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ABSTRACT: The intersection line information of the point cloud
between the coal wall and the roof can not only accurately reflect
the direction information of the scraper conveyor but also provide
a preliminary basis for realizing the intelligent coal mine. However,
the indirect method of using deep learning to segment the point
cloud of coal mine working face cannot make full use of the rich
information provided by the point cloud data. The direct method
of using deep learning to segment the point cloud ignores the local
feature relationship between points. Therefore, we propose to use
dynamic graph convolution neural networks (DGCNNs) to
segment the point cloud of the coal wall and roof so as to obtain
the intersection line between them. First, in view of the
characteristics of heavy dust and strong electromagnetic interfer-
ence in the environment of the coal mine working face, we have installed an underground inspection robot so that we use light
detection and ranging to obtain the point cloud of the coal mine working face. At the same time, we put forward a fast labeling
method of the point cloud of the coal mine working face and an efficient training method of the depth neural network. Second, on
the basis of edge convolution, being the greatest innovation of DGCNNs, we analyze the influence of the number of layers, K value,
and output feature dimension of edge convolution on the effect of DGCNNs segmenting the point cloud of the coal mine working
face and obtaining the intersection line of the coal wall and roof. Finally, we compare DGCNNs with PointNet and PointNet++. The
results show that the DGCNN exhibits the best performance. What is more, the results provide a research foundation for the
application of DGCNNs in the field of energy. Last but not least, the research results provide a direct and key basis for the
adjustment of the scraper conveyor, which is of great significance for an intelligent coal mine working face and accurate construction
of a geological information model.

1. INTRODUCTION

Coal is a combustible solid that is formed through complex
chemical and physical reactions.1 As the core technical support
for safe and efficient production of the coal mine, the
intelligent coal mine is an important direction for the
development of fossil fuel-related fields.2−4 Due to the
complexity and limitations of the underground environment
and the influence of coal dust and water mist, as well as
electromagnetic interference in the workplace, the accurate
acquisition of the direction information of the scraper
conveyor has become an urgent problem to be solved, which
can realize the intelligent coal mine working face.5−7

A scraper conveyor not only loads and transports falling coal
but also is the track of a shearer. The existing research
generally obtains the direction information of the scraper
conveyor by detecting the position of the shearer. Among
them, in the research of inertial navigation technology, Einicke
et al.8 used inertial elements to locate the shearer, studied the
positioning error compensation technology, and proposed the
shearer positioning method based on the minimum variance

smoothing filter. In the research of the combined positioning
method, Yang et al.9 studied the error compensation method of
a strapdown inertial navigation system. By establishing the
error compensation model, the accumulated error of sensors
on the shearer is reduced and the detection accuracy of the
inertial navigation system is improved. Fan et al.10 used a
strapdown gyroscope as the main positioning system and used
wireless sensor networks to align the strapdown gyroscope
regularly so as to eliminate the accumulated error of inertial
elements working for a long time. However, the above-
mentioned methods have their own defects. The vibration of
the shearer will greatly reduce the sensing accuracy of the
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gyroscope. The way of obtaining the positioning of the shearer
through an inertial navigation system will cause large
cumulative errors. What is more, the combined positioning
method still cannot avoid the inherent defects of inertial
navigation. The correction error will directly affect the
accuracy of the inertial navigation system. If the correction
system is disturbed, the combined positioning accuracy will be
seriously affected.11 Most importantly, to realize the position-
ing of the shearer in the whole working face, we not only need
inertial navigation sensors with higher accuracy, increasing the
technical cost, but also need to study the combined positioning
method with high accuracy and low cost.
Lasers have the characteristics of good unidirectionality and

strong anti-interference ability. Compared with visible light,
the laser has stronger dust fog penetration ability. Also, the
laser point cloud can more accurately reflect the spatial
relationship of various parts in the coal mine working
face.12−15 In addition, the intersection line of the coal wall
and roof can reflect the cutting track of the shearer and the
direction information of the scraper conveyor. Therefore, we
segment the laser point cloud of the coal wall and roof through
the spatial feature of point cloud data, so as to obtain their
intersection line information, which can provide a key basis for
the straightening and inclining of the scraper conveyor. This
research can provide the premise and direct data basis for
building an accurate geological information model of the coal
mine working face. Most importantly, it is of great significance
for the realization of an intelligent and unmanned coal mine
working face.
At present, the field of the point cloud segmentation

algorithm has been developed and improved. According to
different segmentation principles, there are three traditional
methods of point cloud segmentation.16−18 The first one is the
point cloud segmentation algorithm based on the boundary. In
principle, the segmentation method based on the boundary is
to detect the boundary between regions in the point cloud, so
as to find the points whose geometric features (such as normal
vector or curvature) change quickly, and then to complete the
segmentation of the point cloud. In the research of this aspect,
Woo et al.19 divided the point cloud through the spatial grid
and used the normal vector deviation as the basis for further
subdivision of the point cloud grid to realize the point cloud
segmentation. The other is the point cloud segmentation
algorithm based on model fitting. This method mainly
parameterizes the structural elements of objects (such as
plane, surface, cylinder, etc.) in the point cloud so as to realize
the point cloud segmentation by the model equation.
Limberger and Oliveira20 extended the classic kernel-based
hough transform (KHT) to 3D space so as to realize the point
cloud segmentation in the point cloud with irregular
distribution and noise. The last one is the point cloud
segmentation method based on clustering. The method regards
the points with certain geometric parameters as clusters.
Sampath and Shan21 first calculated the probability that each
point in the point cloud can be used as the clustering center
and then used fuzzy k-means to realize the point cloud
segmentation. Yang et al.22 designed an improved breadth first
search algorithm to update the clustering of point clouds so as
to realize the segmentation of point clouds.
However, the segmentation method based on boundary

