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Localized recovery of complex 
networks against failure
Yilun Shang

Resilience of complex networks to failure has been an important issue in network research for decades, 
and recent studies have begun to focus on the inverse recovery of network functionality through 
strategically healing missing nodes or edges. However, the effect of network recovery is far from 
fully understood, and a general theory is still missing. Here we propose and study a general model of 
localized recovery, where a group of neighboring nodes are restored in an invasive way from a seed 
node. We develop a theoretical framework to compare the effect of random recovery (RR) and localized 
recovery (LR) in complex networks including Erdős-Rényi networks, random regular networks, and 
scale-free networks. We find detailed phase diagrams for the subnetwork of occupied nodes and the 
“complement network” of failed nodes under RR and LR. By identifying the two competitive forces 
behind LR, we present an analytical and numerical approach to guide us in choosing the appropriate 
recovery strategy and provide estimation on its effect by using the degree distribution of the original 
network as the only input. Our work therefore provides insight for quantitatively understanding 
recovery process and its implications in infrastructure protection in various complex systems.

Interconnection between network nodes has important consequences for stability and function of many complex  
networked systems ranging from Internet and social networks to electric power grids and transportation  
systems, where nodes are prone to random failure or malicious attack1–4. Through these interconnections, fail-
ure of individual components may crucially affect the performance of the whole system. The Internet with a 
scale-free connectivity distribution, for example, is highly vulnerable to attacks targeted at hubs but extremely 
robust against random errors1,5. Due to practical importance for applications, robustness of complex networks to 
failures remains a topic of central interest in the network science literature6–12.

While most efforts have been focused on probing the influence of network topology on robustness, failure  
mechanism of complex networks is very recently incorporated into the picture. It is revealed that an entire 
class of real-world networks, including human brains, cancer networks, polymers, financial systems, and bot-
nets are capable of spontaneously recovery (or self-healing) after their collapse by restoring the failed nodes or 
edges13,14. The work13 describes a phase-flipping phenomenon between “active” and “inactive” collective modes in 
a time-dependent Erdős-Rényi networks using a threshold rule, where each node becomes inactive (or removed) 
if it has less than a certain fraction of active neighbors and it then can be recovered after a fixed time period. An 
extension to dynamic scale-free networks is presented in ref. 15. Self-healing capability of nodes using a related 
threshold rule has been dealt within percolation theory14. Ref. 16 studies the targeted recovery algorithm in which 
the hub nodes in interdependent networks are iteratively recovered. A recovery strategy that repairs failed nodes 
and edges randomly in the boundary of the largest connected component is introduced in ref. 17, where the crit-
ical probability of recovery that halts the cascade is identified for interdependent networks.

Different from recovering missing nodes or edges to restore functionality, another approach to improving net-
work robustness consists in adding new edges or smartly modifying the network topology18–22. For instance, opti-
mal recovery algorithms of adding minimum links so that every node can reach any other node in the resulting 
network is studied in ref. 18. However, as pointed out in refs 14,23, the possibility to create new links is normally 
not available in many real networks such as infrastructure networks, where physical links are fixed in advance and 
creating new ones incurs time and investments.

In this paper, we tackle the robustness of complex networks by considering localized recovery (LR) strategy, 
and comparing it with random recovery (RR) strategy. The localized recovery consists of a healing process of one 
node, then its neighbors, and then their neighbors, etc. (see Fig. 1). It restores only failed nodes and edges without 
assuming any particular healing mechanisms, e.g., the threshold rules13–15, hence addressing the shortcomings 
associated with both approaches. Localized recovery strategy is widely employed in the real world because (a) it 
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is usually easier and more effective to repair a node in the neighborhood than one far apart as functional nodes 
become connected after recovery and (b) it is sometimes the only way to repair when an external monitor/con-
troller is not available to guide the recovery or limited resources fail to maintain simultaneous recovery in mul-
tiple unrelated areas.

