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Abstract

The reduction of N2 to NH3 is a requisite transformation for life.1 While it is widely appreciated 

that the iron-rich cofactors of nitrogenase enzymes facilitate this transformation,2-5 how they do so 

remains poorly understood. A central element of debate has been the exact site(s) of nitrogen 

coordination and reduction.6,7 The synthetic inorganic community placed an early emphasis on 

Mo8, because Mo was thought to be an essential element of nitrogenases3 and because pioneering 

work by Chatt and coworkers established that well-defined Mo model complexes could mediate 

the stoichiometric conversion of N2 to NH3.9 This chemical transformation can be performed in a 

catalytic fashion by two well-defined molecular systems that feature Mo centres.10,11 However, it 

is now thought that Fe is the only transition metal essential to all nitrogenases,3 and recent 

biochemical and spectroscopic data has implicated Fe instead of Mo as the site of N2 binding in 

the FeMo-cofactor.12 In this work, we describe a tris(phosphine)borane-supported Fe complex that 

catalyzes the reduction of N2 to NH3 under mild conditions, wherein >40% of the H+/e- 

equivalents are delivered to N2. Our results indicate that a single Fe site may be capable of 

stabilizing the various NxHy intermediates generated en route to catalytic NH3 formation. 

Geometric tunability at Fe imparted by a flexible Fe-B interaction in our model system appears to 

be important for efficient catalysis.13-15 We propose that the interstitial light C-atom recently 

assigned in the nitrogenase cofactor may play a similar role,16,17 perhaps by enabling a single Fe 

site to mediate the enzymatic catalysis via a flexible Fe-C interaction.18

Nitrogen is fixed on a staggering scale by the industrial Haber-Bosch process using a solid-

state Fe catalyst at very high temperatures and pressures, and in Nature by nitrogenase 

enzymes under ambient conditions.1 These enzymes feature active site cofactors rich in S 

and Fe (FeFecofactor), and can additionally contain a Mo (FeMo-cofactor; Figure 1) or V 

(FeV-cofactor) site.2,3
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The intimate mechanism of biological nitrogen fixation is a topic that has fascinated 

chemists, biochemists, and biologists alike.4,5,6,7 Synthetic chemists have searched for 

decades for well-defined complexes that can catalyze N2 reduction to NH3.19,20,21,22 Chatt's 

early work with low-valent Mo complexes provided a mechanistic outline for approaching 

this problem now commonly called the “Chatt” or “distal” mechanism, wherein a terminal 

nitride intermediate is generated upon liberation of the first NH3 equivalent (Figure 1, 

bottom).9 Other mechanisms, including an “alternating” scenario (Figure 1, top), have also 

received attention.6 To date, even modest catalysis of NH3 production directly from N2 by a 

well-defined model complex is still limited to the original tri(amido)amine Mo systems of 

Schrock and coworkers, and the more recently discovered phosphine-pincer Mo system of 

Nishibayashi and coworkers.10,11 Earlier work by Pickett had established the 

electrochemical feasibility of an NH3 production cycle with W.19

Synthetic efforts to establish whether one or more Fe sites can catalyze N2 reduction to NH3 

in a well-defined model complex have progressed more slowly. For example, previous Fe-

N2 model complexes have not afforded more than ca. 10% of NH3 per Fe equivalent upon 

treatment with proton sources.7,23,24 Despite significant advances,24 which have most 

recently included reductive N2 cleavage at iron22 and the catalytic reductive silylation of N2 

facilitated by unknown Fe species derived from Fe precursors such as ferrocene and iron 

pentacarbonyl,25 the delivery of protons and electrons to N2 to catalytically generate NH3 at 

a synthetic Fe complex has remained an unsolved challenge. Here we show that a recently 

reported mononuclear Fe complex, [(TPB)Fe(N2)][Na(12-crown-4)2] (TPB = 

tris(phosphine)borane; see Figure 2A),13,14 can catalyze the reduction of N2 to NH3 by 

protons and electrons in solution at -78 °C under one atmosphere of N2.

