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ABSTRACT

De-novo motif search is a frequently applied bioinfor-
matics procedure to identify and prioritize recurrent
elements in sequences sets for biological investiga-
tion, such as the ones derived from high-throughput
differential expression experiments. Several algo-
rithms have been developed to perform motif search,
employing widely different approaches and often giv-
ing divergent results. In order to maximize the power
of these investigations and ultimately be able to draft
solid biological hypotheses, there is the need for ap-
plying multiple tools on the same sequences and
merge the obtained results. However, motif reporting
formats and statistical evaluation methods currently
make such an integration task difficult to perform
and mostly restricted to specific scenarios. We thus
introduce here the Dynamic Motif Integration Toolkit
(DynaMIT), an extremely flexible platform allowing to
identify motifs employing multiple algorithms, inte-
grate them by means of a user-selected strategy and
visualize results in several ways; furthermore, the
platform is user-extendible in all its aspects. Dyna-
MIT is freely available at http://cibioltg.bitbucket.org.

INTRODUCTION

De-novo motif search is a bioinformatics procedure aimed
at the identification of biologically relevant recurrent pat-
terns in a set of related sequences. Being originally em-
ployed for understanding transcription factor sequence-
specific binding (1), it has become of widespread use for
many applications, the most common being the analysis of
differentially expressed genes derived from high-throughput
analysis of biological samples.

A considerable number of motif search tools have been
developed in the last 20 years (2–4), tackling this prob-
lem from different perspectives and computational ap-
proaches. These tools can roughly be grouped in sequence,
secondary structure and discriminative tools. The very pop-
ular MEME (5), for instance, attempts at finding sequence
motifs by means of an extended expectation maximization
algorithm, while RNAforester (6) aims at discovering RNA
secondary structure motifs by a tree alignment model. Dis-

criminative tools such as SeAMotE (7) instead try to iden-
tify motifs by comparing different sets of sequences derived
from high-throughput experiments.

While available algorithms offer a vast spectrum of possi-
ble choices, it is undeniably difficult to decide what the best
match for a given problem is. Furthermore, if using more
than one algorithm, it is especially complex to understand
how results could be compared to yield a robust biological
hypothesis. Different motif reporting formats, scoring sys-
tems and statistical evaluation approaches indeed turn the
task of integrating such results into a truly daunting one.

Only a few works (8–13) have tried to tackle this issue, al-
though to a limited extent and addressing only specific as-
pects. In particular, Fan et al. (8) have focused on integrating
three tools, two of which performing sequence-based and
one devoted to secondary structure-based motif search; on
a similar line, Melina II (9) compares the results of five pre-
selected motif search tools on the specific task of finding
elements in promoters, forcing a selection among them for
the final results. Ma et al. (10) introduce a toolkit perform-
ing motif comparison and clustering, but considering only
sequence elements and limited to their own motif search al-
gorithm. On the same line, RSAT (11) provides utilities for
comparing motifs, but again in the context of the search al-
gorithms they provide and limited to non-coding sequences.
Stegmaier and colleagues (12) have approached the general
issue of clustering motifs to identify common binding speci-
ficities. Eventually, MotifLab (13) is quite flexible and al-
lows the user to integrate external data in addition to exe-
cuting several tools: it is however not extendible and limited
to the specific task of finding elements in promoters, and
thus not generally applicable.

To comprehensively address this issue we need a tool
which can be used with many search algorithms and gen-
eral enough to address as many scenarios as possible: such a
platform should be easily extendible to accommodate newly
developed and custom search tools without being modi-
fied in its structure. Furthermore, it should also allow the
same degree of flexibility in results integration and output
methodologies. This flexibility, coupled to the possibility of
customizing every aspect of its execution (from tools selec-
tion to output appearance) would considerably advance our
motif integration capabilities.

We thus introduce here the Dynamic Motif Integration
Toolkit (DynaMIT), a flexible platform designed to imple-
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ment this vision: it provides the means to execute multiple
motif search tools, integrate their output and display the ob-
tained results in many different ways. It is customizable and
extendible in all its aspects, allowing for a truly personal-
ized and fine-tuned usage experience. DynaMIT is imple-
mented as an open-source Python package, and can be used
stand-alone or easily embedded in complex bioinformatic
pipelines; it is freely available at http://cibioltg.bitbucket.
org.

MATERIALS AND METHODS

DynaMIT implementation

The toolkit was implemented in Python, exploiting the
BioPython (14), scikit-learn (15), scipy (16), numpy (17),
matplotlib (17) and weblogolib (18) libraries, which pro-
vided advanced functionalities for sequence handling, ma-
chine learning and data plotting tasks. Care was taken
to avoid any OS-specific code, so DynaMIT can be run
on Linux, Windows and Mac machines; only a few motif
search tools may not be usable, depending on the availability
of an OS-specific version of these. The toolkit architecture
is illustrated by the class diagram in Supplementary Figure
S1.

Installing and running DynaMIT

The package can be downloaded from the DynaMIT
website (http://cibioltg.bitbucket.org) or installed directly
through the Python Package Index (https://pypi.python.
org), using the pip package (by typing “pip install dynamit”
at the shell prompt). While both installation methods will
take care of installing the required Python libraries, motif
search tools must be installed separately (URLs and refer-
ences are provided on the website).

The DynaMIT virtual machine

We also provide an Ubuntu virtual machine, obtainable
through the DynaMIT website. It runs on the free Virtu-
alBox software (Oracle) and includes pre-installed libraries
and motif search tools: it thus allows running DynaMIT
out-of-the-box, requiring the user to provide only input se-
quences and a configuration file.