often requires a large amount of computation, and it is easily
affected by the environmental noise; therefore, the segmenta-
tion effect of scattered and irregular point clouds is not

ideal.23,24 In addition, the disadvantage of the segmentation
method based on model fitting is that the threshold is usually
fixed in the process of model parameter calculation, and its
segmentation accuracy and efficiency are affected by the point
cloud source to a certain extent, so it cannot adapt to the
segmentation of complex point cloud environment with
multiple geometric types.25,26 The disadvantage of point
cloud segmentation based on clustering is that the clustering
criteria are not unified. Different clustering methods are often
only suitable for specific types of point clouds, and the
portability of these methods is poor. What is more, the results
of point cloud segmentation based on clustering are often
prone to small-scale point cloud clustering, which needs post-
processing (such as clustering merging).27

In recent years, with the extensive application of deep
learning in computer vision, image processing, and other fields,
deep learning has been greatly developed.28−32 The deep
learning methods of point cloud segmentation are mainly
divided into indirect methods and direct methods. As point
cloud is a kind of unstructured data distributed in 3D space, it
is quite different from image data in organization and
expression. Therefore, when the deep neural network
(DNN) is applied to the point cloud segmentation, it is
necessary to change the modality of the point cloud, and then,
we use different DNNs to get the corresponding results.33−35

In the process of transforming the point cloud into a 2D image,
Lawin et al.36 transformed the input point cloud into view
images such as depth and color through projection and then
sent these generated view images to convolution neural
networks (CNNs) to realize the segmentation of the point
cloud. Wang et al.37 rendered 3D point clouds from different
perspectives to get 2D images and realized the segmentation of
point clouds by using multiview CNNs (MVCNNs). Zhao et
al.38 transformed the point cloud into a multiscale feature map,
then used the CNN to segment the point cloud, and optimized
the research results by using the traditional machine learning
method. In the process of transforming the point cloud into
3D voxels, Zhou and Tuzel39 divided the point cloud into
equidistant 3D voxels, introduced the voxel feature coding
layer in VoxelNet, and transformed a group of points in each
voxel into unified features for segmentation. Wu et al.40

expressed the point cloud as the probability distribution of
binary variables on the 3D voxel grid through ShapeNets and
used the convolution depth confidence network to process the
point cloud. Graham et al.41 proposed sparse convolution
operation and constructed sparse convolution networks to
segment point clouds in voxels. The network pays more
attention to the occupied voxels, reduces unnecessary
calculation, and achieves better segmentation results. Qi et
al.42 of Stanford University creatively proposed a deep learning
network structure PointNet, which can directly process point
cloud data, breaking the bottleneck in the field of point cloud
research and playing a pioneering role in the development of
deep learning in the field of point cloud data. PointNet directly
uses the original point cloud as input, which need not convert
the point cloud to other formats and uses a symmetric function
to solve the disorder problem of the point cloud. In the process
of segmentation, PointNet uses the shared multilayer
perceptron to replace the convolution operator and finally
gets the classification probability of each point so as to
complete the segmentation of the input point cloud.
However, in the indirect method, the depth learning method

based on 2D projection will lose part of the spatial information
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in the process of point cloud projection, resulting in the loss of
point cloud data information, which affects the final
segmentation accuracy.43 The disadvantage of point cloud
segmentation based on the voxelization method is that it is
difficult to extract the fine-grained features of point cloud data;
therefore, this method cannot make full use of the rich
information provided by point cloud data.44 Although
PointNet has a pioneering achievement in the process of
directly extracting point cloud features from point cloud data
for segmentation, it does not consider the local neighborhood
information of point cloud data. The feature extraction process
of PointNet on each point of the point cloud only considers
the global features in the point cloud data and ignores the local
feature relationship between points.45 Dynamic graph con-
volution neural networks (DGCNNs) are new DNNs for
processing point clouds. For each point in the point cloud data,
the DGCNN not only considers the features of the current
point but also considers the features of k points nearest to the
center point in the current feature space, which takes into
account the relationship between the point and the adjacent
edge, so that local neighborhood features can be extracted
from the local graph composed of k points.46 The DGCNN
takes into account both global and local features and considers
the relationship between points, which greatly reduces the loss
of effective information of the target. It has a broad application
prospect in point cloud processing in energy engineering,
bioengineering, and other fields.47 Therefore, we put forward
the DGCNN as a DNN to segment the point cloud of the coal
mine working face and deeply analyze and improve its network
architecture so as to make the DGCNN better learn the feature
information of the point cloud of the coal mine working face
and obtain better results.