The Fe center of the “(TPB)Fe” fragment readily binds dinitrogen as evidenced by the 

featured 5-coordinate complex [(TPB)Fe(N2)][Na(12-crown-4)2] and the previously 

reported neutral N2 adduct, (TPB)Fe(N2).14 The same scaffold also accommodates a variety 

of other nitrogenous ligands relevant to NH3 generation, including terminally bonded NH2, 

NH3, and N2H4 ligands.15 Both the substrate-free complex, [(TPB)Fe][BArF
4] (where 

[BArF
4]- represents the weakly coordinating anion [B(3,5-(CF3)2-C6H3)4]-),15 and 

(TPB)Fe(N2) may be reduced to [(TPB)Fe(N2)][Na(12-crown-4)2] by Na/Hg reduction 

under 1 atm N2 followed by the addition of two equivalents of 12-crown-4 to encapsulate 

the sodium cation (Figure 2A). Model reactions with silyl electrophiles have also shown that 

the β-N of the coordinated N2 ligand can be mono- or difunctionalized with concomitant 

lengthening of the Fe-B distance.13 Furthermore, starting from (TPB)Fe(NH2), a reductive 

protonation sequence has been established (Figure 2B) that liberates NH3 and affords 

(TPB)Fe(N2).15 This reaction sequence demonstrates the synthetic viability of reductive 

release of NH3 from an Fe-NH2 intermediate with simultaneous uptake of N2. In sum, the 

rich reaction chemistry of the (TPB)Fe scaffold with nitrogenous ligands motivated us to 

more closely examine the possibility that it might catalyze N2 fixation.

The addition of excess acid to [(TPB)Fe(N2)][Na(12-crown-4)2] at -78 °C was investigated. 

When [(TPB)Fe(N2)][Na(12-crown-4)2] was dissolved in THF, cooled to -78 °C, and 

exposed to six equivalents of H+ in the form of HBArF
4·2 Et2O, a previously unobserved 

yellow solution resulted that, upon warming followed by addition of proton sponge (1,8-
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bis(dimethylamino)naphthalene), was shown by 1H NMR analysis to contain the previously 

characterized complex [(TPB)Fe(NH3)][BArF
4] (ca. 30-35% of the total Fe),15 along with 

resonances consistent with [(TPB)Fe][BArF
4] (ca. 40-45% of the total Fe) and two other 

minor and as yet unidentified paramagnetic (TPB)Fe-species (see SI). An independent EPR 

study of this low temperature protonation reaction in 2-methyltetrahydrofuran revealed a 

new rhombic S = ½ signal (see SI) that we speculate may be (TPB)Fe(=N-NH2)+ or an 

alternative structural isomer such as (TPB)Fe(NH=NH)+. Spin quantification of this species 

shows it to represent >85% of the Fe species in solution, and its rhombic EPR spectrum is 

highly similar to the rhombic EPR signature that is obtained upon oxidation of 

(TPB)Fe=N(p-tolyl) to generate (TPB)Fe=N(p-tolyl)+ (SI). Subsequent low temperature 

reduction of a similarly prepared mixture regenerates [(TPB)FeN2][Na(12-crown-4)2], as 

determined by IR spectroscopy, suggesting the possibility of cycling protonation and 

reduction with this Fe system.

To explore the possibility of N2 reduction catalysis using this (TPB)Fe system, we 

canvassed several reductants (e.g., Na[naphthalenide], Mg(THF)3(anthracene), Na/Hg, KC8) 

and acids (e.g., HCl, trifluoromethanesulfonic acid, HBArF
4·2 Et2O) in a variety of solvents 

and solvent mixtures (e.g., tetrahydrofuran, dimethoxyethane, diethyl ether, toluene). When 

carried out at -78 °C numerous reaction conditions showed unusually high yields of NH3 

relative to the number of Fe equivalents in the reaction vessel, and the combination of KC8, 

HBArF
4·2 Et2O, and Et2O solvent enabled the catalytic generation of NH3.

In a representative catalytic run, red [(TPB)Fe(N2)][Na(12-crown-4)2] was suspended in 

diethyl ether in a reaction vessel at -78 °C, followed by the sequential addition of excess 

acid and then excess reductant. Ammonia analysis followed the indophenol protocol (see 

Methods and SI) and the independent identification of ammonium salts by 1H NMR 

spectroscopy in DMSO by comparison with an authentic sample of [NH4][Cl] (Figure 3A). 