The analytical framework developed here for studying localized recovery of complex networks allows us to 
examine some percolation properties such as the critical recovery probability rc, marking the threshold of exist-
ence/non-existence of giant component in the network of fail nodes, and the fraction P∞ of failed nodes in the 
giant component of the network of failed nodes after recovery. Let r0 be a second critical recovery probability sig-
nifying the threshold of the network of occupied (i.e., functional or recovered) nodes, at which a giant component 
of occupied nodes first forms. As we will see below, rc is distinct from the threshold r0, which is essentially trivial 
under LR. We find detailed phase diagrams under RR and LR. By identifying the two competitive forces that 
influence the effect of localized recovery strategy, we develop an analytical tool that can guide us in choosing the 
appropriate recovery strategy and provide estimation on its effect by using the degree distribution of the original 
network as the only input. Real networks with degree-degree correlation are also investigated. Our theoretical 
calculations are confirmed by extensive numerical simulations.

We mention that the localized recovery strategy hinges on the interconnections in a network, especially the 
topology of its shells24, which is defined as the set of nodes that are at some distance from a randomly chosen 
root node. Shell structure has been explored recently by some researchers to collapse an otherwise connected 
network25–28.

Results
Description of the model.  The interconnection topology of the random network considered here is charac-
terized by an arbitrary degree distribution P(k), which is the probability that a randomly chosen node has degree 
k. Starting from a randomly selected node (root), all nodes are listed in ascending order of their distances from 
the root. The set of nodes that are at distance l from the root is referred to as shell l24. Nodes that are at the same 
distance from the root are deployed randomly in the same shell.

We assume that the network suffers from random failures after which a fraction q of nodes is functional (see 
Fig. 1(a)). Our localized recovery process is initiated by first checking the root node, then the nodes in the first 
shell, and so forth in the ascending order of their distance from the root according to the following rules:

1.	 Each failed node under check is recovered, and the edge connecting two occupied (i.e., functional or recovered)  
nodes become active (i.e., present) automatically.

2.	 Nodes in the same shell are checked randomly and we begin checking nodes in shell l +​ 1 only after all nodes 
in shell l are checked.

We continue the recovery process until a fraction r of failed nodes are recovered. Hence, a recovery area appears 
around the root node, and the remaining 1 −​ r fraction of failed nodes are at larger distance from the root (see 
Fig. 1(b)).

The key observation here is that the critical recovery fraction r0(LR) (Here, r0(LR) means r0 under LR; similar 
notations will be used for rc, P∞, and RR, etc.) signifying the emergence of a giant component of occupied nodes 

Figure 1.  Schematic illustration of the localized recovery process. (a) A network suffers from random 
failures, where each node remains functional with probability q (black means functional nodes, white failed 
nodes); the root node is failed in this case. (b) A fraction r of the failed nodes are recovered starting from the 
root, its nearest neighbors, next nearest neighbors, and so forth (gradient black means recovered nodes); edges 
connecting two occupied (i.e., functional or recovered) nodes become active (solid lines) again. The recovery 
area is indicated by a red contour.
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is equal to zero for any q ∈​ [0, 1] when the original network is connected, i.e., having a single component. This 
observation motivates our interest in a closely related critical recovery fraction rc(LR), pointing to the threshold 
of a giant component in the network of failed nodes after recovery. This sort of study has important practical 
relevance since it informs us when the failures (such as epidemics in a population or virus in cyber spaces) can be 
controlled/confined to local areas, as well as a prediction of full system restoration.

We also consider the random recovery strategy as a comparison, where each initially failed node is recovered 
with probability r independently of each other, and edges connecting two occupied (i.e., functional or recovered) 
nodes are present automatically. The random recovery process can be easily accommodated by the classical node 
percolation theory29 with occupation probability q +​ r −​ qr. Following refs 29,30, the probability generating func-
tions of node degree and excess node degree are defined as = ∑ =

∞G x P k x( ) ( )k
k

0 0  and = ′G x G x k( ) ( )/1 0 , respec-
tively, where = ′k G (1)0  is the average degree of the original network. We find that the critical recovery 
probability is (see Supplementary Note A)
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Hence, when < ′q G1/ (1)1 , the initial random failure collapses the network, and the RR process plays a role in 
integrating the network.