Most importantly, the application of DGCNNs in point
cloud segmentation of the coal mine working face is still blank.
At the same time, the research team of the author has installed
a special track to run the inspection robot outside the scraper
conveyor and has obtained the point cloud of the coal mine
working face by using the light detection and ranging (LiDAR)
on the inspection robot. According to the author’s previous
research results, the markers in the coal mine working face can
be found through DGCNNs, and then, the point cloud
coordinate of the coal mine working face can be converted to
the geodetic coordinate system.48 However, further research
still needs to be carried out. Whether DGCNNs can segment
the coal wall and the roof and accurately obtain the
intersection line of the coal wall and roof has not been
known, and whether DGCNNs can achieve a good application
effect in the field of energy and geology has also not been
known. Therefore, we propose to use DGCNNs to process the
point cloud of the coal mine working face so that the depth
neural network can better learn the local and global features of
the point cloud of the coal mine working face and fit the point
cloud of the coal wall and roof after segmentation, so as to
obtain the intersection line information of the two, which
provides a direct data basis for the straightening and inclining
adjustment of the scraper conveyor, provides a premise for the
intelligent height adjustment of the shearer, and makes a
beneficial exploration for the realization of intelligent and
unmanned mining. At the same time, it provides a new method
to obtain the intersection line of coal wall and roof in coal
mine working face.
The rest of this paper is organized as follows: Section 2

introduces the details of our proposed DGCNN, as well as the
materials and methods of making data sets. Section 3 describes

Figure 1. Point cloud segmentation of the coal mine working face by the DGCNN (top) and to learn the features of the point cloud of the coal
mine working face by the DGCNN (bottom).
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the experiments and result analysis. The conclusions and
further work are detailed in the last sections.

2. MATERIALS AND METHODS

At present, in intelligent mining, the segmentation method of
the point cloud by the deep learning method is blank. In
addition, the indirect method of using deep learning to deal
with the point cloud of the coal mine working face will lose
part of the spatial information of the point cloud and cannot

make full use of the rich information provided by the point
cloud data. However, the direct method of using deep learning
to deal with the point cloud of the coal mine working face
ignores the local feature relationship between points. We
propose to use DGCNNs to learn the feature of the point
cloud to segment the point cloud of the coal mine working face
(Figure 1), so as to obtain the intersection line of the coal wall
and roof, which provides the key basis for the straightening and

Figure 2. Location of the study site.

Figure 3. Coal mine working face in Yujialiang coal mine (top) and the underground inspection robot in the coal mine working face (middle) and
the point cloud of the coal mine working face collected by LiDAR (bottom).
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inclining adjustment of the scraper conveyor. It also provides a
premise for the realization of unmanned mining.
2.1. Materials and Methods of Making Data Sets. The

research team of the author has installed an expensive
underground inspection robot in Yujialiang mine in Yulin
City, Shaanxi Province, China (Figure 2). The point cloud of
the coal mine working face is collected by LiDAR on the
underground inspection robot, as shown in Figure 3. Because
the length of the whole coal mine working face is too long, in
order to facilitate observation, we selected part of the coal
mine working face point cloud for visualization.
Figure 3 shows that LiDAR runs along the special track

outside the scraper conveyor in the coal wall extension

direction so as to collect the point cloud of the whole coal
mine working face. We use the “segment” function of Cloud
Compare software to batch label the point cloud of the coal
mine working face. The corresponding coordinate range and
labeling method of the point cloud of the whole coal mine
working face are shown in Figure 4.
We randomly select a section of the point cloud of the coal

mine working face within the range of 0−300 m of the x-axis,
so as to realize the training of different depth neural network
models, and let the depth neural network fully learn the
features of the point cloud of the coal mine working face, as
shown in Figure 5. At the same time, we take the remaining 50

Figure 4. Coordinate range and marking method of the point cloud of the whole coal mine working face.

Figure 5. Point cloud training depth neural network in the coal mine working face.
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m of the point cloud in the coal mine working face as the test
set.
As shown in Figure 5, we randomly select a section of the

point cloud within 0−300 m of the coal mine working face to
train the neural network. The first three digits of each point in
each section of the point cloud are the 3D coordinates of the
point, and the last digit represents the category label of the
point. We use the abovementioned method not only to realize
the fast labeling of the point cloud of the coal mine working
face but also to realize the efficient and simple training of the
DNN model without actually dividing the point cloud of the
coal mine working face into multiple training data.
2.2. Edge Convolution Method in DGCNNs. In this

study, a directed graph is used to represent the structure of the
point cloud in the coal mine working face,49,50 as shown in eq
1

ν ε=G ( , ) (1)

In eq 1, ν is the vertex, ν = [ν1, ν2, ......νn]
T and εis the edge,

ε ∈ ν × ν. According to the local graph structure of the center
point xi, we can find that the nearest point to the point
xiisxji1,···, xjik, and the adjacent points correspond to the
directed edges(i, ji1),···, (i, jik), respectively. The features of
these edges can be expressed as eq 2.