Motif searchers

Motif searchers can be divided in two categories, namely
searchers running an existing tool and searchers imple-
menting custom logics. The former include CMfinder, Gibb-
sMotifSampler, GLAM2, GraphProt, HOMER, MDscan,
MEME, MEMERIS, RNAforester, RNAhybrid, RNApro-
file and Weeder (5,6,19–27): tools were downloaded from
the respective website, and Python methods written to exe-
cute each tool and output the resulting motifs in DynaMIT
format. The latter include the KnownSites, Matrix, Previ-
ousResultsLoader and RegionsIntersection searchers, which
were implemented from scratch in Python, exploiting the
BioPython (14) package functionalities.

Integration strategies

These components were developed from scratch, exploiting
the scikit-learn (15) and BioPython (14) packages function-
alities. Clustering is performed by the strategies through an
affinity propagation algorithm (15). The following strate-
gies are provided:

� AlignmentStrategy: computes the pairwise alignment of
each motif pair and uses the resulting scores to execute
clustering; eventually, a multiple alignment is performed
on the motif consensuses composing each cluster.

� BiclusteringStrategy: computes a vector for each motif,
listing positions occupied on input sequences as 1 and
non-occupied positions as 0. A spectral biclustering al-
gorithm (15) is then applied to these vectors.

� JaccardStrategy: computes the Jaccard similarity for
each motif pair as |intersection|/|union| of positions occu-
pied by the motifs in the pair; this measure is then used
to perform motif clustering.

� CoOccurrenceStrategy: scores motif pairs by the Jaccard
similarity of the mutual presence of both motifs on each
sequence: pairs in which instances of the first motif are
often found on the same sequence as instances of the sec-
ond motif will get an high score and vice versa; this mea-
sure is then used to perform motifs clustering.

� MIStrategy: computes motif vectors as described for the
BiclusteringStrategy: the similarity between each motif
pair is computed as the normalized mutual information
of these vectors (considering only occupied positions);
this measure is then used to perform motif clustering.

� ProximityStrategy: scores motif pairs by the fraction of
instances pairs (made by one instance of the first and one
of the second motif) on each sequence that are within n
nucleotides: motif pairs in which instances of the first mo-
tif are often near to instances of the second will get an
high score and vice versa; this measure is then used to
perform motif clustering.

� PCAStrategy: computes vectors as described for the Bi-
clusteringStrategy. A kernel PCA algorithm (15) is ap-
plied to these vectors to obtain a 2-component motif rep-
resentation, onto which clustering is performed.

Modes of results visualization

These components were developed from scratch, exploit-
ing the matplotlib (17) and weblogolib (18) packages func-
tionalities. Three of them (ClusterEvaluation, Table and Se-
quenceView) are compatible with the output of any inte-
gration strategy and provide basic cluster evaluation, tabu-
lar and graphical printing, respectively. The other visualiza-
tion modes (BidimensionalSpace, Heatmap, PositionalDen-
sity and WebLogo) require additional information to be run
and their compatibility with the selected integration strat-
egy must be checked prior to running the toolkit.

The scores computed by the ClusterEvaluationPrinter are
obtained as follows: the instances score is the average score
of motif instances for all motifs composing the cluster; the
consensuses coherence score is defined as the average pair-
wise alignment score for all motif pairs in the cluster, while
the silhouette (15) score ranges in [-100,100] and describes
how cohesive and separated a cluster is. The size score is
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computed as 10 × number of motifs (composing the clus-
ter), while the presence of multiple motif types (sequence,
structure, etc.) is also taken into account as 10 × number of
motif types composing the cluster. The overall cluster score
is then obtained as the sum of all these scores.

Implementing a custom component

DynaMIT offers the possibility of implementing new com-
ponents for each of the three phases composing its work-
flow. To allow such a feature, an abstract Python class is
exposed for the MotifSearcher, IntegrationStrategy and Re-
sultsPrinter components. The user willing to add a new
component to DynaMIT must thus create a Python class
implementing the appropriate abstract class: in particular,
classes for all components must provide a setConfiguration
method allowing DynaMIT to load the component con-
figuration (e.g. tool path, score thresholds, etc.); a Motif-
Searcher class must also provide a runSearch method to ac-
tually execute the search; an IntegrationStrategy class must
also provide a doIntegration method to execute the integra-
tion procedure; a ResultsPrinter class must also provide a
printResults method to perform the actual printing.

Furthermore, search results must be provided by Mo-
tifSearcher classes in a predefined format, requiring some
compulsory fields (one line per motif instance, including the
motif consensus, its type, the sequence name and the posi-
tion on the sequence) and permitting the inclusion of addi-
tional, searcher-specific ones. The IntegrationStrategy out-
put must be a list of items (i.e. motifs clustering, motifs pair
scores, etc.): while a few are required (e.g. the list of motifs
to be considered by visualization modes), the content of this
list might vary widely and it determines the compatibility of
an IntegrationStrategy with a ResultsPrinter and vice versa.
Each results visualization mode may indeed require differ-
ent information: several modes, exploiting the most basic
data or able to cope with the absence of more specific ones,
will be executable regardless of the chosen integration strat-
egy.

This rather limited amount of rules allows DynaMIT to
run any complying component without knowing anything
about its implementation details, just as if it was a pre-
implemented one.

