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ABSTRACT: Malaria is one of the most widespread diseases worldwide. Besides a
growing number of people potentially threatened by malaria, the consistent
emergence of resistance against established antimalarial pharmaceuticals leads to
an urge toward new antimalarial drugs. Hybridization of two chemically diverse
compounds into a new bioactive product is a successful concept to improve the
properties of a hybrid drug relative to the parent compounds and also to overcome
multidrug resistance. 1,2,3-Triazoles are a significant pharmacophore system
among nitrogen-containing heterocycles with various applications, such as antiviral,
antimalarial, antibacterial, and anticancer agents. Several marketed drugs possess
these versatile moieties, which are used in a wide range of medical indications.
While the synthesis of hybrid compounds containing a 1,2,3-triazole unit was
described using Cu- and Ru-catalyzed azide−alkyne cycloaddition, an alternative
metal-free pathway has never been reported for the synthesis of antimalarial
hybrids. However, a metal-free pathway is a green method that allows toxic and expensive metals to be replaced with an
organocatalyst. Herein, we present the synthesis of new artemisinin−triazole antimalarial hybrids via a facile Ramachary-Bressy-
Wang organocatalyzed azide-carbonyl [3 + 2] cycloaddition (organo-click) reaction. The prepared new hybrid compounds are
highly potent in vitro against chloroquine (CQ)-resistant and multi-drug-resistant Plasmodium falciparum strains (IC50 (Dd2) down
to 2.1 nM; IC50 (K1) down to 1.8 nM) compared to CQ (IC50 (Dd2) = 165.3 nM; IC50 (K1) = 302.8 nM). Moreover, the most
potent hybrid drug was more efficacious in suppressing parasitemia and extending animal survival in Plasmodium berghei-infected
mice (up to 100% animal survival and up to 40 days of survival time) than the reference drug artemisinin, illustrating the potential of
the hybridization concept as an alternative and powerful drug-discovery approach.
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■ INTRODUCTION
Malaria is still a major threat to the health of a big part of the
world’s population, afflicting 1 billion people in 84 countries,
with nearly 247 million cases leading to 619,000 deaths in
2021.1 The current frontline treatments utilized against malaria
are based on artemisinin, a naturally occurring endoperoxide-
bearing sesquiterpene lactone, and its semisynthetic derivatives
like dihydroartemisinin (DHA). A growing number of people
threatened by malaria due to the spread of parasite-carrying
mosquitos facilitated by global warming can be observed,
aggravating the need for new antimalarial drugs.2 To slow the
spread of drug resistance against known drug compounds, the
WHO discourages the use of these drugs for monotherapy, and
nowadays, mostly artemisinin-based combination therapy
(ACT), combining an artemisinin derivative with a second
drug, is used in clinical practice (Figure 1A).1,3−6 A vastly
proven concept to further exploit the advantages of using
different drugs in parallel is known as hybridization.7−9 A

hybrid drug merges two biologically active pharmacophores by
covalent bonding via, e.g., copper(I)-catalyzed azide−alkyne
cycloaddition (CuAAC) click reactions (Figure 1B)10,11 with
the potential to form highly active species able to overcome
drug resistance. Although recently we reported access to new
artemisinin-based antiviral compounds using an organo-click
reaction,12 to the best of our knowledge, an organo-click
reaction has never been used before to synthesize antimalarial
drug compounds.
Herein, we report the straightforward synthesis of 13

artemisinin−triazole antimalarials 1−13 via an organo-click
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reaction utilizing a Ramachary-Bressy-Wang organocatalyzed
azide-carbonyl [3 + 2] cycloaddition from two readily available
precursors (Figure 2A and Scheme 1). The library of
compounds was complemented by our five recently reported
antiviral artemisinin−triazole hybrids with different benzimi-
dazoles as substituents on the triazole subunit 14−18 (Figure
2B).12 In this work, we investigated the activity of compounds
1−18 against malaria in vitro and partly in vivo for the first
time.

