplementary Data 3). Motifs were considered well
positioned if they were within 5 Å of the H1 linker or if the bases 167 bp
away on the same strand were within 5 Å of the H1 linker.

Connecting cfDNA fragment patterns to CpG methylation
In order to discover whether fragmentation patterns in cfDNA from
individuals without cancer were influenced by methylation, we ana-
lyzed raw data from Illumina’s Infinium methylationEPIC array from 8
different cfDNA experiments, with 4 biologically different cohorts
(youngmen, oldmen, youngwomen, oldwomen)11. Standard pipelines
were used to process the Infinium arrays as implemented in the minfi
R-package (version 1.48.0)57. The CpG probes were annotated for their
genomic location and associated with gene names using the Illumi-
naHumanMethylationEPICmanifest R-package (version 0.3.0). A
numeric score (beta-value) ranging between 0 (unmethylated) and 1
(methylated) was obtained at each CpG and averaged across all sam-
ples. CpG sites were labeled as unmethylated if the mean beta-value
was <0.3 and methylated if the mean beta-value was > 0.7. For 543
cfDNA plasma samples of individuals without cancer (Supplementary
Data 1), we recorded the position of Infinium CpG sites within the
cfDNA fragments using a 1-base index. CpGs were grouped in bins of
0.1 according to their mean beta-value. We counted the number of
fragments starting or ending at the CpG sites or at neighboring posi-
tions for CCG motifs and scaled this frequency by the number of
fragments having any overlap within a 50 bp window of the start- or
end-position. We further categorized fragments according to their
3 bp and 4 bp end motif and whether the cfDNA fragment was located
in a CpG-island, shore, shelf, or open sea. We repeated this analysis
using processed methylation data from whole-genome bisulfite
sequencing of cfDNA (23 individuals, men and women), resulting in
23.6 million somatic CpG sites, each covered by at least 750 reads
(after combining the 23 samples)12. A beta value was calculated for
these samples by calculating the ratio of methylated reads over total
coverage at each specific CpG site. To assess whether these analyses
were sensitive to the initial choice of a beta value cutoff for deter-
mining methylation status at CpG sites, we repeated these analyses
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with cutpoints of 0.1 and 0.9, 0.2 and 0.8, 0.3 and 0.7, 0.4 and 0.6, and
0.5 and 0.5 (Supplementary Fig. 2).

Differences in chromosome X cfDNA fragmentation between
women and men
To validate the discovered differences in cfDNA fragmentation around
methylated and unmethylated CpGs, we analyzed the CpGs located on
the X chromosome of men and women. For each individual, we cal-
culated thenumber of fragments starting at aCpGor aCCG,dividedby
thenumber of fragments having anyoverlapwith a 50bpwindow from
this motif. For each individual, these locations were grouped by pre-
ceding base and by the CpG functional location (CpG-islands, shores,
shelves and open sea) with the R-package ‘annotatr’ (version 1.28.0)58.
The results were summarized by individual and further strati-
fied by sex.

IDH1 isogenic xenograft model
All animal work described in this study was approved by the Johns
Hopkins Animal Care and Use Committee. Three NU/J 6-8 week old
female mice were injected in the flank with a human IDH1 wild-type
glioblastoma cell line (U-87, HTB-14), while three other NU/J 6-8 week
old female mice were injected in the flank with human IDH1 R132H
mutant glioblastoma cell line (U-87, HTB-14, transfected with Crispr-
Cas9). All mice were housed in ventilated cages with sterile wood
shavings for bedding.Up tofivemicewerehousedper cagewith access
to food and water ad libitum. Room temperature wasmaintained at 22
to 24 °C with a 12-h light/dark cycle. Tumors were grown for 20 –