An experiment performed using the [(TPB)Fe(14N2)][Na(12-crown-4)2] catalyst under 

an 15N2 atmosphere, followed by 1H NMR analysis (Figure 3A) of the volatile reaction 

products, confirmed the production of [15NH4][Cl], as expected, with only trace [14NH4]

[Cl]. This overall procedure has been repeated many times, and Table 1 includes data 

averaged from 16 independent runs (entry 1) wherein yields were, on average, 7.0 equiv 

NH3 per Fe equiv. Using 7.0 equiv NH3 as the product stoichiometry, 44% of the added 

protons are reliably delivered to N2 to produce NH3. Individual runs have in our hands 

reached a maximum of 8.5 equiv NH3 per Fe equiv under these standard conditions. 

[(TPB)Fe][BArF
4] is also an effective catalyst and afforded 6.2 ± 0.7 equiv NH3 per added 

Fe equivalent (Table 1, entry 2). For comparison, the Mo systems of Schrock and 

Nishibayashi have afforded between 7-12 equiv NH3 per Mo equiv.10,11 The current Fe 

system appears to be active at an unusually low temperature (-78 °C) but benefits from a 

strong reductant (KC8). We do not yet know if conditions can be found that will tolerate a 

milder reductant, for example by circumventing the need to generate the (TPB)Fe(N2)- anion 

during catalysis.

Table 1 lists several sets of conditions (entries 10-15) other than the standard conditions 

described above that were canvassed. Several of these alternative conditions showed NH3 

generation, though not in catalytic or even in high yields. N2H4 was not detected (SI) as an 
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additional product when using the standard catalytic protocol for NH3 generation with 

[(TPB)Fe(N2)][Na(12-crown-4)2] (SI). If two equivalents N2H4 (per Fe) are added to 

[(TPB)Fe(N2)][Na(12-crown-4)2] in diethyl ether, followed by subjecting the mixture to the 

standard catalytic conditions and work-up, only trace N2H4 remains (SI). This result 

suggests that if N2H4 is generated as an intermediate during catalysis it would not likely be 

detectable upon work-up and analysis. Worth noting is that HBArF
4·2 Et2O and KC8 reacts 

in the absence of an Fe precursor, under the standard catalytic conditions at -78 °C, to 

generate H2 but not NH3 (>75% yield of H2 after 40 minutes). That H2 generation is 

kinetically feasible without the addition of an Fe precursor, and yet NH3 can nonetheless be 

generated upon the addition of [(TPB)Fe(N2)][Na(12-crown-4)2] or [(TPB)Fe][BArF
4], 

underscores the facility by which this Fe system mediates overall H-atom delivery to N2.

To further explore whether a (TPB)Fe containing precursor is needed to facilitate the overall 

catalysis, beyond the stoichiometric model reactions summarized above, we canvassed 

several Fe complexes under analogous conditions. Of most interest is the complex 

[(SiPiPr
3)Fe(N2)][Na(12-crown-4)2], which is isostructural to [(TPB)Fe(N2)][Na(12-

crown-4)2] but replaces the B atom of TPB by a Si atom.26 A central difference between 

(TPB)Fe and (SiPiPr
3)Fe complexes is the far great flexibility of the Fe-B versus the Fe-Si 

bond that is positioned trans to the apical ligand.13,14,15,26 While some NH3 generation was 

observed for [(SiPiPr
3)Fe(N2)][Na(12-crown-4)2] when subjected to the standard catalytic 

reaction conditions described above, sub-stoichiometric yields of NH3 relative to Fe were 

obtained (0.7 ± 0.5 equiv NH3 per Fe equiv; entry 3). We also conducted additional control 

experiments under the standard catalytic conditions with FeCl2·1.5 THF, FeCl3, Cp2Fe,25 

and Fe(CO)5
25 (entries 5-8) and found that only trace amounts of NH3 (<0.2 equiv in all 

cases on average; 4 runs) were produced by these Fe precursors (SI).27 The known 

phosphine-supported Fe(0)-N2 complex Fe(depe)2(N2)28 was also subjected to the standard 

conditions and afforded sub-stoichiometric yields of NH3 per Fe equivalent (see SI).

