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A B S T R A C T   

Understanding variations in the severity of infectious diseases is essential for planning proper mitigation stra
tegies. Determinants of COVID-19 clinical severity are commonly assessed by transverse or longitudinal studies 
of the fatality counts. However, the fatality counts depend both on disease clinical severity and transmissibility, 
as more infected also lead to more deaths. Instead, we use epidemiological modeling to propose a disease severity 
measure that accounts for the underlying disease dynamics. The measure corresponds to the ratio of population- 
averaged mortality and recovery rates (m/r), is independent of the disease transmission dynamics (i.e., the basic 
reproduction number), and has a direct mechanistic interpretation. We use this measure to assess demographic, 
medical, meteorological, and environmental factors associated with the disease severity. For this, we employ an 
ecological regression study design and analyze different US states during the first disease outbreak. Principal 
Component Analysis, followed by univariate, and multivariate analyses based on machine learning techniques, is 
used for selecting important predictors. The usefulness of the introduced severity measure and the validity of the 
approach are confirmed by the fact that, without using prior knowledge from clinical studies, we recover the 
main significant predictors known to influence disease severity, in particular age, chronic diseases, and racial 
factors. Additionally, we identify long-term pollution exposure and population density as not widely recognized 
(though for the pollution previously hypothesized) significant predictors. The proposed measure is applicable for 
inferring severity determinants not only of COVID-19 but also of other infectious diseases, and the obtained 
results may aid a better understanding of the present and future epidemics. Our holistic, systematic investigation 
of disease severity at the human-environment intersection by epidemiological dynamical modeling and machine 
learning ecological regressions is aligned with the One Health approach. The obtained results emphasize a 
syndemic nature of COVID-19 risks.   

1. Introduction 

COVID-19 has brought large changes to people’s lives, including 
significant impacts on health and the economy. At the population level, 
the effects of the disease can be characterized through the disease 
transmissibility and clinical severity. Transmissibility relates to the 
number of infected people, which in epidemiological models (see e.g. 
[1]) is quantified by the reproduction number R(t) (corresponding to an 
average number of people infected by an individual during its infectious 
period). Clinical severity corresponds to the medical complications 
experienced by infected individuals, potentially also including death. In 

the epidemic models, two population average rates relate with the dis
ease severity (see e.g. [2]): i) Mortality rate (m), corresponding to the 
probability per day for the detected case to result in death. ii) Recovery 
rate (r), corresponding to the inverse time needed for a detected case to 
recover. 

This study aims to quantify the generalized severity of the COVID-19 
disease in a given population described with a set of demographic and 
environmental factors by proposing an easy-to-evaluate but plausible 
measure. Applying that measure to diverse countries, together with 
carefully designed multivariate regression analysis, allows identifying 
the severity predictors among the population-level factors. Knowing the 
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particular causes of a potentially higher fatality of the disease in a 
population can help plan efficient strategies for disease prevention, 
control, and treatment, specifically targeting the health vulnerabilities 
of the society. 

COVID-19 transmissibility and severity are often assessed through 
the numbers of confirmed cases and fatalities, respectively [3–8]. 
Regarding severity, a major complication is that the fatalities are 
correlated with the number of infected, as more infections lead to more 
fatalities. Additional complications are related to nonlinearities and 
delays that inherently characterize the disease dynamics [9]. For 
example, the time from infection to death can be long and highly vari
able, while the number of fatalities in different regions (at a given time) 
may correspond to different points of the infected curve. Thus, equal- 
time comparisons of mortality numbers (or rates) would be inade
quate. For these reasons, somewhat modified variables, such as delay- 
adjusted case fatality rate (aCFR), are sometimes used [10–12], but 
their mechanistic interpretation is unclear [13]. Alternatively, we pro
pose a novel quantity for the disease severity measure. This quantity has 
a clear mechanistic interpretation, can be derived directly from 
epidemic modeling and inferred from publically available data. Specif
ically, we argue that the ratio of mortality and recovery rates (m/r) is a 
highly plausible population-level measure of disease severity: higher 
mortality and lower recovery rates indicate a more severe disease 
leading to a larger m/r. We will also show (both theoretically and from 
empirical data) that this measure is a priori unrelated to R(t), which is a 
result independent from the specific assumed transmission mechanism. 

To assess how reasonable is the proposed measure, it is desirable to 
use it to infer significant predictors (and their importance) of COVID-19 
severity. However, this entails certain methodological challenges [14]. 
Specifically, significant predictors have to be selected among a large 
number of potentially relevant variables. Moreover, these variables may 
be highly correlated [15,16], and mutual interactions (and nonlinear 
relations) may be relevant. To address this, we apply a novel approach 
that combines Principal Component Analysis (PCA) and machine 
learning regression methods [17]. 