Additional annotation

A set of annotations, based on the content of the AURA
2 database (28) are available at http://aura.science.unitn.
it: these include BED files for human and mouse experi-
mentally derived RBP and cis-element sites on UTRs, for-
matted for use with the KnownSites and RegionsIntersec-
tion searchers. RBP binding motif matrices obtained from
CISBP-RNA (29) and RBPDB (30) are also included, along
with matrices for some cis-elements types, computed with
BioPython (14) on matching sequences in AURA 2: these
can be used with the Matrix searcher.

Performance assessment

DNA sequence data sets were retrieved from (31): these in-
clude motif sites at known positions, surrounded by up-
stream and downstream sequence obtained either from the

genomic sequence context of these sites (real sequences)
or through a Markov model algorithm. DynaMIT (with
either all or only two motif searchers, namely MEME
and GLAM2, and the XXX integration strategy), MEME,
GLAM2 and Weeder were run on these data sets. The RNA
sequence data sets were composed by including three ran-
domly generated sequences sets produced with MotifGen
(https://galaxy.cbio.mskcc.org/) by implanting the motif of
case example 1 or the two 9-nucleotides AU-rich element
pattern (32). Furthermore, seven sets of UTRs contain-
ing various cis-elements (BRD-BOX, Histone stem loop,
IRE, IRES, PAS, SECIS, TOP) at known positions were
also included, for a total of 10 data sets. DynaMIT (with
two different integration strategies, namely JaccardStrat-
egy and ProximityStrategy with maximum distance of 3 nu-
cleotides, and using all searchers), CMfinder, MEMERIS,
RNAforester and Weeder were run on these data sets. Sensi-
tivity, specificity and Matthews correlation coefficient were
computed for each tool as the weighted average of each data
set and plotted with R (33).

Case examples

Sequences for the first case example (hyperconserved por-
tions of the 3’UTRs of 23 RBPs) were obtained from
(34); the configuration was set to run the Weeder and
RNAforester searchers, coupled to the Alignment integra-
tion strategy and to ClusterEvaluation, PositionalDensity,
SequenceView, WebLogo and Table visualization modes.
The complete set of input and output files for this case ex-
ample is available in the Supplementary File 1.

Sequences for the second example are the 3’UTRs of
the 50 top down-regulated genes following TTP over-
expression, obtained from (35); the configuration was set to
run the MEME searcher, two RegionsIntersection searchers
(one with TTP PAR-CLIP-derived binding sites (35) and
one with HuR PAR-CLIP-derived binding sites (36)), seven
Matrix searchers for ARE binding proteins (HNRNPA1,
HNRNPA3, HNRNPC, HNRNPL, MEX3D, NCL and
TIA1 PWM matrices, obtained from CISBP-RNA (29))
and one for CELF3, known not to bind these elements.
The Proximity integration strategy was applied (with 5 nu-
cleotides as proximity distance threshold) and ClusterEval-
uation, Heatmap, SequenceView, WebLogo and Table visu-
alization modes were used. The complete set of input and
output files for this case example is available in the Sup-
plementary File 2. Sequences for the third example are the
best 5000 peaks identified by ChIP-seq of the CTCF factor
in HEK293 cells (GEO id: GSM749668): the configuration
was set to run the Homer, MDscan and Weeder searchers.
The JaccardStrategy was applied and ClusterEvaluation,
WebLogo and Table visualization modes were used. The
complete set of input and output files for this case exam-
ple is available in the Supplementary File 3.

RESULTS

The dynamic motif integration toolkit

DynaMIT is a platform allowing to perform motif search
through multiple tools at once, integration of their output
and results visualization in a totally customizable way: users
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can choose which components should be run at each step
and how they should behave. All these steps can be extended
by adding new components: this makes DynaMIT virtually
able to run any motif search tool, exploit any integration
paradigm or visualization mode one can think of. We will
now proceed by describing the various phases of its work-
flow and its individual components in details.

DynaMIT workflow

The toolkit is organized in three phases, illustrated by Fig-
ure 1: first of all, motif search is performed by means of the
selected tools through the MotifSearcher components. As
this is the most time-consuming step of the workflow, Dy-
naMIT can run these components in parallel using multiple
processors. The results of this step are then forwarded to
the second module, performing motif integration through
the chosen IntegrationStrategy; eventually, integration re-
sults are provided as input to the last phase, which visual-
izes the results in the various selected ways by means of the
ResultsPrinter components.

Selection of components to be run at each step of this
workflow is made through a simple tab-separated configu-
ration file. A graphical application, the ConfigurationGener-
ator, is provided to assist in generating this file.

This toolkit is thus extremely dynamic, as every step
of its execution can be tuned to fit the user needs and
preferences. Furthermore, while we provide many pre-
implemented components (16 motif searchers, 7 integration
strategies and 7 results visualization modes), an additional
strength of DynaMIT lies in its total extendibility: indeed,
the three components expose a set of rules to be followed
(described in the Methods section), allowing any newly im-
plemented component respecting these rules to be used with
DynaMIT right away (not requiring any change to its in-
ternal structure). Users can thus add new motif searchers,
come up with a new integration principle or results visual-
ization approach, and plug these easily into the toolkit.

The search phase and the MotifSearcher: the platform
workhorse

The first phase of the workflow consists in performing the
actual motif search by means of one or more MotifSearcher
components: any number of such can be specified in the
configuration file, to reach the maximum flexibility. It must
be stressed, however, that the integration phase will proceed
only if at least two motifs are identified at this step.