30 days. When the tumors were no larger than 20mm in any dimen-
sion, the mice were anesthetized with a sublethal dose of ketamine-
xylazine, the bloodwas obtained and themice were sacrificed through
cervical dislocation. The blood was further diluted in EDTA tubes and
after spinning, plasma was extracted. Libraries were created from
cfDNA as previously described59. The sequencing data was processed
with Xengsort (version 1.5.0), to separate human (hg19) and murine
(mm38) cfDNA reads. Further processing was performed as described
above (see Processing of cfDNA samples). After collecting the blood,
tumor tissueswere removed, and sampleswereprocessed forDNAand
RNA extraction, and used for methylation (Illumina Infinium EPIC
Methylation Array) and expression (RNA-seq) analyses, respectively.
Methylation data were processed using standard pipelines for the
Infinium arrays: R-package minfi (version 1.48.0)57. Differentially
methylated regions were identified using R-package DMRcate (version
2.16.1)60. RNA-seq data was aligned to hg19 using the star aligner
(version 2.7.4)61. FPKM gene expression values were constructed for
20,344 Ensembl gene identifiers. Differentially expressed genes were
identified using DESeq2 (version 1.42.0) according to standard
pipeline62.

cfDNA sequence coverage, fragment sizes, and nucleosomes at
CpG-islands and transcription start sites
To summarize cfDNA fragment lengths at one CpG island, we counted
the average length ofmononucleosomal (≥100bp and ≤220bp) cfDNA
fragments around theCpG island across all 543 non-cancer samples. By
convention, we referred to this as position 0. We performed this
summarization step in 10 bp increments from the CpG island ranging
from −500,000bp to +500,000bp, and repeated this procedure for
eachCpG island.Mean fragment lengths at TSSs were summarized in a
similar manner with position 0 denoting the TSS. For cfDNA coverage,
we used a similar approach, but used cumulative coverage across 543
non-cancer samples. For calculating nucleosome positions, we calcu-
lated for each position in the genome the Windowed Protection Score
(WPS), as described previously9, using cfDNA fragments pooled across
all 543 non-cancer samples. Using the previously described methyla-
tion data11 and gene-expression data from myeloid cell lines51, we
ordered the regions by decreasing levels ofmethylation and increasing

amount of expression to visualize patterns that were associated with
CpG-island methylation and gene expression.

Gene set enrichment analyses
Gene set enrichment analysis (GSEA)63 was performed with the
Hallmark64 and KEGG65 gene sets acquired from the Molecular Sig-
natures Database66 following previously described GSEA
methodology63. Briefly, a heuristic parameter enrichment score was
calculated for a subset of genes given a referencegene set basedon the
location of the gene set associated genes within the ranked list. Then
the ranks were permuted randomly and the enrichment score was
calculated from the permuted ranks to generate a null distribution that
was used to determine statistical significance of the empirical
enrichment score.

Transcripts were ranked by RNA expression, methylation, and
total coverage. For RNA expression, transcripts were ranked by the
mean TPM from 6 myeloid cell lines51. For methylation, the mean beta
value across 97 sampleswas calculated for eachCpG in a transcript and
then averaged to obtain a transcript-level summary of methylation.
Transcripts were ranked by this measure of methylation. For cfDNA
coverage, we used metrics identical to those used to order genes for
visualization of total cfDNA coverage at CpG islands and TSSs,
including total coverage in the interval ±250 bp from theCpGand total
coverage in the interval ±250 bp from theTSS. In summary, four sets of
ranked transcriptswere investigatedbyGSEA:meanRNAexpression in
myeloid cell lines, mean beta value for CpGs in blood, total TSS cov-
erage in cfDNA, and total coverage of the CpG sites in cfDNA. 10,000
permutations were run for each set of ranks, leading to a minimum
unadjusted p-value of 1e-4. All gene sets that were moderately sig-
nificant across all of the analyzed sets of ranks in any direction
(unadjusted p <0.1) were selected for inclusion in the heatmap show-
ing enrichment scores by gene set.