β ξ= − = [ · − + · ]Θe h x x x x x x( , ) ReLU ( )ij i j i j i i (2)

where hΘ(·) is the edge feature extraction function, Θ is the
hyperparameter to be learned by hΘ(·), Θ = (β1,..., βi, ξ1, ..., ξi),
and i is the number of output channels. In DGCNNs, the input
of the first level edge convolution layer is the point cloud X0,
and the output of the L layer edge convolution layer can be
expressed as eq 3

= { } ⊆X x x R, ..., n
L

1
L L FL

(3)

where N is the number of points in the point cloud, R is the
feature space, and F is the dimensional feature information of
points. The edge features around the center point of the L
layer in the DGCNN are determined by the k nearest neighbor
points xji1, ···, xjik around the center point, and the update of
the center point of the L+1 layer can be expressed as eq 4

= θ
+

∈Ωx h x xmax ( , )i j i j i j
L 1

:( , )
L L L

(4)

where max represents the maximum pooling operation and Ω
is the receptive field area composed of the center point and the
adjacent points. In practice, edge convolution computes the
features of all the associated edges and the features of each
vertex to obtain the high-dimensional features of the current
graph structure. The overall framework of edge convolution in
the DGCNN is shown in Figure 6.
As shown in Figure 6, the edge convolution module contains

local neighborhood information, and it can obtain global
information by stacking, that is, each center point can
potentially represent a very long distance in the feature
space. However, when the number of edge convolution layers
reaches a certain number, each point will be too smooth so
that the feature differentiation of each point is not obvious,
which will affect the segmentation effect of the depth neural
network on the point cloud. Therefore, we study the point
cloud segmentation effect of edge convolution with different
layers in Section 3.3.

2.3. K-Nearest Neighbor Graph Algorithm in Edge
Convolution. The receptive field of conventional convolution
will affect the effect of the DNN. The K-nearest neighbor
(KNN) graph algorithm provides the range of the receptive
field for edge convolution in DGCNNs, and the K value in the
KNN graph algorithm will also affect the effect of the point
cloud processing in DGCNNs.51 In the KNN graph algorithm,
in order to compare the differences between training samples
and test samples, the Euclidean distance is selected for
comparison, such as eq 5

∑= −
=

X X x xdist( , ) ( )
i

m

i i1 2
1

2 1
2

(5)

where X1 and X2 represent two compared samples by the
Euclidean distance and xi1 and xi2 represent the attribute values
of X1 and X2 at the i-th position, respectively.
The rules of the KNN graph algorithm are shown in eq 6

∑ δ̅ = ∈ ̅ ̅ ̅p x c d x x y y c( , ) KNN( )dist( , ) ( , )j i i j (6)

Figure 6. Structure of edge convolution (top) and edge convolution aggregate features of edges (bottom).
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where x̅is the test sample, yii̅s the training sample, dist(x̅, yi)̅ is
the similarity between the two samples, and cj is the set of
neighborhood samples of x̅, which belongs to category j.
Generally, the attributes of samples are determined by eq 7

δ ̅ =
̅ ∈

̅ ∉

l
m
ooo
n
ooo

y c
y c

y c
( , )

1

0i j
i i

i i (7)

For a target point (center point) xi, the nearest k points can
be found by the KNN graph algorithm, and a local graph about
the center point xican be established, as shown in Figure 7.

As shown in Figure 7, different K values directly affect the
number of closest points and edge features of center point xi in
the current point cloud and then affect the feature aggregated
by the center point. Therefore, in Section 3.4, we analyze the
influence of different K values on the point cloud segmentation
of the coal mine working face by DGCNNs.
2.4. Output Dimension of Edge Convolution. In

DGCNNs, the input of the first edge convolution layer is a
point cloud X composed of n points, which can be expressed
by eq 8

= ∈ =X x R( )i i
nF

1 (8)

where X is the current point. F can include not only the 3D
coordinates of each point but also the RGB information and
normal information of each point. In this study, each point
cloud only has 3D coordinate information, so F = 3. After edge
convolution, the feature dimension of each point increases, as
shown in Figure 8.
Figure 8 shows that after the edge convolution, the feature

dimension information of the point cloud increases greatly so
that the DGCNN model can learn the features of each point
more abstractly. But very high feature dimension information
will not necessarily have a good impact on the results.
According to the existing literature,23,52 the higher the

feature dimension of the point cloud is, the sparser the training
data is and the lower the generalization ability of the model will
be, and even cause an over fitting phenomenon, which will
affect the performance of the network. The feature dimension

of the point cloud cannot be too low because if the feature
dimension of the point cloud is too low, the point cloud
processed by the symmetric function will lose most of the
information, thus affecting the effect of the network. It can be
seen that it is very important to select the appropriate feature
dimension of the point cloud. Therefore, this study analyzes
the influence of the feature dimension of the point cloud
output from edge convolution on the segmentation effect of
DGCNNs in Section 3.5.

3. RESULTS AND DISCUSSION
3.1. Data Set Description. We make the data set

according to the method described in Section 2.1 and take
the point cloud of 0−300 m coal mine working face in the X
direction as the training set and the point cloud of more than
300 m coal mine working face in the X direction as the test set.
The number of point clouds of each category in the data set
and the total number of point clouds of the coal mine working
face are shown in Table 1.

The shearer in the coal mine working face mines along the X
direction. Through Figure 4 of Section 2.1, we know that the
range of the point cloud in the coal mine working face is large
in the X direction and small in the Y and Z directions. In order
to observe conveniently and intuitively the effect of point cloud
segmentation by DGCNNs and other DNNs, we select a
section of the point cloud test set of the coal mine working face
for visualization (the range of the point cloud in the X
direction is 320−330 m, the range in the Y direction is −3∼4
m, and the range in the Z direction is −0.5−1 m), as shown in
Figure 9.

Figure 7. Different K values affect edge convolution to extract local
features.

Figure 8. After edge convolution, the dimension of the point cloud
increases.