Network of failed nodes under RR.  Recall that the generating function for the degree distribution of the 
original network is = ∑ =

∞G x P k x( ) ( )k
k

0 0 . Based upon the concept of induced subgraph on the set complement 
in graph theory, the induced network of failed nodes under RR can be readily viewed as the result of independent 
node percolation29 with “occupation” probability (1 −​ q)(1 −​ r). Recall that (1 −​ q)(1 −​ r) is the fraction of failed 
nodes after recovery, and hence it is the probability that a node is in the complement network (composed of failed 
nodes). Under LR, for example, the complement network is the induced subnetwork of white nodes depicted in 
Fig. 1(b).

If we focus on the complement network, following ref. 29, the size distribution of the clusters that can be 
reached following a randomly chosen edge is generated in a self-consistent equation

= + − + − −H x q r qr q r xG H x( ) (1 )(1 ) ( ( )), (2)1 1 1

where = ′ ′G x G x G( ) ( )/ (1)1 0 0 . Here, the first term q +​ r −​ qr represents the probability that a node is occupied, 
namely, not in the complement network. The second term (1 −​ q)(1 −​ r)xG1(H1(x)) addresses the situation where 
the edge lead to a failed node with k other edges leading out of it, distributed according to the generating function 
(1 −​ q)(1 −​ r)G1(x). Analogously, the size distribution of the cluster to which a randomly chosen node belongs is 
generated by

= + − + − −H x q r qr q r xG H x( ) (1 )(1 ) ( ( )), (3)0 0 1

where the second term (1 −​ q)(1 −​ r)xG0(H1(x)) addresses the situation where the chosen node is failed (hence 
included in the complement network), and it has k other edges leading out of it, distributed according to the gen-
erating function (1 −​ q)(1 −​ r)G0(x). Then the critical recovery probability rc, at which a giant component of the 
network of failed nodes emerges, is determined by
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When the initial random failure is not severe, i.e., ≥ = − ′q q G1 1/ (1)c 1 , the network of failed nodes remains 
small components even without recovery (since rc =​ 0). In general, a giant component of failed nodes first forms 
when r <​ rc.

Comparing the two thresholds (1) and (4), we observe interestingly that the critical point ′ =G (1) 21  separates 
a regime of r0(RR) >​ rc(RR) and that of r0(RR) <​ rc(RR). The quantity ′ = −G k k k(1) ( )/1

2  is called the 
branching factor of the original network, specifying the average number of outgoing links of the underlying 
branching process2,30. In a sparse original network with ′ <G (1) 21 , we have r0(RR) >​ rc(RR). This can be intui-
tively explained as follows. With the increase of the recovery fraction r, the giant component in the network of 
failed nodes first collapses and then a giant component in the network of occupied nodes forms. In other words, 
there is a coexistence phase where both networks have only small components. This is due to the sparseness of the 
network. While in a dense original network with ′ >G (1) 21 , we have r0(RR) <​ rc(RR) indicating a coexistence of 
giant components in both subnetworks of occupied nodes and failed nodes. (See Fig. 2(a) and Supplementary 
Note C for the evolution of phase diagrams).

The fraction S of the giant component in the network of failed nodes satisfies

= − = − − −S H q r G H(RR) 1 (1) (1 )(1 )(1 ( (1))), (5)0 0 1

where H1(1) satisfies H1(1) =​ (q +​ r −​ qr) +​ (1 −​ q)(1 −​ r)G1(H1(1)). We denote by P∞ the relative size of the giant 
component as a fraction of the original network. Clearly, P∞(RR) =​ S(RR).

In what follows we instantiate the above formula (4) and (5) in the special cases of ER and REG networks (see 
Methods section for definitions). For ER networks, G0(x) =​ G1(x) =​ eλ(x−1), and the critical recovery probability is
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Similarly, the relative size of the giant component satisfies

= − − −∞P q r H(RR) (1 )(1 )(1 (1) ), (9)k
1

0

where H1(1) satisfies = + − + − − −H q r qr q r H(1) ( ) (1 )(1 ) (1)k
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10 .