Multivariate model
Generalized linear models were used to evaluate the relationship
between the aggregatedmean cfDNA fragment size and total coverage
at the transcript level with RNA expression, WPS, andmethylation. For
methylation, we calculated the mean beta-value at each CpG-island
across 97 blood samples processed on the Infinium array (see Study
populations). CpG-islands were mapped to transcripts by their proxi-
mity toTSSs using theR-package annotatr (version 1.28.0). A transcript
was considered methylated if the mean beta value was 0.5 or higher
and unmethylated otherwise. The mean RNA expression (mean TPM)
across 6 myeloid cell lines were transformed as log10(mean TPM+ 1)
and then centered and scaled by the overall mean and standard
deviation across all transcripts, respectively. WPS was summarized for
each transcript in the interval +1 to +10 bases from the TSS and cen-
tered and scaled. Total cfDNA coverage across 543 non-cancers was
calculated at each base in the interval −10bp to −1bp from the TSS and
averaged, while mean fragment sizes were calculated in the interval
from −1480bp to −1471bp from the TSS. The intervals for summarizing
cfDNA coverage, fragment size, and WPS were evaluated for all 10 bp
genomic intervals within 2500bp from the TSS. The interval that
yielded measurements with maximum absolute correlation to RNA
expression was selected for the regression analyses. With these
quantitative summaries as described above, the expected normalized
coverage, DV, for transcript i is given by

EðDVijWPSi,RNAi,MethiÞ=β0 +β1WPSi +β2WPS2i +β3WPS3i +β4RNAi

+β5Methi +β6RNAi ×Methi:

The expected fragment length was modeled in a similar fashion.
Coefficients from these models were estimated using a generalized
linear model with identity link function in R (version 4.3.2). Using
analysis of variance (ANOVA), we assessed whether RNA expression
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helps explain variation in coverage after adjusting for methylation and
WPS by testing both the main effect for RNA expression and its
interaction with methylation. We performed a similar ANOVA to eval-
uate whether methylation explained variation in coverage after
adjusting for the effects of RNA and WPS on coverage. Forest plots
were generated for each model to visualize estimated model coeffi-
cients with 95% confidence intervals using sjPlot (version 2.8.15).

Monte Carlo simulation on human cfDNA coverage in
xenograft models
Coverage was calculated for the top 500, 1000, 2000, 3000, 4000,
and 5000 most differentially methylated CpG-islands or most differ-
entially expressed genes for each of the six xenografts (3 IDH1 R132H
mutant xenografts and 3 IDH1 wild-type xenografts). These coverages
were normalized for the total size of these regions. Comparing IDH1
mutant to wild-type, we determined whether the direction of the dif-
ference in normalized coverage agreed with our a priori expectation
that we would observe higher coverage in methylated regions and
lower coverage in expressed regions for each of the four possible
comparisons (high methylation regions in IDH mutant, high methyla-
tion in IDH wild-type, high expression in IDH mutant, high expression
in IDH wild-type). To evaluate how likely we would observe the
empirical agreement under the null hypothesis that there is no dif-
ference in cfDNA coverage inmice between IDH1mutant andwild-type
tumors, we permuted the mutant and wild-type labels and evaluated
the agreement as previously described. This was repeated for 10,000
iterations. We repeated this process for each of the 19 possible per-
mutations of the sample labels, deriving a distribution of agreement
under the null. The p-value was computed as the proportion of per-
mutations where the agreement was as high or higher than the
empirical agreement obtained from the non-permuted class labels.
These analyses were repeated for each of the six region or gene list
sizes indicated above for a total of 24 comparisons.