2. Methods 

There are many compartmental models used in epidemiology, ob
tained as extensions of the basic SIR or SEIR models [2] – a number of 
them recently developed in the context of COVID-19, e.g. to account for 
contact tracing and hospitalization strategies [18], media effects [19], 
unreported cases [1,20], infected but asymptomatic individuals [21], 
uninfected but quarantined population [22], seasonality effects [23], 

etc. To extract the severity variable m/r directly from dynamical 
compartmental models, we used our SPEIRD modification [24] of the 
SEIR model, schematically represented in Fig. 1. Note that m/r deriva
tion is independent of the transmission mechanism and (by construc
tion) from R(t). Consequently, the left rectangle (from which R(t) and its 
special case at the early stages of the epidemic, i.e., basic reproduction 
number (R0), is determined) is presented only for clarity and coherence. 
The relevant part of the model represents the transition of the active 
cases (A) to healed (H) at recovery rate r, or to fatalities (F) at mortality 
rate m. Note that the cumulative (total) number of detected cases (D) 
corresponds to the sum of A, H, and F. 

The system of differential equations, which mathematically repre
sents the model in Fig. 1 is given in [24]. From eqs. (5–6) in [24], we 
obtain: 

dH
dt

= rA;
dF
dt

= mA⇒
dF
dt

=
m
r

dH
dt

(1) 

We integrate the right side of Eq. (1) from the epidemics start (t = 0) 
to the end (t = ∞): 

F(∞) =
m
r

H(∞) (2) 

Since D(t) = A(t) + F(t) + H(t), and since there are no more active 
cases at t = ∞, while F(∞) and H(∞) reach constant values (see Fig. 2A), 
we obtain: 

D(∞) = F(∞) + H(∞) (3) 

Combining Eqs. (2) and (3) gives: 

m
r
=

CFR(∞)

1 − CFR(∞)
;CFR =

F(∞)

D(∞)
(4)  

where CFR(∞) is the case fatality rate at the end of the epidemic (the 
“long COVID-19” cases, being detected but not dead, contribute to H(∞) 
in Eq. (3)). As the COVID-19 pandemic is still ongoing, we use the end of 
the first peak, where the number of active cases can be approximately 
considered as zero. 

For consistency and easier direct comparison with the COVID-19 
transmissibility analysis, data collection, data processing, and machine 
learning techniques are similar to the one presented in [25]. For 
completeness, full information is provided in the Supplementary 
Methods, which also includes definitions for all variables and principal 
components (PCs) used in the analysis. Supplementary Methods also 
provide a complete dynamical model and derivations for both m/r and 
R0. The Supplementary Table contains all input data. 

Fig. 1. Deriving the severity measure m/r from the epidemics compartmental model. SPEIRD model is schematically shown. Transitions between the compartments 
are denoted by solid arrows, with the transition rates indicated above arrows. The dashed arrow from I to S indicates the interaction of I and S (infections) leading to 
the transition to E. The dashed arrow from P to S indicates the potential (reverse) transition from P to S due to the easing of measures. The dashed rectangles indicate 
parts of the model corresponding to the disease transmission (the left rectangle) and the disease outcome for the detected cases (the right rectangle). The single 
arrows indicate parts of the model from which the reproduction number R(t) and the severity measure (m/r) are, respectively, inferred. The total number of detected 
cases (D) corresponds to the sum of A, H, and F and is denoted by a double arrow. Compartments are S – susceptible, P –protected, E – exposed, I –infected, R – 
recovered, A – active, H – healed, F – fatalities, D – total number of detected cases. r and m represent recovery and mortality rates of active (detected) cases. 
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3. Results 

Fig. 2A illustrates how m/r values are inferred from data. The cu
mulative number of detected cases and fatalities during the first peak of 
the epidemic is presented for one of the USA states (Connecticut). m/r is 
inferred once both classes of the case counts reach saturation, leading to 
constant m/r (inset in the figure). In Fig. 2B a very high positive corre
lation (R = 0.97) is obtained between the cumulative number of fatal
ities and detected cases observed at fixed time cross-sections, 
quantitatively confirming the intuitive expectation that a higher number 
of infected is strongly related to higher fatality counts. This shows that 
fatality counts are strongly related to COVID-19 transmissibility, despite 
being often used as a measure of the disease severity [3–8]. On the other 
hand, the moderate correlation between m/r and R0 (Fig. 2C) is 
consistent with the a priori independence of these two variables. This 
correlation reflects a genuine similarity in COVID-19 transmissibility 
and severity determinants (e.g., air pollution or weak immunity can be 
associated with both increased transmissibility [25] and severity of the 
disease [26]). 