In separate work, the addition of an atmosphere of H2 to (TPB)Fe(N2) was shown to 

generate (TPB)(μ-H)Fe(N2)(H) as a stable product (Figure 3C).29 We hence suspected that 

catalyst poisoning might occur in part via the formation of (TPB)(μ-H)Fe(N2)(H) under the 

catalytic reaction conditions. In accord with this idea, when [(TPB)Fe(N2)][Na(12-

crown-4)2] was exposed to 10 equiv HBArF
4·2 Et2O and 12 equiv KC8 at low temperature, 

IR and 31P NMR analysis of the resulting mixture showed the presence of (TPB)(μ-

H)Fe(N2)(H) via its signature spectroscopic features (30% of total Fe by 31P NMR 

integration; SI).29 (TPB)(μ-H)Fe(N2)(H) is stable for short periods to both HBArF
4·2 Et2O 

and also KC8 in Et2O at room temperature, and when subjected to the standard catalytic 

conditions for NH3 production liberates only 0.5 ± 0.1 equiv NH3 per Fe equiv (Table 1 

entry 4).

The general absence of a functional, catalytic Fe model system over the past few decades 

has often led to an emphasis on Mo30 as a plausible site of N2 uptake and reduction at the 

most widely studied FeMo-cofactor. While this may yet prove to be true, recent 

spectroscopic and biochemical evidence has sharpened the focus on an Fe center as the N2 

binding site.12 The results reported here establish that it is possible to catalyze the 

conversion of N2 to NH3 by protons and electrons using a well-defined mononuclear Fe-N2 
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complex, and suggests the possibility that a single Fe-binding site of the cofactor could in 

principle mediate N2 reduction catalysis.18 To achieve this catalytic behavior, geometric 

flexibility at the Fe-N2 binding site would be beneficial as it would stabilize NxHy 

intermediates of different electronic demands. Such geometric and redox flexibility, under 

the local three-fold symmetry presented by an Fe center, its three neighboring sulfides, and 

the interstitial light atom of the FeMo-co,16,17 may at least in part be achieved by attributing 

a hemi-labile role to the interstitial C-atom (Figure 1). Such a role could serve to expose an 

initial Fe-N2 binding site by Fe-C elongation. Subsequent modulation of the Fe-C 

interaction and hence the local Fe geometry as a function of the N2 reduction state would 

enable the Fe center to stabilize the various NxHy intermediates along a pathway to NH3. 

While inherently speculative, this hypothesis is rooted in the functional (TPB)Fe catalysis 

discussed herein, along with the types of (TPB)Fe complexes and stoichiometric 

transformations described previously for this scaffold.13,14,15

The mechanistic questions that arise from the present Fe catalyst system are rich. While all 

of the model complexes relevant to the (TPB)Fe-NxHy system are mononuclear, we cannot 

exclude the possibility of bimolecular reaction intermediates. We more generally don't know 

whether the N2 reduction catalysis proceeds along a distal pathway via a terminal nitride 

intermediate, such as (TPB)Fe(N) or (TPB)Fe(N)+, via intermediates along an alternating 

pathway, such as (TPB)Fe-NH-NH2 or (TPB)Fe-NH2-NH2
+, or via some hybrid pathway. 

The tentatively assigned (TPB)Fe=N-NH2
+ species that can be observed by EPR 

spectroscopy provides us a useful starting point for such studies. In light of the identification 

of C as the interstitial light atom of the cofactor, it is also of interest to develop and compare 

synthetic model systems that feature a C-atom in the ligand backbone instead of a B-atom.

Methods Summary

General considerations

All complexes and reagents were prepared according to literature procedures referenced in 

the Supplemental Information (SI) unless otherwise noted. Manipulations were carried out 

under an N2 atmosphere utilizing standard dry glove-box or Schlenk-line techniques. All 

solvents used were deoxygenated and dried by an argon sparge followed by passage through 

an activated alumina column.

Spectroscopy

NMR measurements were obtained on Varian 300 MHz spectrometers. Deuterated solvents 

for these measurements were obtained from Cambridge Isotope Laboratories and were dried 

and degassed prior to use. All 1H NMR spectra were referenced to residual solvent peaks. 