Table 1. Number of Point Clouds in the Data Set

point cloud
category roof coal wall

part of hydraulic
support

number of point
clouds

2,960,233 3,141,503 4,864,688

proportion (%) 26.993 28.647 44.360
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3.2. Experimental Details. The hardware configuration of
our experimental workstation is as follows: CPU is Intel Core-
I7 9700, GPU is NVIDIA GTX 2080 Super, and RAM is
16GB. Software configuration: TensorFlow 2.3.0 and Python
3.7.9.
We set the momentum to 0.9, batch size to 32, learning rate

to 0.001, and dropout rate to 0.5. Rectified Linear Unit
(ReLU) is selected as the activation function, and its
expression is shown in eq 9.53−55

=
≥
<

l
mo
no

x
x x

x
ReLU( )

0
0 0 (9)

where x is the input of the upper network. The loss function is
expressed as eq 10

∑= − ̂ + − ̂ − ̂
=

L y y y ylog (1 )log(1 )
i

N
i i i i

1

( ) ( ) ( ) ( )

(10)

where N is the number of samples and y is the actual value of
samples.
Compared with the object classification and recognition of

the 3D point cloud, the segmentation of the 3D point cloud
model needs to recognize the category of each point more
precisely, which is a more challenging task. In order to obtain
the intersection line of the coal wall and roof, we use different
depth neural networks to segment the coal wall and the roof in
the point cloud of the coal mine working face. Then, the point
cloud coordinates on the intersection line of the coal wall and
roof are obtained by fitting the point cloud. We use accuracy to

evaluate the segmentation effect of the DNN and analyze the
ability of different depth neural network models to deal with
3D point cloud fine-grained tasks. The expression of accuracy
is as eq 11

= +
+ + +

accuracy
TP TN

TP FP TN FN (11)

where TP is the number of correctly divided positive cases, FP
is the number of wrongly divided positive cases, FN is the
number of wrongly divided negative cases, and TN is the
number of correctly divided negative cases.
The point cloud coordinates on the actual intersection line

of the coal wall and the roof have been manually obtained and
marked with the assistance of Matlab R2019a software. We use
the average error to evaluate the intersection line results
obtained by segmenting the point cloud with different depth
neural networks. The calculation equation for the average error
of the corresponding point cloud on the intersection line is eq
12

=
∑ − + − + −= x x y y z z

n
error

( ) ( ) ( )i
n

mi ri mi ri mi ri1
2 2 2

(12)

where n is the number of point clouds on the current
intersection line, xm, ym, and zm correspond to the 3D
coordinates of the point clouds on the intersection line found
by the depth neural network, respectively, and xr, yr, and zr
correspond to the actual 3D coordinates of the point clouds on
the intersection line, respectively.

Figure 9. Visualization part of the test set of the point cloud in the coal mine working face.

Figure 10. Accuracy of different numbers of edge convolution layers.
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3.3. Results of Different Number of Edge Convolu-
tion Layers. The different structures of the neural network
will affect the segmentation effect of the point cloud in the coal
mine working face, which directly affects the error between the
intersection line obtained by the neural network and the real
intersection line. We have obtained the accuracy and loss of
the point cloud of the coal mine working face segmented by
DGCNNs under different numbers of edge convolution layers,
as shown in Figures 10 and 11.
As shown in Figures 10 and 11, when the number of edge

convolution layers is four, the accuracy of DGCNNs is the
largest and the loss is the smallest. With the increase of the
number of edge convolution layers, the accuracy first increases
and then decreases, and the loss first decreases and then
increases. The reason for the abovementioned phenomenon is
that the edge convolution in DGCNNs can make the center
point continuously aggregate the neighbor information nearby,
which makes DGCNNs better complete the fine-grained task
of the point cloud. However, when the number of edge

convolution layers increases to a certain number, the
aggregated information of each point cloud will be too
smooth, which will affect the segmentation effect of DGCNNs.
Even if there is no limit on the number of edge convolution
layers, each point will aggregate the global information, and the
representation of all points will converge to a fixed point.
Under the DGCNN model of different numbers of edge

convolution layers, we visualize the segmentation effect of the
coal wall and the roof in the point cloud of the coal mine
working face and obtain the change of the intersection line
error, as shown in Figure 12. Among them, the point cloud of
the coal wall is magenta, the point cloud of the roof is red, and
the point cloud of part of hydraulic support is green. The
yellow number at the top of the figure is the average error of
the intersection line within the selected range, and the blue
number is the average error of the intersection line of the coal
mine working face corresponding to the whole test set.
From Figure 12, we can see that when the number of edge

convolution layers is four, the local error and global error are

Figure 11. Loss of different numbers of edge convolution layers.