Univariate analysis of m/r relation to the variables used in the study 
is presented in Fig. 3. Statistically significant correlations (P < 0.05) of 
m/r with several variables/PCs are shown in Fig. 3A and scatterplots 
(Fig. 3B-E). The highest (positive) correlation was observed for NO PC1, 
Disease PC4, and Density PC1, while the percentage of the youth pop
ulation showed the highest negative correlation with m/r. Several other 
predictors, specifically, Density PC2, Disease PC2, SO2, and NO Insur
ance PC1, Black and PM2.5 also exhibit statistically significant correla
tions with m/r. As expected, chronic disease, pollution, population- 
density-related variables promote COVID-19 severity (positive correla
tions), as does the percentage of Afro-Americans (Black). Percentage of 
population under 18 (Youth) decreases the severity (negative correla
tion), also as expected. Sign of the correlation with No Insurance PC1 is 
opposite than expected, as people with health insurance should get 
better medical treatment (further analyzed below). 

Fig. 4A-D provide interpretation of the relevant PCs through their 
correlations with the variables entering PCA. Density PC1 is comprised 
of all three parameters from the population density group (Fig. 4A), 
presenting a general measure of population density, while Density PC2 is 
significantly correlated only with population density (Fig. 4B). Disease 
PC2 and PC4 show, respectively, the highest positive correlation with 
the prevalence of cancer and cardiovascular diseases. Fig. 4E shows a 
high correlation of No Insurance PC1 with Youth and Density PC1. Signs 
of these correlations, and the effect of these two variables on m/r, 
indicate that the unintuitive sign of No Insurance PC1 correlation with 
m/r (noted above) is an artifact of its high correlations with Youth and 
Density PC1. 

We next performed multivariate analyses, where the effect of each 
variable on m/r is controlled by the presence of all other variables. We 
used Lasso and Elastic net methods [17] that both perform feature se
lection by shrinking the coefficients of variables that do not affect m/r to 
zero, followed by, so-called, relaxed Lasso and Elastic net procedures (as 
described in Supplementary Methods). 

Both methods robustly show similar results (Fig. 5A-B) and predic
tion accuracy (MSE indicated in figures). Disease PC4 appears in re
gressions as the most important predictor, followed by NO PC1 and 
Disease PC2. Other selected predictors are Density PC1 and PC2, No 
Insurance PC1, PM2.5, and Youth. These results agree with pairwise 
correlations, except for SO2 and Black, which appeared significant in 
pairwise correlation but were not selected by either linear regression- 
based method. 

We next apply Gradient Boost and Random Forest [17] (see Sup
plementary Methods), which are non-parametric machine learning 
methods, i.e., account for potentially highly non-linear relations and 
interactions between the predictors. For each of these methods, the 
predictor importance is presented in Fig. 5C-D, where the dashed lines 
indicate a standard threshold for distinguishing important predictors. 
Largely consistent results are obtained by both methods, where the 
predictors with the highest importance are Disease PC4, NO PC1, Dis
ease PC2, No Insurance PC1, Black, and Youth. The only difference is in 
Density PC1, which appears as important in Random Forest but not in 
Gradient Boost. Results of Gradient Boost and Random Forest are also 
consistent with those of Lasso and Elastic Net, with an exception in Black 
(important in non-linear, but not linear, methods) and PM2.5 (vice 
versa). The effect of Black on m/r may therefore be nonlinear and/or 
based on interactions with other predictors (further discussed below). 

To test our assumption that No Insurance PC1 appears in regressions 
due to its high correlation to other m/r predictors (mainly Youth and 
Density PC1), we next repeated the analysis, this time excluding No 
Insurance PC1. The results presented in Supplementary Fig. S1 show 
that removing No Insurance PC1, besides leading to an (expected) in
crease of importance of Youth and Density PC1 (which are highly 
correlated with No Insurance PC1), does not significantly alter previ
ously obtained results – confirming our assumption. 