We provide 16 pre-implemented motif searchers, 12 of
which execute external tools and 4 offering additional
search capabilities. External tools were chosen so to en-
compass a wide range of applications, thus including DNA
and RNA sequence, RNA secondary structure and bind-
ing specificity motif search tools. These searchers are listed
in Table 1 along with the tool they implement and the mo-
tif type they retrieve. Annotations for the MatrixSearcher,
KnownSitesSearcher and RegionsIntersectionSearcher, fo-
cusing on post-transcriptional regulation of gene expres-
sion, are provided at the AURA 2 (28) database website, as
described in the Methods section.

The integrate phase and the IntegrationStrategy: making
sense of the multitude

The second phase of the workflow aims at integrating the
identified motifs, by defining groups of related motifs ac-
cording to a particular criterion: this is the central step of
DynaMIT execution, as the comparison between motifs ob-
tained by the different tools takes place there. The com-
ponent mediating this phase is called IntegrationStrategy,
and only a single one of these will be executed per Dyna-
MIT run; the PreviousResultsLoaderSearcher provides the
means of re-using the motif search results when the selected
integration strategy changes, thus avoiding the most time-
consuming step.

We provide seven pre-implemented strategies, listed in
Table 2 and based on the general idea of clustering the
motifs identified in the previous phase. In particular, aside
from the BiclusteringStrategy (performing a sequence and
motif biclustering directly), all other components compute
a score for every motif pair which is then used to drive
motif clustering and produce the results. One strategy, the
AlignmentStrategy, uses the motif consensus to compute its
score (consensus-based strategy), while the others exploit the
instances of each motif on the input sequences to do so
(instance-based strategies).

To help reducing potential false positive calls, a motif
cluster “polishing” step is available in DynaMIT pipeline,
right after the integration phase. This procedure, which is
optional, removes motif instances which do not overlap by
at least n nucleotides (with n being user-specified) with at
least another instance of the same cluster. Doing so re-
duces the number of isolated motif instances, which are
more likely to be false positive calls, and consequently high-
lights motifs which share an high fraction of occupied se-
quence positions with other motifs (and are thus likely to
be stronger).

The print phase and the ResultsPrinter: displaying is under-
standing

The last phase of DynaMIT workflow consists in visual-
izing the results produced by both motif search and inte-
gration steps: this task can be approached in many differ-
ent ways, from a simple textual output of motif clusters to
complex graphical motifs representations. The component
performing this step is called ResultsPrinter and selected
ones are indicated in the configuration file. If none is spec-
ified, two default modes (TablePrinter and ClusterEvalua-
tionPrinter) will be run anyway to provide a basic summary
of the results.

We provide seven pre-implemented visualization modes,
developed from scratch and generating widely different out-
puts. All of them, except for the TablePrinter, result in
publication-quality pictures at high resolution in the PDF
format (an example of which is shown in Figure 2). In par-
ticular these are:

� TablePrinter: represents the identified motifs/clusters
along with their instances in a tabular format. As it pro-
vides basic and necessary information, it is one of the two
default visualization modes.
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Figure 1. DynaMIT workflow. The figure describes the three steps composing the toolkit workflow. First of all, motif search is performed by means of all
tools specified in the configuration, and all results collected together; then, obtained motifs are thus integrated according to the user-selected integration
strategy. Eventually, the various specified results visualization modes are executed to provide tabular and graphical displays of the obtained data.

Table 1. Pre-implemented motif searcher components

Searcher name Type Implementation Motif type

CMfinderSearcher tool CMfinder (19) RNA sequence motifs
GibbsSearcher tool Gibbs Motif Sampler (20) DNA/RNA sequence motifs
GLAM2Searcher tool GLAM2 (5) gapped DNA/RNA sequence motifs
GraphProtSearcher tool GraphProt (21) RBP binding preferences
HOMERSearcher tool HOMER (27) Transcription factor binding

preferences
KnownSitesSearcher custom loads a user-specified set of known

sites in input sequences
regions of the input sequences

MatrixSearcher custom identifies matches for a
user-specified PFM/PWM/PSSM
matrix in input sequences

DNA/RNA sequence motifs

MDscanSearcher tool MDscan (26) Transcription factor binding
preferences

MEMESearcher tool MEME (5) DNA/RNA sequence motifs
MEMERISSearcher tool MEMERIS (22) RNA sequence motifs
PreviousResultsLoaderSearcher custom loads motif search results from a

previous DynaMIT run
any type

RegionsIntersectionSearcher custom positionally intersects a set of
user-specified regions with the
input sequences

regions of the input sequences

RNAforesterSearcher tool RNAforester (6) RNA secondary structure motifs
RNAhybridSearcher tool RNAhybrid (23) regions of hybridization between

miRNAs and input sequences
RNAprofileSearcher tool RNAprofile (24) RNA secondary structure motifs
WeederSearcher tool Weeder (25) DNA/RNA sequence motifs

The table lists the 16 pre-implemented MotifSearcher components, along with their type (either running an external tool or executing a custom logic),
implementation details and the kind of motif identified by these searchers.

� SequenceViewPrinter (Figure 2A): displays
motifs/clusters instances at their position on input
sequences.

� PositionalDensityPrinter (Figure 2B): plots the positional
distribution of motifs/clusters on the sequences, so to
highlight their potential positional binding preferences.