Figure 12. Segmentation effect and intersection line error of the point cloud in the coal mine working face. (a) Number of edge convolution layers
is one, (b) number of edge convolution layers is two, (c) number of edge convolution layers is three, (d) number of edge convolution layers is four,
(e) number of edge convolution layers is five, and (f) number of edge convolution layers is six.
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the smallest. It shows the correctness of the number of edge
convolution layers we selected in the point cloud segmentation
of the coal mine working face. The less the number of edge
convolution layers, the better. Regarding accuracy and loss,
with the increase of the number of edge convolution layers,
accuracy first increases and then decreases, loss first decreases
and then increases, and the segmentation result changes from
bad to good and then to bad. With the increase of the number
of edge convolution layers, the local error and global error of
the intersection line under different numbers of edge
convolution layers first decrease and then increase, and the
result also changes from bad to good and then to bad. After
stacking a large number of network layers, the general deep
learning model will achieve better results because of its strong
representation ability. While, in the DGCNN, after stacking a
small number of edge convolution layers, the network achieves
the best effect. If the DGCNN continues to increase the
number of edge convolution layers, the result will become
worse because edge convolution contains the operation of
aggregating the features of neighbor points. By increasing the
number of edge convolution layers, the center point can
potentially represent the information features of points far

from the center point and then fully and effectively describe
the local features. When the number of edge convolution layers
increases to a certain number, the aggregated information of
each point will be too smooth, that is, there is no obvious
discrimination of each point, which will affect the segmentation
effect of the DGCNN and then affect the local error and global
error of the intersection line.
According to the abovementioned research, the number of

edge convolution layers in the DGCNN cannot be too much
or too little. Because the intersection line of the coal wall and
roof can reflect the direction information of the scraper
conveyor, we hope that the smaller the error of the intersection
line, the better so as to provide a more accurate data basis for
the straightening of the scraper conveyor. Therefore, in
addition to improving the number of edge convolution layers,
how to further reduce the error is one of the main research
directions in our future work.

3.4. Comparison of Different K Values. After elucidating
the influence of the layer number of edge convolution layers on
the point cloud of the coal mine working face segmented by
DGCNNs, we analyze the accuracy and loss of DGCNNs with

Figure 13. Accuracy with different K values.

Figure 14. Loss of different K values.
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different K values of the KNN graph algorithm in edge
convolution, as shown in Figures 13 and 14.
As shown in Figures 13 and 14, when the K value is 30, the

maximum accuracy and the minimum loss are obtained, and
the segmentation performance of the DGCNN is the best.
With the increase of the K value, the accuracy first increases
and then decreases, and the loss first decreases and then
increases. The reason for this phenomenon is that when the K
value is too small, the receptive field of edge convolution is too
small, and the DGCNN cannot effectively describe the local
fine-grained feature; therefore, it cannot fully learn the local
feature of the point cloud in the coal mine working face. When
the K value is too large, the DGCNN ignores the global
information and falls into the learning of local details of the
point cloud in the coal mine working face.
Under different K values, the visualization of the DGCNN

segmentation point cloud of the coal mine working face and
the local error and global error of the intersection line are
shown in Figure 15.

As shown in Figure 15, the point cloud of the coal wall is
blue, the point cloud of the roof is green, and the point cloud
of part of hydraulic support is yellow. The cyan number at the
top of the figure is the average error of the intersection line
within the selected range of visualization, and the red number
is the average error of the intersection line of the coal mine
working face corresponding to the whole test set. We find that
when the K value is 30, the accuracy of the DGCNN is the
largest and the loss of the DGCNN is the smallest, and we get
the best segmentation effect. When K is 30, the local error and
global error of the intersection line are the smallest whether in
the coal mine working face point cloud of the visual local
section or in the coal mine working face point cloud of the
whole test set. When K is greater than 30 or K is less than 30,
the accuracy decreases and the loss, local error, and global
error increase. The abovementioned results show the correct-
ness of selecting a K value of 30 when segmenting the coal
mine working face point cloud. From this phenomenon, we
also find that the K value affects the range of the receptive field

Figure 15. Point cloud segmentation effect and intersection line error in the coal mine working face under different K values. (a) K value is 20, (b)
K value is 25, (c) K value is 30, (d) K value is 35, and (e) K value is 40.

Figure 16. Accuracy of different feature dimensions.
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of edge convolution in the DGCNN. By increasing the K value,
the center point can aggregate more information of neighbor
points. The DGCNN can more fully learn the local features of
the point cloud in the coal mine working face and then
improve the segmentation effect of the point cloud in the coal
mine working face. However, when the K value is too large, the
central point looks for too many neighbor points to build the
local graph of the central point, which leads to the decline of
the segmentation effect of the point cloud in the coal mine
working face. The DGCNN learns the features of the coal
mine working face point cloud in a large neighborhood, which
makes the overall model simple, falls into the learning of local
details of the point cloud, and finally affects the performance of
the DGCNN.
3.5. Comparison of Different Dimensions. We analyze

the influence of different feature dimensions on the accuracy
and loss of the DGCNN, as shown in Figures 16 and 17.

Figures 16 and 17 show that under the current point cloud
data of the coal mine working face, when the output dimension
of edge convolution is 64, the DGCNN has the maximum
accuracy and the minimum loss. When the output dimension
of edge convolution is 32, the DGCNN has the minimum
accuracy and the maximum loss. When the dimension is 64,
not only the parameters of the DGCNN model are low but
also the network performance is maintained. In addition, we
can see that with the increase of the dimension, accuracy first
increases and then decreases and loss first decreases and then
increases. The reason for the abovementioned phenomenon is
that in this study, the data structure of the point cloud is a set
of coordinates of points in 3D space, and the amount of
information that the point cloud can provide is relatively
limited. Through the dimension elevation of the point cloud,
the information loss of the point cloud processed by the
symmetric function can be avoided, and the DNN can learn
the features of the point cloud more deeply. However, in a

Figure 17. Loss of different feature dimensions.