Network of failed nodes under LR.  As in the RR scenario above, the critical recovery probability 
rc(LR) =​ 0 (i.e., no recovery is virtually needed to maintain the functionality of the original network) when the 
initial random damage is below a threshold, namely, ≥ = − ′q q G1 1/ (1)c 1 . We find that rc(LR) satisfies (see 
Supplementary Note B)

′ = − ″ −−G q G G r(1) (1 ) ( (1 )), (10)c0 0 0
1

when ≤ − ′q G1 1/ (1)1 . Recall that r0(LR) ≡​ 0, and hence the inequality r0(LR) ≤​ rc(LR) always holds, which is in 
sharp contrast to the RR case. Clearly, whenever the branching factor ′ >G (1) 11 , there is a co-existence phase 
where both subnetworks of occupied nodes and failed nodes have giant components (see the figures below for ER, 
REG and SF networks, and Methods section for the definition of these networks).

Furthermore, we find that the relative size of the giant component as a faction of the original network is (see 
Supplementary Note B)
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In what follows we derive explicit analytical expressions for the formula (10) and (11) in the special cases of ER 
and REG networks. For ER networks, = λ − −

G x e( ) r x
0

(1 )( 1) using (12). The critical recovery probability 
rc(LR) =​ rc(RR) which is given by (6). The relative size of the giant component satisfies

Figure 2.  Phase diagrams in the q-r plane for ER networks with λ =​ 5 under (a) RR and (b) LR strategies. 
The meanings of the combined phases are described in Tab. 2. Solid lines are analytical results, from (1) for r0 
(black line) and (6) for rc (red lines). Data points (black and red circles) correspond to the simulation results 
averaged over 30 random graphs with 20 independent realizations for each.
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for k0 >​ 2 and rc(LR) =​ 0 for k0 =​ 2. The relative size of the giant component satisfies
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ER networks under RR and LR.  Figure 2 shows the (combined) phase diagrams for ER networks with 
average degree 〈​k〉​ =​ 5 under RR and LR (see also Table 1). The lines of the critical recovery probabilities r0 and rc, 
in good agreement with the simulation results, separate the regimes of (non)existence of giant component in the 
network of occupied nodes and in the network of failed nodes, respectively. As expected from the theoretical 
prediction, under RR there is a coexistence phase (i.e., the broken ring-shaped part between the red and black 
lines in Fig. 2(a)) where both networks have giant components since = ′ >G5 (1) 21 . This coexistence phase dis-
appears when 〈​k〉​ =​ 2 and a different coexistence phase where both networks are absent of giant components 
emerges when 〈​k〉​ <​ 2 (see Supplementary Note C).

Comparing Fig. 2(b) with Fig. 2(a), we observe that the combined phase IIIC only exists under RR. This means 
that the network of occupied nodes possesses a giant component as long as r 0 under LR, which constitutes a 
unique feature of LR. On the other hand, the two curves rc(RR) and rc(LR) coincide, which indicates that RR and 
LR strategies have the same healing capability (in terms of rc) for ER networks.

The effect of RR and LR is better appreciated when turning to the results reported in Fig. 3. Several interest-
ing comments can be drawn. First, in all cases the simulation results confirm the theoretical predictions. The 
equalities rc(RR) =​ rc(LR) (arrows in Fig. 3) hold, and these critical points agree with those displayed in Fig. 2. 
For example, recall that qc is the critical value at which P∞ vanishes, and we have qc =​ 0.8 for rc =​ 0 and qc ≈​ 0.6 for 
rc =​ 0.5. Second, the fraction of giant component P∞ in the network of failed nodes displays identical behavior 
under RR and LR for r =​ 0, 0.5, and 0.7. In fact, such equivalence holds for all q, r ∈​ [0, 1] (see Supplementary 
Note D for a direct proof), meaning that RR and LR has exactly the same effect in containing the damage of an ER 
network. This can be interpreted as a detailed balance between two competitive forces: (i) the nature of the LR that 
nodes within the recovery area are connected to each other while only exterior nodes linked to the surface of the 
recovery area contribute to the network of occupied nodes (namely, the “recovering resistance”), and (ii) the level 
of degree heterogeneity, where a larger-degree node is more likely to be recovered under LR, leading even more 
likely to an occupied giant component (namely, the “recovering impetus”).