� BidimensionalSpacePrinter (Figure 2C): plots motifs on a
two-dimensional space, using reduced representation co-

ordinates such as the ones derived by PCA or similar ap-
proaches.

� ClusterEvaluationPrinter (Figure 2D): is the other de-
fault mode and plots several scores to help in cluster pri-
oritization: computed scores consider the cluster size, the
number of different motif types it includes, the average
score of its instances, the coherence of its composing mo-
tif consensuses and its silhouette value.
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Figure 2. An example output of DynaMIT result visualization modes. The figure displays an example output from DynaMIT pre-implemented Result-
sPrinter components. In the interest of space, an example of cluster composition legend is displayed only in part C. (A)SequenceViewPrinter output,



PAGE 7 OF 14 Nucleic Acids Research, 2016, Vol. 44, No. 1 e2

Table 2. Pre-implemented integration strategy components

Strategy name Type Implementation

AlignmentStrategy consensus-based performs pairwise motif alignment, yielding an
alignment score

BiclusteringStrategy biclustering applies a spectral biclustering algorithm on motifs
and sequences

CoOccurrenceStrategy instance-based computes a co-occurrence score for each motif
pair (i.e. concomitant presence of both motifs
instances on the same sequences)

JaccardStrategy instance-based computes a Jaccard similarity score on the set of
sequence positions occupied by instances of the
motifs in each pair

MIStrategy instance-based computes a mutual information score on occupied
sequence positions for each motif pair

PCAStrategy instance-based executes a Principal Component Analysis (PCA)
on the motifs, yielding a two-component reduced
representation

ProximityStrategy instance-based computes a score based on the fraction of
instances of each motif pair being proximal (i.e.
within a certain nucleotide distance)

The table lists the seven pre-implemented IntegrationStrategy components, along with their type (either consensus-based, instance-based or biclustering)
and related implementation details.

� HeatmapPrinter (Figure 2E): plots an heatmap of either
presence/absence or fraction of occupied sequence of
each motif/cluster on each sequence.

� WebLogoPrinter (Figure 2F): draws weblogos based on
either motif instances or cluster information to help in
consensus identification.

Applying DynaMIT and selecting the right components

Given the flexibility granted by DynaMIT structure and
wealth of pre-implemented components, the naturally aris-
ing question is on the applications for which it might be use-
ful. First of all, plain sequence motif searches can obviously
be accommodated, both for DNA and RNA sequence sets.
In that case, employing multiple tools and integrating their
results serve the purpose of obtaining robust motifs, con-
cordantly identified by different approaches. When analyz-
ing RNA sequences, however, the most compelling appli-
cation of DynaMIT consists in integrating both sequence
and secondary structure motifs, allowing to precisely pin-
point recurring patterns potentially bound by RBPs or non-
coding RNAs: indeed, apparently weak sequence motifs
may result as strong candidates when considering also the
secondary structure. Another interesting application is in
the study of potential trans-factor cooperative/competitive
patterns: through two dedicated strategies, one may inves-
tigate whether, for instance, two RBPs or transcription fac-
tors have often overlapping or proximal sites on input se-
quences, thus outlining potentially complex regulatory phe-
nomena. A last application may consist in the identification
of binding preferences for RBPs and transcription factors
(in sequences set such as the ones derived from CLIP or

ChIP-seq): integrating multiple predictions may indeed ease
this task, which is often made difficult by the inherent noise
present in large sequence data sets.

Obviously, given the extreme flexibility of the platform,
one may come up with many additional applications for
which DynaMIT could be suitable: we just described here
the ones which we presently see as most interesting.

Furthermore, one may also ask what is the best combi-
nation of searchers, integration strategies and visualization
modes for the specific task at hand. While there is no unique
answer, and many combinations may produce good results
in specific cases, we can try to provide some guidance to-
ward this choice.

Concerning motif searchers, one can group them ac-
cording to their most appropriate application. Searches
in DNA sequences can be performed by the GibbsMotif-
Sampler, GLAM2, MEME and Weeder searchers. While
GLAM2 is devoted to finding gapped motifs, the others
are generally applicable and can handle small to medium-
sized data sets. Concerning sets of RNA sequences (e.g.
UTRs), DynaMIT offers both sequence and secondary
structure-based motif search tools: these are the Weeder,
MEME, MEMERIS. CMfinder, RNAforester, RNAhybrid
and RNAprofile searchers. When dealing with RNA se-
quences, to perform a comprehensive motif search evaluat-
ing both sequence and structure-related aspects, we suggest
to always include at least one sequence and one secondary
structure motif searcher (e.g. Weeder + RNAforester).

Eventually, trans-factor binding specificities can be stud-
ied with DynaMIT as well: a tool dedicated to identifying
such preferences for RBPs, GraphProt, is offered, along with

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
displaying motif instances on input sequences. Each motif is indicated by a different color, and a partial transparence allows identifying overlapping
motif instances locations. (B)PositionalDensityPrinter output, plotting the density of each cluster instances on input sequences positions, expressed in
relative terms from start (0) to end of the sequences (1.0). The P-value indicates whether the deviation of each cluster positional density from a uniform
distribution is significant. (C)BidimensionalSpacePrinter output, plotting motifs on a 2D-space and highlighting clusters through superimposed boxes.
(D)ClusterEvaluationPrinter output, displaying several scores helping in cluster assessment and prioritization. (E)HeatmapPrinter output, displaying se-
quence occupation patterns for each motif cluster on each sequence. (F)WebLogoPrinter output, displaying a logo for the motifs in a cluster.
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Figure 3. DynaMIT improves over the sensitivity of single tools. The figure displays the results of DynaMIT performance assessment on DNA and RNA
data sets. (A) displays average sensitivity (left), specificity (center) and Matthews correlation coefficient on each of the three DNA data sets (AM = markov
model generated sequences, AR = real sequences and MR = real sequences with lower signal to noise profiles). DynaMIT-2 employs only two of the
motif search tool used by DynaMIT (MEME and GLAM2) and the same integration strategy. (B) displays average sensitivity (left), specificity (center)
and Matthews correlation coefficient on the RNA data set for each tool. DynaMIT-2 employs the same motif search tool than DynaMIT, but a different
integration strategy.