Differentially methylated CpG-based tumor-specific cfDNA
methylation patterns
Using publicly available data, we evaluated differentially methylated
CpGs from individuals with pancreatic cancer (n = 60) and without
cancer (n = 210) from the previously publishedCristiano et al. study8. A
large cohort of differentially methylated regions was previously pub-
lished for pancreatic cancers43. Using these differentially methylated
CpGs we defined subgroups based on the direction of differential
methylation (non-cancer methylated vs. pancreatic cancer unmethy-
lated; non-cancer unmethylated vs. pancreatic cancermethylated) and
based on the 3 bp and 4 bp motifs. In total, we extracted 16 different
features representing frequencies of fragments ending with A|CG, C|
CG, G|CG, T|CG, A|CCG, C|CCG, G|CCG, or T|CCG, at positions that
were either methylated in healthy individuals and unmethylated in
patients with pancreatic cancer or unmethylated in healthy individuals
and methylated in patients with pancreatic cancer. For each sample,
we calculated the ratio of aggregated cfDNA fragments starting or
ending at these motifs, divided by the aggregated number of frag-
ments overlapping a 101 bp window around the motif.

In addition, we computed cfDNA fragmentation features for each
of these samples as previously described8. Briefly, we calculated GC-
corrected fragment coverage for each of 473 non-contiguous 5mb
bins genome-wide, and 39 chromosomal arm-level z-scores for aneu-
ploidy as compared to a healthy reference50. We cross-validated (10-
fold) a gradient-boosted tree incorporating the 16 methylation fea-
tures, generating a score for each sample in the held-out folds. This
gradient boosted tree was trained using the R packages caret and gbm
with default parameters. Using the same folds, we cross-validated a
penalized logistic regression with L1 norm penalty (LASSO with
alpha=1) using the coverage and zscore features (DELFI model). This
model was evaluated using the R packages caret and glmnet, and

during training we performed a PCA for dimensionality reduction on
the coverage features and retained only the PCs needed to explain 90%
of variance. For the DELFI model, in each training fold we included the
remaining cancers (not pancreatic) (n = 128) from the Cristiano et al.
data8 as additional training data, but performance of the DELFI score
was evaluated in the held-out folds only on non-cancer and pancreatic
cancer individuals.

In order to assess the combined performance of both DELFI and
methylationmotif features, we implemented a nested cross-validation
(CV) such that the inner CV loop trains the DELFI and methylation
classifiers as described above, and the outer CV loop trains an pena-
lized logistic regression (LASSO with alpha = 1) using the DELFI and
methylation scores as features. The outer cross-validation loop for the
ensemble was trained with 10-fold cross validation, while the inner
cross-validation loop used to train the component methylation and
DELFI models used 5-fold cross-validation. We assessed performance
of the methylation, DELFI andmethylation-DELFI ensemble using ROC
curves with 95% confidence intervals for the area under the ROC curve
computed using DeLong’s method.

Statistical methods
All t-tests were Welch two sample t-tests unless otherwise indicated.
Statistical significance of multivariable regression models were asses-
sed by ANOVA. Confidence intervals for fold-changes were estimated
by bootstrap. All analyses were performed using R, version 4.3.2.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The sequence data and clinical variables from the samples analyzed in
this study are available in the database of Genotypes and Phenotypes
(dbGaP) under study ID 34536 and in the European Genome-Phenome
Archive (EGA), under accession code EGAS00001005340.Methylation
data on cfDNA samples fromMoss et al. are available in the NCBI Gene
Expression Omnibus (GEO) database repository with the dataset
identifierGSE12212611.Methylation data on cfDNA samples fromLoyfer
et al. are available in the NCBI Gene Expression Omnibus (GEO) data-
base repository under dataset identifier GSE18645812. FPKM gene
expression values measured for 20,344 Ensembl gene identifiers in 44
human cell lines and 32 primary tissues by the Human Protein Atlas
were downloaded fromhttps://v13.proteinatlas.org/download/rna.csv.
zip51. The data from the TCGA and the Genotype-Tissue Expression
Project (GTEx) are available from their respective website. The data
from GTEx were also submitted to dbGaP under study accession
phs000424.v9.p2.

Code availability
Scripts for reproducing tables and figures in the manuscript are
available in the following GitHub repository (https://github.com/
cancer-genomics/cfepigenetics) under the GNU GENERAL PUBLIC
LICENSE Version 3.
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