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Abstract: Acute-onset movement disorders (MDs) are an increasingly recognized neurological
emergency in both adults and children. The spectrum of possible causes is wide, and diagnostic
work-up is challenging. In their acute presentation, MDs may represent the prominent symptom
or an important diagnostic clue in a broader constellation of neurological and extraneurological
signs. The diagnostic approach relies on the definition of the overall clinical syndrome and on the
recognition of the prominent MD phenomenology. The recognition of the underlying disorder is
crucial since many causes are treatable. In this review, we summarize common and uncommon causes
of acute-onset movement disorders, focusing on clinical presentation and appropriate diagnostic
investigations. Both acquired (immune-mediated, infectious, vascular, toxic, metabolic) and genetic
disorders causing acute MDs are reviewed, in order to provide a useful clinician’s guide to this
expanding field of pediatric neurology.

Keywords: movement disorders; acute; emergency; children; autoimmune; chorea; dystonia; parkin-
sonism; drug-induced

1. Introduction

Acute-onset movement disorders (MDs) are an increasingly recognized neurological
emergency in both adults and children [1,2]. Prompt recognition and appropriate man-
agement of acute-onset MDs is crucial, particularly for treatable ones. Nevertheless, the
literature about MD emergencies in children and adolescents is scattered. Few cohort
studies are available, diverging in terms of recruiting setting, inclusion criteria and sam-
ple size [3–5]. Despite the lack of robust epidemiologic data, acute-onset hyperkinetic
MDs have been reported to account for 0.6% of pediatric emergency consultations in one
study [5]. No data are available for hypokinetic disorders, the rarest of pediatric MDs.

Given the vulnerability of the basal ganglia to different noxae, a broad range of neu-
rological and systemic diseases may result in acute-onset MDs. Three different clinical
scenarios are possible: (1) the acute or subacute appearance of a novel-onset MD, (2) the
acute or subacute exacerbation of a chronic, pre-existing MD; and (3) the occurrence of a
paroxysmal MD—a disturbance that has a discrete timing of onset and cessation. In this
latter case, patients frequently come to medical attention after the resolution of symptoms.

In this review, we summarize the most common causes of acute, novel-onset MDs in
children, focusing on clinical presentation and appropriate diagnostic investigations. Parox-
ysmal MD and status dystonicus are not treated, as they have been extensively reviewed
elsewhere [6–9].

2. Methods

A bibliographic search on PubMed was performed on 1 May 2021 using key terms
related to our review. No temporal filter was applied, but only English articles were
considered. We searched for the terms “acute-onset”, “movement disorders”, “children”,
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“adolescents”, “dystonia”, “chorea”, “myoclonus”, “tics”, “parkinsonism”, “drug-induced”,
“autoimmune”, “Sydenham”, “encephalopathy”, “metabolic”, “infections”, “encephalitis”,
“meningitis”, “functional”, “stroke”, “Moyamoya”, both individually and in combination.

Both articles (research articles, reviews, case series or case reports) and book chapters
were included in the final reference list.

3. Approach to Acute Movement Disorders in Childhood

The acute appearance of an MD is a challenging clinical scenario. The range of possible
etiologies is wide, and a conspicuous proportion of the cases are explained by individually
rare disorders [3–5]. As further detailed below, the same disease may present with different
MDs, and the same clinical scenario may underlie different conditions. In addition, the
a priori probability of a given diagnosis greatly changes according with age. As a result,
no diagnostic algorithm may be applied to acute-onset MDs from birth to adolescence.
Nevertheless, as previously described for chronic MDs [10], some general rules can be
useful to build a rigorous but practical approach and can be applied with some differences
to acute-onset MDs (Figure 1) [10]. The definition of the prominent MD phenomenology
in the setting of a specific clinical syndrome is the paradigm according to which further
investigations (if necessary) are considered, always prioritizing potentially treatable causes.
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In some cases, the clinical scenario is highly suggestive of a specific diagnosis (e.g., 
focal dystonia rapidly emerging after neuroleptics assumption, or acute-onset chorea ap-
pearing a few weeks after a streptococcal pharyngitis), making further investigations un-
necessary or easily tailored to the diagnostic hypothesis (see the text and Supplementary 
Table 1). Similarly, functional MDs can be positively recognized according with specific 
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As a rule, neuroimaging is necessary in all other cases—especially when facing uni-
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performed to detect metabolic derangements and may provide elements to suspect an in-
born error of metabolism (IEM). In the case of impaired consciousness, an EEG may prove 