■ RESULTS AND DISCUSSION

Synthesis of New Artemisinin−Triazole Hybrids via
Organo-Click Reaction
Starting from DHA, artemisinin-based aryl acetaldehyde 19
was synthesized via a Mitsunobu etherification reaction,
utilizing PPh3 and diisopropyl azodicarboxylate (DIAD)

13,14

as reagents, and was used as a substrate in the organo-click
reaction. The second set of precursors includes readily
available aromatic azides differently functionalized at the aryl
ring, prepared via known procedures from commercially
available aromatic amines, using NaNO2 and NaN3, or from
aryl chlorides using NaN3 (see the Supporting Information).
Subsequently, the azide and aldehyde precursors were
combined via a Ramachary-Bressy-Wang organocatalyzed
azide-carbonyl [3 + 2] cycloaddition (organo-click) reaction
to form a 1,2,3-triazole ring, which is a major pharmacophore
system among nitrogen-containing heterocycles.15−27 1,2,3-
Triazoles have been found to have a broad spectrum of
applications, such as antiviral, antituberculosis, antibacterial,
anticancer, antimalarial agents, and more.28 In this work, we
planned to vary the substituents on the 1,2,3-triazole
pharmacophore to achieve the chemical diversity of
artemisinin−triazole antimalarial hybrid compounds for
structure−activity relationship studies (see compounds 1−18,
Figure 2). The reaction catalyzed by the base organocatalyst
1,8-diazabicyclo(5.4.0)undec-7-ene (DBU) (10 mol %) has
been carried out in dimethyl sulfoxide (DMSO) at 50 °C for
up to 24 h (Scheme 1). The reaction leads to the
corresponding products in diverse yields ranging from 24 to
83%, significantly depending on the used aryl-azide substrate.
An important feature is that the organo-click synthetic

approach allows easy formation of triazole derivatives with

different moieties, e.g., oligoethylene glycol and morpholine
(see, e.g., compounds 11, 12, 16, 17), and even with an alkyne
tag (see 18), suitable for, e.g., bioorthogonal click chemistry
and/or proteomics experiments in live cells. In line with this,
this synthetic approach was highly valuable for preparing
proteolysis targeting chimeras (PROTAC) motifs.12

Aromatic azides with electron-withdrawing groups (EWGs)
in para position lead, in accordance with the literature,17 to
elevated yields of up to 83% (see compounds 3 (83%), 5
(77%), 9 (78%), and 10 (77%)). Functionalization in the para
position improves yields compared to ortho analogues (3
compared to 4 or 5 compared to 6). Since this effect was

Figure 1. (A) Combination therapeutic approach for malaria treatment. (B) Schematic representation of antimalarial hybrid drugs accessible via a
Cu(I)-catalyzed click reaction. C1 = compound 1; C2 = compound 2. (C) New efficient artemisinin−triazole antimalarial hybrids for in vitro and in
vivo studies via organo-click reaction (this work).

Table 1. IC50 Values for Hybrids 1−18, Chloroquine (CQ),
and Artemisinin (ART) Tested against P. falciparum
Parasite Strains 3D7, Dd2, and K1

3D7a Dd2a K1a

ART 26.8 ± 2.4b 11.3 ± 1.8b 5.4 ± 0.5b

CQ 12.7 ± 2.5b 165.3 ± 16b 302.8 ± 15.1b

1 17.4 ± 0.4 17.1 ± 0.8 14.2 ± 1.5
2 2.5 ± 0.2 2.4 ± 0.1 1.8 ± 0.6
3 3.4 ± 0.3 3.5 ± 0.2 4.2 ± 0.2
4 3.0 ± 0.1 2.1 ± 0.2 2.6 ± 0.3
5 11.1 ± 1.0 10.7 ± 1.1 10.7 ± 1.2
6 4.3 ± 0.2 6.0 ± 0.5 3.8 ± 0.4
7 2.3 ± 0.1 2.4 ± 0.7 3.0 ± 0.2
8 2.7 ± 0.2 2.9 ± 0.3 3.0 ± 0.4
9 4.1 ± 0.5 3.4 ± 0.3 3.0 ± 0.3
10 3.5 ± 0.4 3.8 ± 0.3 3.8 ± 0.3
11 3.0 ± 0.2 3.2 ± 0.2 3.5 ± 0.3
12 2.3 ± 0.2 2.3 ± 0.1 2.8 ± 0.3
13 4.3 ± 0.2 4.3 ± 0.1 4.3 ± 0.2
14 11.2 ± 0.2 8.5 ± 1 7.3 ± 0.1
15 7.3 ± 0.1 6.5 ± 0.5 5.1 ± 0.2
16 3.0 ± 0.2 3.0 ± 0.3 1.8 ± 0.1
17 14.4 ± 0.8 15.1 ± 0.4 10.7 ± 0.7
18 20.1 ± 3.1 25.5 ± 2.0 12.6 ± 1.0

aIn vitro antiparasitic activity was determined in asexual blood stages
of P. falciparum after 72 h of incubation. IC50 values are the mean ±
SEM (in nM). bIC50 value has been previously reported.