Finally, in Fig. 6, we quantitatively estimate the influence of the five 
most important predictors determined above. For each of 51 states, we 
fix the values of all other predictors while changing the analyzed pre
dictor’s value within the range observed in all other states. The resulting 
distribution of the relative changes in m/r (δ(m/r)) due to the variation 
of Chronic disease is shown in Fig. 6A, where each data point in the 
distribution corresponds to a single USA state. We see that changing 
Chronic disease values in a realistic range leads to significant variations 
of m/r, with a median of ~30% and going up to 40%. To increase 

Fig. 2. Inferring m/r from data. A) Cumulative detected (D) and fatality (F) counts in Connecticut. m/r is inferred from the time period (enlarged in the inset) 
corresponding to saturation (end of the first peak). B) and C) Correlation plots of F vs. D and m/r vs R0 with the Pearson correlation coefficients shown. 
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robustness, the predictions are made by the consensus of all relevant 
models. For the remaining four predictors, the obtained median and 
maximal relative changes are shown in Fig. 6B. The obtained results 
confirm the importance of Chronic disease, Youth, Black, and Pollution, 
and, to a smaller extent, Population density. 

4. Discussion 

While we have earlier studied the parameters that might affect R0 
[25,27], the present goal was to investigate which demographic and 
environmental variables may influence the average disease severity as 
manifested in a population. The first step was to propose the response 
variable, which has to be causally independent of R0 [25,27], to allow 
understanding the effects of clinical severity alone. We showed that this 

is indeed satisfied by our choice (m/r). Additionally, this work allowed 
us to mechanistically interpret the standard (simple) measure of clinical 
severity (CFR), i.e., to relate its saturation value with the rate parame
ters in the epidemiological dynamical model. The relation is, however, 
non-linear (sigmoidal), which further underscores the non-triviality of 
the obtained result. 

The proposed measure is practical to implement on a large scale (i.e., 
for diverse regions or countries, as we here demonstrated for 51 USA 
states), as only publicly available data are required, and calculation 
corresponds to a simple (though nonlinear) relation. Estimating the 
saturation (end of the peak) is straightforward in most cases, through 
both case counts and m/r reaching a saturation (nearly constant) value. 
We set the following aims for the selected significant predictors of m/r: i) 
test if we can recover clinically observed dependencies, ii) uncover 

Fig. 3. Univariate correlation analysis. (A) Values of Pearson’s correlations for the variables significantly correlated (P < 0.05) with m/r. Correlation plots of m/r 
with (B) Youth (percent of the population under 18), (C) density PC1, (D) disease PC4, (E) NO PC1. 
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Fig. 4. Interpretation of the relevant PCs. Correlation of the relevant principal components with the independent variables is shown, where the height of bars 
corresponds to the value of Pearson’s correlation coefficients. A) and B) Correlation of Density PC1 and Density PC2 with three population density variables. C) and 
D) Correlation of Disease PC2 and Disease PC4 with the variables from the chronic disease group. (E) Correlations of No Insurance PC1 with the variables from 
Fig. 3A. The abbreviations correspond to PD – population density, BUAPC – Built-Up Area Per Capita, UP – Urban Population, OB – obesity, CVDD – cardiovascular 
disease deaths, HT – hypertension, HC – high cholesterol, SM – smoking, CVD – cardiovascular disease, DI – diabetes, CA – cancer, CKD – chronic kidney disease, 
COPD – chronic obstructive pulmonary disease, MCC – multiple chronic conditions, PI – physical inactivity. 
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additional risk factors for COVID-19 clinical severity, suitable to extract 
from ecological study design [28–30], iii) compare with significant 
predictors of COVID-19 transmissibility (R0) that we previously ob
tained [25,27]. We here indeed obtained different predictors for m/r 
compared to R0 [25,27]. There are also some similarities consistent with 
inherent connections in COVID-19 transmissibility and severity drivers, 
e.g., the role of pollution, unhealthy living conditions, and indoor 
population density [25]. We further discuss i) and ii). 

We obtain that both the prevalence of chronic diseases and Youth 
significantly influence m/r. This is hardly surprising - though quite a 
non-trivial result - as we started from a large group of initial variables. 
The influence of Disease PC4, dominantly reflecting the prevalence of 
cardiovascular diseases, is well documented by clinical studies [31,32] 
together with some other ecological studies [11,15]. Other chronic 
conditions that are known COVID-19 comorbidities (i.e., hypertension, 
obesity, and diabetes) are significant risk factors for cardiovascular 
diseases [33], and it is not surprising that cardiovascular diseases 
dominate over other chronic conditions in our results. Disease PC2, 
dominantly reflecting the prevalence of cancer (though also related to 
cardiovascular diseases), agrees with CDC warning that people with a 
history of cancer may be at increased risk of getting severely ill from 
COVID-19 [34]. Regarding Youth, it is established that younger in
dividuals are, on average, less severely affected by COVID-19, and that 
the disease severity increases with age [3,35,36]. 