HOMER and MDscan, which are instead tailored to motifs
identification in DNA ChIP-seq data sets.

On a general note, we suggest to include external data in
the analysis whenever possible, employing the functionali-
ties provided by the Matrix, KnownSites and RegionsInter-
section searchers. This may represent a considerable added
value; using knowledge about already determined binding
sites or employing a trans-factor binding motif matrix to
look for matches in the sequences of interest may allow to
uncover patterns which could otherwise go unnoticed.

Integration strategies are the core part of the DynaMIT
workflow: three of them, the Jaccard, MutualInformation
and PCA are devoted to the general task of robust motif
identification. These use only the amount of motif overlap
on sequences, and thus make no specific assumptions on the
motifs biology. The Biclustering strategy provides biclusters
of related motifs and sequences, thus making it the strat-
egy of choice to uncover motifs groups regulating exclusive
subsets of the input sequences. Two strategies are then ded-
icated to identifying cooperative/competitive patterns be-
tween trans-factors: these are the CoOccurrence and Prox-
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imity strategies. They employ the concomitant presence of
motifs on the same sequence (CoOccurrence) or the vicinity
of their sites (Proximity) and should be used when such a
regulatory phenomenon is suspected or sought after. Even-
tually, the Alignment strategy integrates the consensus of
the identified motifs: this can be used to group motifs with
slightly divergent sequence preference: one should keep in
mind, however, that instances and their positions are not
considered by this strategy.

Visualization modes eventually can illustrate various as-
pects of the results: three of them, the ClusterEvaluation,
BidimensionalSpace and Table, should be used to prioritize
clusters and study their composition. The other modes pro-
vide details on specific aspects: the PositionalDensity and
SequenceView components should be employed to study
the position of motifs on the sequences, while the Heatmap
mode report on motif presence/occupation of sequences.
Eventually, the WebLogo mode can be used to determine
the consensus for the various identified motif clusters.

A graphical recapitulation of these considerations, help-
ing in the choice of the most appropriate components, is
provided by a decision chart in Supplementary Figure S2.
Furthermore, the ConfigurationGenerator application pro-
vides default configurations for generic DNA, RNA, ChIP
and CLIP motif search cases; eventually, a set of more than
20 sample configuration files is also available for download
on DynaMIT website.

DynaMIT performance assessment

In order to understand DynaMIT performance profile, in
particular with respect to employing a single tool, we set out
to benchmark its performances on two “golden standard”
data sets, one for DNA and the other for RNA sequences.
The first one is an established benchmark derived from the
literature (31), and is composed of DNA sequences (de-
tails can be found in the Methods section) containing tran-
scription factor binding sites at known positions. The sec-
ond data set was generated by us and is composed by seven
sequence groups made of UTRs containing seven differ-
ent cis-elements (e.g. iron-responsive elements) and by three
groups made of randomly generated sequences containing
other three elements at known positions. We thus run both
DynaMIT (configured to employ a subset of available tools)
and the individual tools on these two benchmark data sets,
retaining only the best motif cluster (for DynaMIT) or the
best motif (for individual tools) from the identified ones; po-
sitions of these motif instances were then compared with the
known true motif positions, and sensitivity, specificity and
Matthews correlation coefficient (MCC) were computed as
weighted averages of all data sets (separately for DNA and
for RNA data sets).

Figure 3 displays the results of this analysis for both DNA
sequence data sets (3A) and for RNA ones (3B). As can be
readily observed, the most striking improvement obtained
when using DynaMIT lies in a considerably increased sen-
sitivity; this increase is bigger when integrating a bigger
number of tools (evident when comparing DynaMIT with
“DynaMIT-2” results, where the latter was run with one
tool less than the former). Furthermore, this increased sen-
sitivity is accompanied by only a modest reduction in speci-

ficity, far smaller than the aforementioned increase. The
MCC, which can be considered a comprehensive indicator
of tool performance, eventually puts DynaMIT as the best
or the second-best performer in both DNA and RNA data
sets.

On a global perspective this suggests that DynaMIT al-
lows for an increased motif detection power while keeping
false positive calls under control, thus realizing an over-
all better performance than individual tools. Obviously,
we used specific configurations of DynaMIT to run these
benchmarks: however, many more are possible and could
lead both to better or worse results with respect to the ones
presented. Therefore, we suggest trying different configura-
tions when employing DynaMIT, as a way of both tailoring
the toolkit to the task at hand and optimizing its perfor-
mances.

An example application: identifying the RNA motif bound by
HuR

To showcase the capabilities of this toolkit, we will now
describe three practical examples of its usage, focused on
post-transcriptional and transcriptional regulation of gene
expression.