10,33 3D7:
chloroquine-sensitive strain; Dd2: chloroquine-resistant strain; K1:
multi-drug-resistant strain.
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previously not observed in the literature for the organo-click
reaction with simple phenylacetaldehyde, steric hindrance
induced by the bulkiness of the artemisinin unit seems to play
a considerable role in the reduced yields of ortho derivatives.
Implementing an electron-donating group (EDG) in the para
position of the aromatic azide decreases the yield (see, e.g.,
product 12 (24% yield)), which is in accordance with the
literature.17 The C-10β configuration in all hybrid compounds
with C-10β-DHA units was determined by 1H NMR and
verified vicariously for compound 10 by X-ray crystal structure
analysis (Figure 2A).29

In Vitro Antimalarial Activity of Hybrids 1−18

The compounds 1−18 were tested in vitro against Plasmodium
falciparum, and the IC50 values against parasite growth (SYBR
green assay)30 are given in Table 1. To gain a broader overview
of antimalarial activity, three strains with different resistance
profiles were tested: the chloroquine-sensitive 3D7 strain and
the two multi-drug-resistant strains Dd2 and K1.31,32 All new
13 artemisinin−triazole hybrids exhibit high antimalarial
activity with IC50 values down to 2.3 nM (for 7/12) against
3D7 as well as down to 2.1 nM (for 4) and 1.8 nM (for 2) for
the multi-drug-resistant Dd2 and K1 strains, mostly out-

Figure 2. (A) Overview of new artemisinin−triazole hybrids 1−13 and X-ray structure of compound 10. (B) Overview of five artemisinin−triazole
hybrids 14−18, previously studied against viruses.12
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performing the activity of established drugs artemisinin and
chloroquine. All five previously reported antiviral benzimida-
zole-containing artemisinin−triazole hybrids 14−1812 were
also active against P. falciparum. They reduced the parasite
proliferation against the three parasite strains in a low nM
range (down to 1.8 nM, Table 1).
Structure−activity relationship annotation for the series of

artemisinin−triazole hybrids 1−13, with different heteroaryl-
and aryl-substituents on the triazole subunit, revealed a
substituent effect regarding their antimalarial activity. While
all ortho- and para-substituted aryl groups on triazole (see
compounds 3−13) are generally well tolerated, the best in vitro
activity against CQ-resistant (Dd2) and multi-drug-resistant
(K1) strains was obtained, interestingly, with phenyl-
substituted triazole 2 (Table 1). Surprisingly, the 7-
chloroquinoline moiety (which is a subunit of the antimalarial
drug CQ) on the triazole ring reduced the antimalarial potency
compared to the phenyl moiety (see compounds 1, 2, and
Table 1).
As already mentioned above, benzimidazole-containing

hybrids 14−18 demonstrated potent in vitro antimalarial
activity and a selectivity index. Among the hybrid drugs, the
tetraethylene glycol-functionalized hybrid 16 exhibited the
highest activity against all three strains (IC50 (3D7) = 3.0 ± 0.2

nM; Dd2:3.0 ± 0.3 nM; K1:1.8 ± 0.1 nM), outperforming
established drugs up to 4-fold against mammalian cells
displayed.
In Vivo Antimalarial Efficacy of Selected Hybrid 16

While the in vitro activities of compound 2 (IC50 (K1) = 1.8 ±
0.6 nM) and compound 16 (IC50 (K1) = 1.8 ± 0.1 nM) were
similar, we selected 16 for subsequent in vivo studies because it
features improved drug-like properties such logD, log P, and
solubility (data not shown). In addition, the intrinsic
fluorescence of 16 is advantageous for a potential follow-up
investigation of its mode of action, e.g., via fluorescence
imaging in living P. falciparum-infected red blood cells.11,12

Compound 16 and artemisinin displayed lower cytotoxicity
for mammalian cells than the cytotoxic drug of the reference
gentian violet. The selectivity index (S.I.) of compound 16 was
higher than that of artemisinin (S.I. 55,555 for 16 vs S.I.
37,037 for artemisinin, see Table S1 in the Supporting
Information). This shows a potency enhancement of the
antiplasmodial activity for compound 16 in comparison to
artemisinin, which is accomplished without an increase in
mammalian toxicity (Table S1, Supporting Information).
Furthermore, in vivo experiments using Plasmodium berghei-
infected mice demonstrated that compound 16, when given
subcutaneously at a dose of 21.6 μmol/kg, resulted in complete