It is worth mentioning that a balance phenomenon for ER networks under random and localized attacks has 
been observed recently by Shao et al.26. Their results correspond to the coincidence of P∞(RR) and P∞(LR) at the 
point q =​ 0 in Fig. 3. Note that if all nodes are removed initially (i.e., q =​ 0), the giant component in the network of 
failed nodes after random (or resp., localized) recovery considered here is exactly that in the network of remain-
ing nodes under random (or resp., localized) attack in an original intact network.

REG networks under RR and LR.  Figure 4 shows the (combined) phase diagrams for REG networks with 
constant node degree k0 =​ 5 under RR and LR. The lines of the critical recovery probabilities r0 and rc agree very 
well with the simulation results. As anticipated, the coexistence phase (phases IC and IIC) of giant components in 
both networks appears under RR since ′ = − >G k(1) 1 21 0  (see Fig. 4(a)). Fig. 4(b) again reflects the fact that 
r0(LR) ≡​ 0. Comparing Fig. 4(a) with Fig. 4(b), we find that rc(RR) <​ rc(LR) for all q <​ qc =​ 0.75. This means that 

Phase Description

Network of occupied nodes

  I (Non Collapse) Existence of giant component w/o recovery

  II (Recovery) Existence of giant component w/recovery

  III (Collapse) Non-existence of giant component w/recovery

Network of failed nodes

  A (Non Prevalence) Non-existence of giant component w/o recovery

  B (Restriction) Non-existence of giant component w/recovery

  C (Prevalence) Existence of giant component w/recovery

Table 1.   Three phases for the network composed of occupied (namely, functional and recovered) nodes 
and three for the “complement network” composed of failed nodes.
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LR is always less powerful than RR, namely, more nodes have to be recovered under LR in order to confine the 
damage to small/scattered areas.

The insight that RR is more effective for healing an REG network is better fathomed when it comes to Fig. 5. 
Similarly as in ER networks, the critical points of percolation, rc(RR) and rc(LR) (indicated by arrows), agree with 
those displayed in Fig. 4. In addition to these discrete points, the whole curve of P∞ follows the same pattern that 
P∞(RR) <​ P∞(LR) for r >​ 0. This can be easily understood as there is no “recovering impetus” (the degrees are all 
the same in REG networks); the “recovering resistance” renders LR inferior for healing REG networks after any 
degree of damage.

SF networks under RR and LR.  In Fig. 6 we plot the (combined) phase diagrams for SF networks with 
γ =​ 2.4, kmin =​ 2, and 〈​k〉​ =​ 5.08 under RR and LR. The simulations for the critical recovery probabilities r0 and rc are 
consistent with theoretical results. Similarly as in ER and REG networks, the coexistence phase (phases IC and IIC) 
of giant components in both networks appears under RR (see Fig. 6(a)) since ′ >G (1) 21  (which is actually more 
than 50 here).

Remarkably, the phases IA, IIB, IIC, IIIC under RR (Fig. 6(a)) and the phases IA, IIB, IIC under LR (Fig. 6(b)) 
are very small yet not negligible. This phenomenon is known to be the finite-size effect2,31. For an infinite SF net-
work with power-law distribution γ−~P k k( ) , the ratio = ′ +k k G/ (1) 12

1  diverges when 1 ≤​ γ <​ 3. So, in an 
infinite SF network, we have = − ′ =q G1 1/ (1) 1c 1 , meaning that for any q >​ 0 the network of failed nodes 
always has a giant component (hence is extremely robust2,5) even without recovery (i.e., r =​ 0). When the recovery 

Figure 3.  Relative sizes of giant component in the network of failed nodes, P∞, as a function of q for ER 
networks with λ = 5 and r(RR) = 0 (stars), r(RR) = 0.5 (pluses), r(RR) = 0.7 (crosses), r(LR) = 0 (squares), 
r(LR) = 0.5 (triangles), and r(LR) = 0.7 (circles). Solid lines are analytical results, from (7) for RR (magnet 
lines) and (13) for LR (green lines). Symbols correspond to the simulation results averaged over 30 random 
graphs with 20 independent realizations for each. The critical recovery fractions are indicated by arrows.