The first deals with the identification of a motif with cou-
pled sequence/structure specificity, identified in a set of hy-
perconserved regions in the 3’UTRs of 23 human RNA-
binding proteins, as described in our previous work (34). In
this work, we manually combined the motifs obtained from
one sequence and one secondary structure motif search
tools, after having observed a marked similarity of their se-
quence consensus: this combined motif turned out to be a
binding site for the RNA-binding protein HuR (ELAVL1).
This appears to be a suitable case for applying DynaMIT,
and understanding whether this observation is retrievable
by executing it. We thus ran DynaMIT with the same two
tools (the configuration is described in the Methods section,
and all input and output files are available in the Supple-
mentary File 1), the AlignmentStrategy and multiple visu-
alization modes. Results from the ClusterEvaluationPrinter
and the WebLogoPrinter are displayed in Figure 4: as high-
lighted there, DynaMIT identifies a sequence-structure mo-
tif cluster (Cluster 4) which indeed contains the motifs we
had manually detected in the original publication. Further-
more (Figure 4A), this cluster scores at the top in terms of
overall score and has pretty high instances and consensus
coherence scores (only 5.4% and 13.5% lower than the top
scorer). The silhouette score is the lowest (although Clus-
ter 0 and 1 have one motif and thus their silhouette value is
0 by default) suggesting a higher heterogeneity of the clus-
ter, probably due to the presence of motifs of widely dif-
ferent length. Eventually, the consensus WebLogo for that
cluster (Figure 4B) shows its resemblance to the AU-rich
motifs typically bound by HuR, which has been confirmed
as a functionally relevant trans-factor in the previous study.
Given the coupled sequence/structure specificity of this mo-
tif (as originally determined by pull-down assays), it seems
evident that employing only one of these search tools would
have resulted in a much lower detection power: Weeder, in
particular, outputs several motifs which are scored compa-
rably to the “true” one, thus confusing results interpretation
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Figure 4. DynaMIT identifies the expected sequence-structure motif cluster. The figure displays the results of running DynaMIT on the first case example.
(A) displays ClusterEvaluationPrinter results, with the desired cluster (cluster 4) highlighted in red in the various plots. This cluster globally scores as the
best one (highest overall score). (B) displays the WebLogo produced by the WebLogoPrinter for the consensus of cluster 4, highlighting this is an AU-rich
motif as typically bound by HuR (as indeed experimentally confirmed in the paper from which data for this case example were obtained).

and potentially hiding this motif. Globally, we can conclude
that DynaMIT provides an increased detection power for
motifs with coupled sequence/structure specificity. Further-
more, it is able to reproduce a biologically relevant observa-
tion, scoring it accordingly.

An example application: ARE-BPs competitive/cooperative
patterns

The second example we present deals with a class of RBPs
binding to a widespread 3’UTR cis-element, the AU-rich
element (ARE). A recent work (35) analyzed the antago-
nistic binding pattern of two such ARE-binding proteins
(ARE-BPs), namely TTP (ZFP36) and HuR. We thus se-
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Figure 5. Multiple ARE-BPs clusters are identified by DynaMIT as potential co-regulators of TTP targets. The figure displays the results of running
DynaMIT on the second case example. (A) displays ClusterEvaluationPrinter results, with the expected TTP-HuR cluster (cluster 4) highlighted in red and
having the highest overall score. An interesting second cluster of potential ARE-BPs sites (Cluster 2) also emerges from the plot as the second best scorer.
(B) heatmap displaying the fraction of sequences potentially co-regulated by each pair of clusters (thus containing co-occurring instances of both clusters).
In particular, Cluster 2 and 3 reach 77.4%, with the other pairs having a much lower co-occurrence value.
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lected the 50 genes which responded the most to TTP over-
expression and extracted their 3’UTR exons sequences to
run DynaMIT. Our aim was to understand whether this
observation could be reproduced and, more in general, if
additional ARE-BPs may participate to the regulation of
these mRNAs. We thus configured DynaMIT to search for
TTP and HuR binding sites (through the RegionsIntersec-
tion searcher and their respective PAR-CLIP data sets), for
potential sites of other seven ARE-BPs (HNRNPA1, HN-
RNPA3, HNRNPC, HNRNPL, MEX3D, NCL and TIA1,
through their PWM matrices and the Matrix searcher), for
sites of one RBP not known to bind such elements (CELF3)
and for generic sequence motifs with MEME. Given the
potential overlap between binding sites of these ARE-BPs,
we reasoned that the Proximity strategy, clustering together
motifs whose instances are often within a certain distance
from one another (at most 5 nucleotides in this case), would
be the best choice. Eventually, several visualization modes
were selected (the configuration is described in the Meth-
ods section, and all input and output files are available in
the Supplementary File 2). Results displayed in Figure 5A
suggest that, aside from the top-scoring cluster contain-
ing TTP-HuR binding sites (Cluster 3, containing also only
three potential MEX3D sites), other ARE-BPs are consis-
tently observed to potentially regulate these mRNAs. These
form the second highest scoring cluster (Cluster 2) of prox-
imal sites, composed by CELF3, HNRNPA3, HNRNPC
and TIA1; furthermore, the overlap of sequences poten-
tially co-regulated by multiple clusters (Figure 5B) is par-
ticularly high for Cluster 2 and Cluster 3, reaching 77.4%.
This overlap is instead much lower for the other two clus-
ters (Cluster 0 and 1), suggesting these may represent dif-
ferent regulatory specificities. Globally, this suggests that
competition/cooperation with HNRNPA3, HNRNPC and
TIA1 may also participate to the regulation of TTP and
HuR targets, thus advocating for the adoption of a broader
analysis perspective. This is further testified by CELF3,
whose potential sites appear to be proximal to other ARE-
BPs sites, although this RBP is not known to bind such ele-
ments: given such proximity, also this RBP may thus influ-
ence the outcome of the regulatory pattern. This prediction
has been possible only by integrating multiple search tools
(empowered by external data), which provides an increased
ability to comprehensively consider the potential regulatory
mechanisms at play.