Scheme 1. Synthesis of the 13 Artemisinin−Triazole Hybrids 1−13; Reaction Conditions: (i) DBU (10 mol %), DMSO, 2−24
h, 50 °C (Reaction Times: Supporting Information)
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parasite clearance in the Peters’ standard 4-day suppressive
test. Its efficacy to cure was twice as high as with artemisinin at
the same dosage and route of administration (Figure 3 and
Table S2, Supporting Information). Next, we evaluated the
drug treatment given orally, and results showed that compound
16 could reduce parasitemia and prolong the median of animal
survival, while artemisinin reduced parasitemia but not enough
to increase the median of animal survival. The efficacy of
compound 16, which has surpassed artemisinin’s efficacy,
represents an improvement in terms of efficacy in comparison
to previously related artemisinin-based hybrid drugs.10,11,33

Moreover, it is anticipated that compound 16 may have an
appropriate drug metabolism and pharmacokinetic profile, and
further investigations of this are the subject of an ongoing
study.
To sum up, we demonstrated that the chemical implantation

of highly functionalized phenyl triazole groups, achieved by a
straightforward and metal-free synthetic approach, helps to
manipulate artemisinins’ pharmacological activity.
This resulted in the discovery of compounds of enhanced in

vitro antimalarial potency and in vivo efficacy compared to
ART. These observations align with the fact that changes in the
skeleton and implantation of chemical motifs surrounding the
trioxane warhead can modulate the pharmacological activity of
ARTs.34−36 More specifically, these structural changes in the
endoperoxide drugs can directly impact the speed of heme-

mediated peroxide activation and, subsequently, in the protein
alkylation profile.37−39

In line with previous findings,12 our synthetic program and
annotation of structure−activity relationships disclosed here
are beneficial for boosting the ARTs chemotherapy not only in
malaria but also in emerging applications, such as in
oncology,40 virology,41 among others.42

■ CONCLUSIONS
We presented the synthesis of a library of 13 novel
artemisinin−triazole hybrid compounds 1−13 via facile
organo-click reaction in good yields (up to 83%) from readily
available substrates. These novel compounds and five
previously reported benzimidazole-containing artemisinin−
triazole antiviral hybrids 14−18 were evaluated against P.
falciparum strains for the first time. Remarkably, all hybrid
compounds exhibited excellent antimalarial activity in vitro
against CQ-resistant and multi-drug-resistant P. falciparum
strains (IC50 (Dd2) down to 2.1 nM; IC50 (K1) down to 1.8
nM) compared to the reference drug CQ (IC50 (Dd2) 165.3
nM; IC50 (K1) 302.8 nM). The results demonstrated the high
potential of artemisinin−triazole hybrid drugs to overcome
drug resistance. Selected highly active hybrid 16 (IC50 (K1) =
1.8 ± 0.1 nM), whose selectivity index (S.I. 55,555) is higher
than that of parent artemisinin (S.I. 37,037), was additionally
proven to be efficacious in vivo in reducing parasitemia and

Figure 3. Efficacy of benzimidazole-containing artemisinin−triazole hybrid 16 and artemisinin (ART) in the experimental model of malaria. (A)
Display of the experimental design. (B) Parasitemia in P. berghei-infected mice (n = 5 per group) (values are the mean and the standard deviation).
(C) Animal survival in P. berghei-infected mice (n = 5 per group). ART was administered subcutaneously (S.C.). Drug dosages are shown in Table
S2 (Supporting Information). Indicated route of administration: subcutaneously (S.C.) or orally by gavage (P.Os.). DPI = days postinfection.
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prolonging animal survival to up to 100% with up to 40 days of
survival time. Further study is necessary to profile the activity
of artemisinin−triazole hybrids in multiple parasite stages of
the Plasmodium life cycle.
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Salvador 40296-710 Bahia, Brazil; orcid.org/0000-
0003-3323-4404; Email: diogo.magalhaes@fiocruz.br

Barbara Kappes − Institute of Medical Biotechnology,
Friedrich-Alexander-University Erlangen-Nürnberg, 91052
Erlangen, Germany; Email: barbara.kappes@fau.de

Svetlana B. Tsogoeva − Department of Chemistry and
Pharmacy, Organic Chemistry Chair I and Interdisciplinary
Center for Molecular Materials (ICMM), Friedrich-
Alexander-University Erlangen-Nürnberg, 91058 Erlangen,
Germany; orcid.org/0000-0003-4845-0951;
Email: svetlana.tsogoeva@fau.de

Authors

Lars Herrmann − Department of Chemistry and Pharmacy,
Organic Chemistry Chair I and Interdisciplinary Center for
Molecular Materials (ICMM), Friedrich-Alexander-
University Erlangen-Nürnberg, 91058 Erlangen, Germany

Maria Leidenberger − Institute of Medical Biotechnology,
Friedrich-Alexander-University Erlangen-Nürnberg, 91052
Erlangen, Germany

Helenita C. Quadros − Fiocruz, Instituto Gonçalo Moniz,
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