EPR X-band spectra were obtained on a Bruker EMX spectrometer with the aid of the 

Bruker Win-EPR software suite version 3.0. The EPR spectrometer was equipped with a 

rectangular cavity that operated in the TE102 mode. Temperature control was achieved with 

a liquid-N2-filled quartz-dewar in which the sample was submerged during data collection. 

UV-Vis spectra were acquired on a Cary 50 spectrometer from 1100 nm to 200 nm in the 

fast scan mode. IR spectra were obtained via KBr pellets on a Bio-Rad Excalibur FTS 3000 

spectrometer using Varian Resolutions Pro software set at 4 cm-1 resolution.
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Catalysis and ammonia collection and quantification

The standard catalysis protocol involved the addition first of acid, followed by reductant, to 

a suspension of the precatalyst in diethyl ether at -78 °C in a closed vessel under 1 atm N2. 

Ammonia produced during each catalytic run was collected by vacuum transfer of the 

reaction volatiles onto anhydrous HCl in diethyl ether. The resulting slurry was dried and 

extracted into water and aliquots were then tested for the presence of ammonia via the 

indophenol method.

A Methods section, associated references, and a detailed Supplemental Information are 

available in the online version of this paper.

Methods

General Considerations

[(TPB)Fe(N2)][Na(12-crown-4)2],14 [(TPB)Fe][BArF
4],15 (TPB)(μ-H)Fe(H)(N2),29 

[Lutidinium][BArF
4],31 HBArF

4 · 2 Et2O,32 [(SiPiPr
3)Fe(N2)][Na(12-crown-4)2],26 FeCl2·

(THF)1.5,33 KC8,34 [(TPB)Fe(NH3)][BArF
4],

15 [(TPB)Fe(N2H4)][BArF
4],15 and 

Fe(depe)2N2
28 were prepared according to literature procedures. Note: [Lutidinium] = 2,6-

dimethylpyridinium; [BArF
4] = [B(3,5-(CF3)2-C6H3)4]-. Labeled 15N2 (98% purity) was 

obtained from Cambridge Isotope Laboratories. Solvents used for catalytic runs were 

additionally stirred for more than 2 hours over Na/K alloy and then filtered prior to use, in 

addition to standard sparging (Ar gas) and passage through an activated alumina column.

Ammonia Quantification

A Schlenk tube was charged with HCl (3 mL of a 2.0 M solution in Et2O, 6 mmol). 

Reaction mixtures were vacuum transferred into this collection flask. Residual solid in the 

reaction vessel was treated with a solution of [Na][O-t-Bu] (40 mg, 0.4 mmol) in 1,2-

dimethoxyethane (1 mL) and sealed. The resulting suspension was allowed to stir for 10 

minutes before all volatiles were again vacuum transferred into the collection flask. After 

completion of the vacuum transfer, the flask was sealed and warmed to room temperature. 

Solvent was removed in vacuo and the remaining residue was dissolved in H2O (1 mL). An 

aliquot of this solution (20 or 40 μL) was then analyzed for the presence of NH3 (trapped as 

[NH4][Cl]) via the indophenol method.35 Quantification was performed with UV-Vis 

spectroscopy by analyzing absorbance at 635 nm. The tables shown in the SI indicate the 

raw data for the runs. Runs with small absorbance levels (< 0.02 absorbance units) suffer 

from a large degree of error due to a small signal-to-noise ratio. Catalytic runs that used a 40 

μL aliquot are denoted with an asterisk, accounting for larger relative absorbances.

Standard Catalytic Protocol

[(TPB)Fe(N2)][Na(12-crown-4)2] (2 mg, 0.002 mmol) was suspended in Et2O (0.5 mL) in a 

20 mL scintillation vial equipped with a stir bar. This suspension was vigorously stirred and 

cooled to -78 °C in a cold well inside of the glove box. A similarly cooled solution of 

HBArF
4 · 2 Et2O (93 mg, 0.092 mmol) in Et2O (1.5 mL) was added to the suspension in one 

portion with rapid stirring. Any remaining acid was dissolved in cold Et2O (0.25 mL) and 

added subsequently. The reaction mixture turned light yellow-orange and homogeneous 
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upon addition of acid and the resulting solution was allowed to stir for 5 minutes before 

being transferred into a pre-cooled Schlenk tube equipped with a stirbar. The original 

reaction vial was washed with cold Et2O (0.25 mL) and was subsequently transferred to the 

Schlenk tube. Solid KC8 (15 mg, 0.100 mmol) was suspended in cold Et2O (0.75 mL) and 

added dropwise to the rapidly stirred solution in the Schlenk tube and was then tightly 

sealed. The reaction was allowed to stir for 40 minutes at -78 °C before being warmed to 

room temperature and stirred for 15 minutes.