Figure 4.  Phase diagrams in the q-r plane for REG networks with k0 =​ 5 under (a) RR and (b) LR strategies. 
The meanings of the combined phases are described in Table 1. Solid lines are analytical results, from (1) for 
r0 (black line) and (8), (14) for rc (red lines). Data points (black and red circles) correspond to the simulation 
results averaged over 30 random graphs with 20 independent realizations for each.
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process is taken into consideration, the red curve rc divides the whole phase plane into two regions: IB, where the 
network of failed nodes has no giant component and IC, where it has a giant component. Since rc(LR) <​ rc(RR) for 
all q, we conclude that LR is more powerful than RR for healing SF networks, opposite to the best practice for 
healing REG networks.

In addition to rc, the entire curve of P∞ follows the same pattern that P∞(LR) <​ P∞(RR) for r >​ 0 (see Fig. 7), 
meaning that the superiority of LR consists not only in the threshold but also in the size of giant component. 
Clearly, the level of degree heterogeneity (i.e., the “recovering impetus”) is dominant in SF networks: recovered 
hub nodes accelerate the recovery of the original network (hence rapidly collapse the network of failed nodes).

When the scaling exponent γ in an SF network is getting larger, the network becomes less heterogeneous. A 
phenomenon similar to that in REG networks, e.g., rc(LR) >​ rc(RR), is expected for a large γ (see Supplementary 
Note E). Then it is possible to determine a critical exponent γc =​ γc(q) so that rc(RR) =​ rc(LR) at q. Indeed, if 
a given network has a power-law degree distribution with exponent γ, we can identify γc(q) for any q ∈​ [0, 1] 
by using Eqs (4),(10) and parameters in P(k) such as kmin and kmax. Likewise, we can identify another critical 
exponent γ∞ =​ γ∞(q, r) so that P∞(RR) =​ P∞(LR) at any desired values of q and r. By comparing γ, γc(q), and 
γ∞(q, r), we are able to determine the best recovery strategy (RR or LR) and acquire a good estimation on its 
effect under any level of initial failure as well as recovery in the network by using the degree distribution of the 
original network as the only input. Applications to some real-world networks with different sizes can be found in 
Supplementary Note F.

Figure 5.  Relative sizes of giant component in the network of failed nodes, P∞, as a function of q for REG 
networks with k0 = 5 and r(RR) = 0 (stars), r(RR) = 0.5 (pluses), r(RR) = 0.7 (crosses), r(LR) = 0 (squares), 
r(LR) = 0.5 (triangles), and r(LR) = 0.7 (circles). Solid lines are analytical results, from (9) for RR (magnet 
lines) and (15) for LR (green lines). Symbols correspond to the simulation results averaged over 30 random 
graphs with 20 independent realizations for each. The critical recovery fractions are indicated by arrows.

Figure 6.  Phase diagrams in the q-r plane for SF networks with γ =​ 2.4, kmin =​ 2, and 〈​k〉​ =​ 5.08 under 
(a) RR and (b) LR strategies. The meanings of the combined phases are described in Tab. 2. Solid lines are 
analytical results, from (1) for r0 (black line) and (4), (10) for rc (red lines). Data points (black and red circles) 
correspond to the simulation results averaged over 30 random graphs with 20 independent realizations for each.
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Discussion
We have proposed and studied the localized recovery strategy for complex networks under random failures. 
Based on the generating function formalism, we tackle analytically the percolation properties associated with 
both the network of occupied nodes and the “complement network” of failed nodes. Detailed phase diagrams 
under RR and LR are obtained. We identify two competitive forces behind LR strategy, which exactly compen-
sate each other in ER networks while yield an interesting crossover phenomenon in SF networks with respect to 
the scaling exponent γ. Our developed analytical framework successfully guides us in choosing more powerful 
recovery strategy and provides estimation on the desired recovery fraction by using the degree distribution of the 
original network as the only input.