We found that chronic pollution exposure, NOx levels in particular, 

significantly promote COVID-19 severity. While difficult to assess 
through clinical studies, it has been suggested that pollution is associ
ated with the severity of COVID-19 conditions through similar pathways 
by which it affects respiratory and cardiovascular mortality [37]. In 
particular, NOx may reduce lung activity and increase infection in the 
airway [38]. Similarly, the effect of population density (which here 
significantly affects m/r) is hardly suited to detect through clinical 
studies, while some ecological regression studies also noticed this 
dependence [39]. An explanation might be that while medical facilities 
are, in general, more abundant in overcrowded areas [40], this effect 
becomes overshadowed by the highly increased rate of the COVID-19 
spread in these areas. Therefore, population density probably acts as a 
proxy for smaller healthcare capacity per infected (as the infections 
increase with the population density, particularly in indoor areas). 
Additionally, it was also proposed that higher viral inoculum may lead 
to more severe COVID-19 symptoms [41,42], where overcrowded con
ditions might lead to higher initial viral doses. 

The appearance of the variable Black among the important pre
dictors (Fig. 5C-D) suggests that Afro-Americans are, on average, at 
higher risk of developing more severe COVID-19. While clinical evi
dence and several ecological meta-analyses [40,43] seem to confirm 
this, the underlying reasons are still a matter of debate (see e.g. [44]). 
Interestingly, this predictor appears only in non-parametric models, 
where interactions with other predictors are (implicitly) included. A 
posteriori, this result may not be surprising as it has been argued that 

Fig. 5. Multivariate (machine learning) analysis. Values of regression coefficients in relaxed A) Lasso and B) Elastic Net regressions. Only the variables whose 
coefficients are not shrunk to zero by the regressions are shown. The height of bars corresponds to the value of coefficients. Variable importance in C) Gradient 
Boosting and D) Random Forest regressions, where the height of bars corresponds to estimated importance. Testing set MSE values with the standard errors are shown 
for each model, corresponding to 5-fold cross-validations with 40 repartitions. Coefficients of determination on the entire dataset (R2) are also shown for each model. 
Variable names are indicated on the horizontal axis. 
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higher clinical severity of COVID-19 for Black may be tightly related to 
other significant factors of COVID-19 severity (larger prevalence of 
chronic diseases, more crowded conditions, higher air pollution). 

Our broad estimates of the magnitude of the effects on m/r are also 
consistent with all four groups of factors (disease, youth/age, pollution, 
race) being significant drivers of COVID-19 severity, where a somewhat 
smaller magnitude was obtained for the fifth group (population density). 
The immediate implications are that prevention of chronic diseases, 
reduction of pollution, and improving living conditions can indirectly 
also alleviate the harms of the pandemics. 

4.1. Limitations 

To infer the m/r value, our method requires the existence of a well- 
defined end of an epidemic wave. While all US states met this criterion in 
the first COVID-19 wave, in general, this may show up as a limitation. 

Some of the studied predictors exhibited limited variability across US 
states. E.g., this must be considered when interpreting the absence of 
meteorological variables from the set of significant predictors (despite 
their significant association with R0 [18,37]) and the presence of air 
pollution (occasionally hypothesized to contribute to COVID-19 severity 
[45]). 

5. Conclusion 

We employed a cross-disciplinary (One Health) approach [46–49], 
combining epidemiological modeling with advanced statistical (ma
chine) learning approaches, to explore the relationship of environmental 
factors to COVID-19 clinical severity. From a large number of variables, 
we achieved a robust selection of a small number of significant factors, 
including those that are clinically known as determinants of COVID-19 
severity. Our findings (performed in an unbiased manner directly from 
the data) are thus consistent with previous clinical studies – which may 
be interpreted as a kind of experimental validation of our method. 
Additionally, our results underscore a syndemic nature of COVID-19 
risks [50] through a selection of variables related to pollution, popula
tion density, and racial factors (intertwined with the effects of other 
factors). These results might have important implications for both longer 
and shorter-term efforts to alleviate the effects of this and (likely) future 

epidemics, in terms of longer-term policies to reduce these risks and 
shorter-term efforts to accordingly relocate medical resources. Our 
proposed measure (independent of disease transmissibility) originates 
from general considerations that are not limited to COVID-19. Thus, it 
may also be utilized in potential future outbreaks of infectious diseases, 
possibly also combined with other more traditional measures [9]. 
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