Figure 18. Segmentation effect and the intersection line error of the coal mine working face under different dimensions. (a) Dimension is 32, (b)
dimension is 64, (c) dimension is 128, (d) dimension is 256, (e) dimension is 512, and (f) dimension is 1024.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c04393
ACS Omega 2021, 6, 31699−31715

31710

https://pubs.acs.org/doi/10.1021/acsomega.1c04393?fig=fig17&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c04393?fig=fig17&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c04393?fig=fig17&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c04393?fig=fig17&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c04393?fig=fig18&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c04393?fig=fig18&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c04393?fig=fig18&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c04393?fig=fig18&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c04393?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


certain data set, too much feature dimension of the point cloud
is not beneficial to the expression and learning of the point
cloud model, which not only increases the complexity of the
network but also leads to smaller and smaller sample density
and reduces the generalization ability of the model, and even
causes the over fitting phenomenon, which affects the
performance of the network.
Under the different feature dimensions of the output of the

edge convolution, we visualize the segmentation effect of the
point cloud of the coal mine working face by the DGCNN and
show the intersection line error, as shown in Figure 18.
As shown in Figure 18, the point cloud of the coal wall is

magenta, the point cloud of the roof is red, and the point cloud
of part of hydraulic support is green. The yellow number at the
top of the figure is the average error of the intersection line

within the selected range, and the blue number is the average
error of the intersection line of the coal mine working face
corresponding to the whole test set. We find that when the
dimension is 64, not only the accuracy of the DGCNN is the
largest and the loss of the DGCNN is the smallest but also the
local error and global error of the intersection line are the
smallest. After edge convolution, we increase the dimension of
the point cloud with only 3D coordinate information to 64, so
that the DGCNN model can learn the features of each point
more abstractly, and obtain the best segmentation effect and
the most accurate intersection line. In addition, with the
increase of the dimension of the point cloud, the accuracy first
increases and then decreases, the loss first decreases and then
increases, and the local error and global error first increase and
then decrease. Very high feature dimension information may

Figure 19. Accuracy and loss of different networks.

Figure 20. Results of different depth neural network models. (a) Ours, (b) PointNet++, and (c) PointNet.
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not have a good impact on the results. This is because under
the current coal mine working face point cloud data set, the
more the feature dimensions of the point cloud, the more
sparse the training data. On the one hand, it will make the
network appear bloated, on the other hand, it will reduce the
generalization ability of the model, which will affect the
performance of the network. However, the DGCNN needs to
use the symmetry function to ensure the disorder of the point
cloud. When the feature dimension of the point cloud does not
rise to a certain extent, the feature dimension of the point
cloud is relatively low. The point cloud processed by the
symmetric function will lose most of the information, which
will also affect the segmentation effect of the DGCNN and the
accurate acquisition of the intersection line.
3.6. Comparison of Different Networks. At present, no

researchers have used DNNs to segment the point cloud of the
coal mine working face, and no researchers have obtained the
intersection line of the coal wall and roof point cloud. The
research in these two aspects is blank. Therefore, we specially
built PointNet and PointNet++ models and then compared
them with DGCNNs, which determines the number of layers,
K values, and output feature dimensions of edge convolution.
The accuracy, loss, local error, and global error of the
intersection line are analyzed, and the experimental results are
deeply studied. The accuracy and loss of DGCNNs, PointNet,
and PointNet++ in segmenting the same coal mine working
face point cloud are shown in Figure 19.
Figure 19 shows that the accuracy of the DGCNN is greater

than the corresponding results of PointNet and PointNet++,
and the loss of the DGCNN is less than the corresponding
results of PointNet and PointNet++. The DGCNN shows the
best performance. The reason for the abovementioned results
is that PointNet extracts the features of each point
independently, without considering the information of local
neighbor points, resulting in the lack of learning local features
of the point cloud and the loss of local features of the point
cloud. Although PointNet++ samples point clouds on the basis
of PointNet, PointNet++ uses PointNet as a regional feature
extractor to extract and integrate local features of point clouds
into global features layer by layer, which means that in the
process of point cloud segmentation, PointNet is still used in
PointNet++. The features of the point cloud are extracted
separately, and the learning of local features is still insufficient.
We visualize the results of point cloud segmentation of the

coal mine working face with different depth neural network
models and display the local error and global error of the
intersection line at the same time, as shown in Figure 20.
As shown in Figure 20, the point cloud of the coal wall is

blue, the point cloud of the roof is green, and the point cloud
of part of hydraulic support is yellow. The cyan number at the
top of the figure is the average error of the intersection line
within the selected range of visualization, and the red number
is the average error of the intersection line of the coal mine
working face corresponding to the whole test set. It can be
seen that the local error and global error obtained by the
DGCNN are far lower than the corresponding results of
PointNet and PointNet++, showing the best performance.
PointNet constructs a DNN structure that can directly input
the 3D disordered point cloud and output the classification
results of the whole point cloud or the segmentation label of
each point. Although PointNet has pioneering achievements in
directly extracting point cloud features, PointNet learns the
corresponding spatial code for each point in the input point