Figure 1. Clinical approach to acute-onset movement disorders. Based on the frequent clinical scenarios, the most relevant
differential diagnoses are indicated. ANEC: acute necrotizing encephalopathy; APS: antiphospholipid syndrome; BSN:
bilateral striatal necrosis; CNS: central nervous system; IEM: inborn errors of metabolism; OMS: opsoclonus–myoclonus
syndrome; PSH: paroxysmal sympathetic hyperactivity; SC: Sydenham chorea; SLE: systemic lupus erythematosus.

In some cases, the clinical scenario is highly suggestive of a specific diagnosis (e.g.,
focal dystonia rapidly emerging after neuroleptics assumption, or acute-onset chorea
appearing a few weeks after a streptococcal pharyngitis), making further investigations
unnecessary or easily tailored to the diagnostic hypothesis (see the text and Supplementary
Table S1). Similarly, functional MDs can be positively recognized according with specific
clinical features (see below), and unnecessary investigations to exclude organic causes
should be avoided.
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As a rule, neuroimaging is necessary in all other cases—especially when facing unilat-
eral MDs—to exclude structural lesions. Routine blood tests including full blood count,
glucose and electrolytes levels, blood gas, liver and kidney function tests should be always
performed to detect metabolic derangements and may provide elements to suspect an
inborn error of metabolism (IEM). In the case of impaired consciousness, an EEG may prove
extremely helpful to assess the severity of the acute encephalopathy, to detect unrecognized
epileptic activity and to identify EEG patterns orientating towards a specific diagnosis [11].
In the case of fever-induced encephalopathy with MDs, cerebrospinal fluid (CSF) sampling
should never be delayed, and the exclusion of infectious causes must be prioritized. If
clinical picture, EEG and/or CSF findings point toward an encephalitic process, but no
definite microbiological diagnosis can be reached, oligoclonal bands and antibody testing
for autoimmune encephalitis should be always performed. For this eventuality, it may
be useful to stock a small amount of CSF for further investigations after every lumbar
puncture for suspected encephalitis. In young children with acute encephalopathy induced
by catabolic states (fever, infections, fasting) or high protein intake, screening for IEM on
blood, urine and CSF should be always performed. Table 1 catalogues a non-exhaustive
list of useful investigations in acute-onset MDs.

Table 1. Suggested investigations for acute-onset MD, according with the predominant phenomenology (a non-exhaustive list).

Chorea

First-line tests
throat swab culture, ASO and antiDNAse titer, cardiac US, EKG, CRP, ESR

Routine blood test
Neuroimaging

Second-line tests:
aPL (anti GP2 IgG and IgM, anti cardiolipin IgG and IgM, LAC assay), to be always performed if chorea does not fulfil Jones’

criteria for rheumatic fever, ANA, ENA, complement fractions (C3–C4), consider joint US if signs of arthritis
TSH/fT4

If signs of encephalitis i/encephalopathy: EEG, CSF sampling for cell count, proteins, CSF culture, PCR for neurotropic viruses,
consider OCB, specific aAb testing on CSF and serum (NMDAR, D2R)

Consider studies for IEM 1 if suggestive findings on MRI, young age, encephalopathy induced by catabolic states or high
protein intake

Consider MRA to exclude vasculopathy (especially if fluctuating symptoms or in presence of vascular lesions)

Dystonia

First-line tests
Exclude drug/toxic exposure (toxic screening if needed)

Routine blood test
Neuroimaging

Second-line tests:
If signs of encephalitis/encephalopathy: EEG, CSF sampling for cell count, proteins, CSF culture, PCR for neurotropic viruses,

consider OCB, specific aAb testing on CSF and serum (NMDAR, D2R)
Consider screening for IEM 1 (including ceruloplasmin/copper studies), especially if suggestive MRI findings.