Note that the analytical and numerical results presented in this work are based on uncorrelated graphs. 
However, correlations between nodes of similar degree are often found in real-world networks. The tendency to 
be connected with other nodes with similar degree is referred to as assortative mixing, while disassortative mixing 
is a bias that high degree nodes tend to attach to low degree nodes32–34. Mathematically, the assortativity/disassor-
tativity property can be measured by the Pearson correlation coefficient ρ averaged for all pairs of adjacent nodes 
in the network. In general, ρ ∈​ [−​1, 1] with ρ >​ 0 indicating an assortative network while ρ <​ 0 a disassortative 
network. In Supplementary Note G, we compare RR and LR strategies on two real social and biological networks. 
It is revealed that LR seems to be more powerful than RR for healing assortative networks, while the opposite is 
true for disassortative networks.

This phenomenon can be explained by the dominance of “recovering impetus” in assortative networks in 
that groups of hub nodes are more likely to be recovered under LR accelerating the recovery process. On the 
other hand, the disassortative mixing tend to impede the recovery process adding to the “recovering resist-
ance”. We mention that there are other topological properties, such as motif and clustering, that are likely to 
affect the LR strategy. In addition to numerical study, closed-form results are highly desirable. It is hoped that 
this work could stimulate further research efforts on the related problems in localized network recovery against 
damages.

Methods
Based on the generating function formalism24,26,29,30, we are able to solve our theoretical model for the (induced) 
network composed of failed nodes under RR and LR. We apply our theoretical results to three different types of 
complex networks: Erdős-Rényi (ER) networks, random regular (REG) networks, and scale-free (SF) networks. 
An ER network follows a Poisson degree distribution P(k) =​ e−λλk/k! (k ≥​ 0) with average degree 〈​k〉​ =​ λ. An REG 
network has a degenerated degree distribution δ=P k( ) k k, 0

, meaning that each node is connected to the same 
number k0 of neighbors. A SF network follows a power-law degree distribution γ−~P k k( )  (kmin ≤​ k ≤​ kmax), 
where γ >​ 0 is the scaling exponent, kmin and kmax mean the minimum and maximum degrees, respectively. For all 
the simulations, we use networks of size N =​ 106. Moreover, three real-life networks with power-law degree distri-
butions from biological and technological fields are investigated (see Supplementary Note F).

To obtain the rc curve in the q-r plane, we first label each node as failed independently with probability 1 −​ q 
for any given q ∈​ [0, 1] and inactivate its incident edges. For RR strategy, we begin with r =​ 0 and take a node from 
the list of failed nodes, change its label to functional with probability r, and reactivate each of its incident edges 
if the other end is connected to a functional node. For LR strategy, we begin with r =​ 0 and take a node from the 
list of failed nodes in an increasing order according to the distance from a root node, change its label to func-
tional, and reactivate each of its incident edges if the other end is connected to a functional node. After checking 

Figure 7.  Relative sizes of giant component in the network of failed nodes, P∞, as a function of q for SF 
networks with γ = 2.4, kmin = 2, 〈k〉 = 5.08 and r(RR) = 0 (stars), r(RR) = 0.3 (dots), r(RR) = 0.5 (pluses), 
r(LR) = 0 (squares), r(LR) = 0.3 (pentagrams), and r(LR) = 0.5 (triangles). Solid lines are analytical results, 
from (5) for RR (magnet lines) and (11) for LR (green lines). Symbols correspond to the simulation results 
averaged over 30 random graphs with 20 independent realizations for each. The critical recovery fractions are 
indicated by arrows.
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the whole list for RR strategy (or respectively, after checking r fraction of failed nodes for LR strategy), we then 
calculate the fraction P∞ of the giant cluster in the network of failed nodes. Increase r and repeat the process 
until P∞ <​ 10−3. The r0 curve is obtained similarly by checking the fraction of the giant cluster in the network of 
functional nodes.
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