An example application: identifying CTCF binding specifici-
ties.

The last example we present attempts at performing motifs
identification in a high-throughput setting, employing thou-
sands of sequences derived from a ChIP-seq experiment (37)
of the CTCF transcriptional regulator, performed in the hu-
man HEK293T cell line.

CTCF has multiple zinc-finger domains that can be em-
ployed in different combinations to bind different DNA tar-
get sequences (38); it can work both as a transcriptional ac-
tivator and as a repressor, in a context-dependent manner
(38). We thus reasoned that identifying the motifs bound
by this protein could be harder than for other transcription
factors and that applying DynaMIT could make addressing

this task easier. We configured DynaMIT to run the Homer,
MDscan, MEME and Weeder searchers, use the Jaccard in-
tegration strategy (employing the overlap of different mo-
tifs instances to drive motif clustering) and output the re-
sults with the Table, ClusterEvaluation and WebLogo print-
ers (configuration, input and output files are available in the
Supplementary File 3).

Results displayed in Figure 6 highlight that the three most
frequent binding motif (37) are the three top-scoring clus-
ters identified by DynaMIT (Cluster 2, 1 and 0 as shown by
Figure 6A). In particular, one of these motifs (Cluster 1) was
identified by three of the four employed tools, thus support-
ing its strength and reliability. On the other end, two motifs
(Cluster 2 and 0) were retrieved only by a single tool (re-
spectively MDscan and Weeder) and would have most likely
been missed if working in a non-integrative fashion. Fur-
thermore, we can observe the cluster instance consensuses
to be slightly less defined than the known ones (as shown
by Figure 6B–D), probably because of noise due to includ-
ing as much as 5000 sequences in the motif search phase
(which was indeed chosen to test DynaMIT behavior with
noisy input data). Globally, however, the results suggest that
DynaMIT is able to overcome this type of noise and pro-
duce meaningful clusters even when the analyzed factor has
complex and composite binding specificity, as is the case for
CTCF.

DISCUSSION

We introduced here DynaMIT, a flexible and extensi-
ble toolkit aimed at motif identification and integration.
With its dynamic structure, it allows new components to
be plugged-in and used seamlessly along the many pre-
implemented ones provided. We thus think DynaMIT is
a very powerful workbench for studying motifs of multi-
ple derivations and types in combination, at an unprece-
dented level of integration. We included a wide number of
pre-implemented motif searchers, integration strategies and
visualization components in the toolkit: this enables users
to run DynaMIT right away without having to develop new
components, although one of its strengths lies in this possi-
bility.

One fundamental open issue in this type of analysis lies in
integrated motifs scoring and prioritization: we attempted
at providing a solution by implementing the ClusterEval-
uationPrinter, which takes into account several aspects of
the clusters and their composing instances. While evaluat-
ing parameters which are intrinsically related to the clus-
ters (i.e. coherence, size, etc.) is relatively straightforward,
the same cannot be said for motif instances: search algo-
rithms indeed often employ widely different scoring sys-
tems, not always directly comparable. Devising a uniform
scoring system, potentially by re-scoring motif instances in-
dependently, could be of considerable help in obtaining an
unbiased evaluation of the clusters.

While the overall structure of the toolkit will remain un-
changed in the future (due to its generality and flexibil-
ity), we will continue to improve and extend its compo-
nents: first of all, our efforts will focus on providing ad-
ditional motif searchers (especially newly developed ones).
In that respect, a rising area of research is the one of
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Figure 6. CTCF binding preferences can be identified by DynaMIT. The figure displays the results of running DynaMIT on the third case example.
(A) displays ClusterEvaluationPrinter results, with the three top-scoring clusters representing the most frequent CTCF binding specificities. (B) displays
cluster instances consensus for Cluster 2 as a WebLogo. (C) displays cluster instances consensus for Cluster 1 as a WebLogo. (D) displays cluster instances
consensus for Cluster 0 as a WebLogo.

discriminative/ranking-based tools such as SeAMotE (7)
and TEISER (39); while these algorithms require additional
data with respect to what is currently requested by Dyna-
MIT, this aspect can be addressed through the current con-
figuration system, thus making it possible to include such
tools. Concerning integration strategies, developing dif-
ferent integration paradigms (aside from clustering-based
ones) could provide further perspectives to observe this kind
of data. One potentially interesting approach consists in
trying to learn integrated motifs by considering only the
instances sequence, thus ignoring their grouping into mo-
tifs made by individual tools. Also new result visualization
modes will of course be implemented, with particular focus
on efficient ways to display the positional relationships be-
tween instances of the identified motif clusters: this could
potentially exploit the drawing approach of tools such as
Circos (40). Furthermore, a visualization mode highlight-
ing motif cluster instances and their overlap on the RNA
secondary structures could also be particularly useful.

Eventually, we are confident that the bioinformatics com-
munity will take on the challenge of implementing addi-

tional components for DynaMIT, further broadening its
usefulness and applicability.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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