Detailed experimental procedures and data for all experiments can be found in the 

Supplemental Information.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Chemical line representations of the FeMo-cofactor of nitrogenase
A schematic depiction of postulated N2 binding and reduction at an Fe site via limiting 

alternating (top) and distal (bottom) mechanisms. The drawing emphasizes a possible hemi-

labile role for the interstitial C-atom with respect to an Fe-N2 binding site.
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Fig. 2. Stoichiometric (TPB)Fe-N2model reactions
(a) N2 binding to [(TPB)Fe][BArF

4] under electron-loading to generate [(TPB)Fe(N2)]

[Na(12-crown-4)2]. (b) Reductive protonolysis of (TPB)Fe(NH2) to release NH3 with 

concomitant N2 uptake. (c) Generation of [(TPB)Fe(NH3)][BArF
4] and other (TPB)Fe-

species upon addition of acid to [(TPB)Fe(N2)][Na(12-crown-4)2] at low temperature, 

followed by warming and then addition of base. 12-C-4 is an abbreviation for 12-crown-4. 

Note: TPB = tris(phosphine)borane.
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Fig. 3. Spectral data for ammonia analysis, and catalyst poisoning
(a) 1H NMR spectrum (300 MHz) of [14NH4][Cl] in DMSO-d6 produced from a catalytic 

run under 14N2 (top) and of [15NH4][Cl] in DMSO-d6 produced from an independent 

catalytic run under 1 atm 15N2. (b) Representative optical data for NH3 product analysis 

using the indophenol method from catalytic runs using the standard conditions with the 

precursors indicated. (c) H2 binds to (TPB)Fe(N2) to generate (TPB)(μ-H)Fe(N2)(H), which 

itself is ineffective for the catalytic generation of NH3 from N2 under the standard 

conditions. Note: TPB = tris(phosphine)borane; DMSO = dimethylsulfoxide.
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Table 1
Catalytic ammonia generation from N2 mediated by Fe precursors

Using standard catalytic conditions as described in the text

Entry Fe precursor NH3 equiv/Fea,b,c

1 [(TPB)Fe(N2)][Na(12-crown-4)2] 7.0 ± 1d

2 [(TPB)Fe][BArF
4] 6.2

3 [(SiPiPr
3)Fe(N2)][Na(12-crown-4)2] 0.7

4 (TPB)(μ-H)Fe(N2)(H) 0.5

5 FeCl2·1.5 THF <0.1

6 FeCl3 <0.1

7 Cp2Fe <0.2

8 Fe(CO)5 <0.1

9 none <0.1

Variations on standard conditions using [(TPB)FeN2][Na(12-crown-4)2]

Entry Variation NH3 equiv/Fe
a,b,c

10 HOTf as acide 0.4

11 [Lutidinium][BArF
4] as acid <0.1

12 HCl as acid <0.1

13 Cp*2Co as reductant 0.6

14 Cp*2Cr as reductant <0.2

15 K metal as reductant 0.4

a
NH3 was collected by vacuum transfer of the reaction volatiles into HCl in diethyl ether. A dimethoxyethane solution of [Na][OtBu] (20 equiv 

relative to Fe) was added to the reaction vessel residue, followed by an additional vacuum transfer, to ensure complete liberation of all NH3. The 

[NH4][Cl] precipitate formed in the acidic Et2O collection vessel was reconstituted in deionized H2O, from which an aliquot was taken for 

indophenol quantification. Analysis of the [NH4][Cl] formed by 1H NMR spectroscopy in DMSO, compared with an authentic sample, provided 

independent confirmation of NH3 generation.

b
Data for individual experimental runs, and additional runs using potential precatalysts that are not presented in this table, are provided in the SI.

c
Unless noted otherwise, all yields are reported as an average of 4 runs.

d
Average of 16 runs.

e
HOTf = trifluoromethanesulfonic acid.
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