cloud and then directly and violently pools all points into a
global feature, which does not consider the local feature
information of point cloud data. PointNet++ is an improved
version of PointNet. PointNet++ uses PointNet to extract the
features of local areas of the point cloud iteratively so that it
can learn the features with larger and larger local scale, which
makes up for the lack of local feature extraction by PointNet
and the low accuracy of PointNet in processing uneven point
cloud scenes. However, PointNet is still used in PointNet++,
which means that the features of the point cloud are extracted
separately in the sampling area, and the learning of local
features is still insufficient. Therefore, PointNet and PointNet+
+ misjudge the point cloud of the coal wall, roof, and part of
hydraulic support in many places; we have highlighted the
more obvious places with orange ellipses.
DGCNNs can effectively overcome the abovementioned

shortcomings. On the one hand, the DGCNN selects K
neighbor points in the feature space, and the calculated
features of each layer are different, that is, the connection
relationship of the graph is learned by the network itself, which
is equivalent to that the graph of each layer has different
vertices, and the maximum receptive field of edge convolution
can reach the diameter of the whole point cloud. On the other
hand, edge convolution is mainly used to extract the local
features of the point cloud, which makes up for the lack of local
information of the point cloud in the process of direct
extraction of point cloud features by the DNN. In the
DGCNN, each point in the point cloud is independent of each
other in the process of calculating features, which is the
extraction of global features. In addition, for each point in the
point cloud data, the DGCNN considers not only the features
of the current point but also the features of the K points closest
to the central point in the current feature space, which shows
that the local features of the point cloud can be extracted from
the local graph composed of K points. In the point cloud of the
coal mine working face, it is difficult to distinguish these three
kinds of point clouds by simply extracting the features of the
point cloud of the coal wall, roof, and hydraulic support.
However, the extension of the coal wall, roof, and hydraulic
support in their respective directions is quite different.
Therefore, the DGCNN can better distinguish these three
kinds of point clouds in combination with its contextual point
cloud information.
In addition, edge convolution in the DGCNN does not

directly aggregate the feature information of local neighbor
points but uses the connecting edge between two inter-
connection points to represent the feature information
synthesis of two interconnection points. Edge convolution
constructs a local edge relation feature graph based on the
center point and learns the edge elements of each neighbor
point. The DGCNN takes into account the neighborhood
information of the point cloud; therefore, the DGCNN studied
in this paper performs better than PointNet and PointNet++ in
segmenting the point cloud of the coal mine working face. The
abovementioned results show that it is feasible and correct for
us to use DGCNNs to further study the point cloud of the coal
mine working face and provide an important premise and
reference for DGCNNs to achieve good application results in
the field of energy and geology.

4. CONCLUSIONS
Coal is an important raw material for the chemical industry
and metallurgy. The intelligent coal mine working face is
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imperative. Segmenting the point cloud of the coal mine
working face and then obtaining the intersection line of the
point cloud of the coal wall and the roof can provide a direct
basis for the intelligent straightening and inclination adjust-
ment of the scraper conveyor. However, the direct and indirect
point cloud segmentation methods based on deep learning
have their own shortcomings. We propose using DGCNNs to
segment the point cloud of the coal mine working face and
analyze the influence of edge convolution (the greatest
innovation of DGCNNs) on the network results in many
aspects. First of all, we make and batch label the point cloud of
the coal mine working face, which fills the blank of the data set
in this aspect. Also, we randomly select a certain range of the
point cloud within the range of 0−300 m in the X direction, so
we need not divide the point cloud into multiple training data,
which effectively and easily realizes the DNN model to learn
the feature of the point cloud of the coal mine working face.
Second, edge convolution can make DGCNNs better complete
the fine-grained task of the point cloud, but when the number
of edge convolution layers increases to a certain number, the
aggregated information of each point cloud will be too smooth,
which will affect the effect of point cloud segmentation by
DGCNNs. Therefore, we analyze the optimal number of edge
convolution layers for the DGCNN to segment the point cloud
of the coal mine working face, and we know that when the
edge convolution layer is four, the DGCNN obtained the
minimum loss, the minimum intersection line error, and the
maximum accuracy. At the same time, the K value inside the
edge convolution and the feature dimension of the point cloud
output from the edge convolution are studied. We find that in
the point cloud of the coal mine working face segmented by
the DGCNN, the larger K value and the feature dimension are
not necessarily the better. Finally, we compare the improved
DGCNN with PointNet and PointNet++. The results show
that the DGCNN shows the best performance in both the
whole test set and the local section of the point cloud in the
coal mine working face. It shows the feasibility and correctness
of using DGCNNs to segment the point cloud of the coal mine
working face. The results provide a direct basis for the
straightening and inclining adjustment of the scraper conveyor
and provide a key premise for the intelligent height adjustment
of the shearer. It is of great significance for the realization of an
intelligent coal mine working face. In addition, the research
results are of great help to promote the safe and efficient
mining of coal and to reduce the accident rate caused by
harmful gases such as CO produced by spontaneous
combustion of coal and other factors.
Last but not least, the research team of the author has

installed an expensive underground inspection robot to collect
the point cloud of the coal mine working face. According to the
previous research results, the markers in the point cloud of the
coal mine working face can be found through DGCNNs. This
study has conducted further in-depth exploration and has
learned that DGCNNs can accurately segment the point cloud
of the coal mine working face and obtain the intersection line
of the coal wall and roof. The research results provide a
premise for DGCNNs to achieve a good application effect in
the field of energy. In the future work, we will further study the
structure of DGCNNs so that it can maintain excellent
performance in dealing with more and different tasks and make
our contribution to the application of DGCNNs.
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