If severe dystonia: CPK, myoglobin, creatinine, urea.

Myoclonus

First-line tests
Tumor screening (HVA/VMA urine levels, pelvis/abdomen/chest CT or MRI, MIBG scan). Exclude metabolic or endocrine

disorders (uremia/hepatic encephalopathy).
Exclude drug/toxic exposure (toxic screening if needed)

Routine blood test
Neuroimaging

Second-line tests:
If rigidity, ataxia, or signs of encephalopathy: EEG, CSF sampling for OCB, cell count, proteins and specific aAb testing on CSF and

serum (anti-DPPX, GlyR, GAD, amphysin).
Consider work-up for IEM 1, according with MRI findings, especially if young age
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Table 1. Cont.

Parkinsonism

First-line tests
Routine blood test

Neuroimaging
Exclude drug/toxic exposure (toxic screening if needed)

Second-line tests:
If signs of encephalitis/encephalopathy/behavioral abnormalities i: EEG, CSF sampling for OCB, cell count, proteins, CSF culture,

PCR for neurotropic viruses, specific aAb testing on CSF and serum (NMDAR, D2R).
consider work-up for IEM 1 (including ceruloplasmin/copper studies), especially if suggestive MRI findings

Tremor

First-line tests
Exclude toxic causes (drug/toxins) and metabolic/endocrine disorders: electrolyte imbalances, TSH/fT4 testing; blood glucose

levels; toxic screening (if needed)
Consider Neuroimaging

Second-line tests:
If signs of encephalopathy/encephalopathy: EEG, CSF sampling for OCB, cell count, proteins, CSF culture, PCR for neurotropic

viruses, specific aAb testing on CSF and serum (NMDAR, D2R).
Consider Screening for IEM 1 (including ceruloplasmin/copper studies), according with MRI finding

i If signs of encephalitis, exclusion of infections of the central nervous system should be prioritized. 1 Suggested IEM screening: ABG,
ammonium and lactate levels (blood/CSF), urinary organic acids, plasma acylcarnitines, plasma aminoacids, homocysteine levels, ketones.
If suspicion of mitochondrial disorders: magnetic resonance spectroscopy, pyruvate, thiamine, biotin; consider muscle biopsy for histology
and respiratory chain complexes activity, Western blot for detection of mtDNA depletion. Abbreviations: ABG: arterial blood gas, aPL:
antiphospholipid autoantibodies, ASO: anti-streptolysin O; US: ultrasonography, EEG: electroencephalogram, EKG: electrocardiogram,
CRP: C-reactive protein, ESR: erythrocyte sedimentation rate; GP2: glycoprotein 2, LAC: Lupus anticoagulant; CSF: cerebrospinal fluid;
OCB: oligoclonal bands; IEM: inborn errors of metabolism, MRA: magnetic resonance angiography; CPK: creatine phosphokinase; HVA:
homovanillic acid; VMA: vanillymandelic acid.

4. Immune-Mediated Movement Disorders
4.1. Sydenham Chorea

Sydenham chorea (SC) is the most common cause of acute chorea in children [12] and
one of the most common acute MDs overall (illustrative case 1, Supplementary Material) [3–5].
As one of the cardinal manifestations of rheumatic fever (RF), it develops usually 4–8 weeks
after a Group A β-Hemolytic streptococcal (GABHS) infection [13]. The age of onset usually
ranges between 5 and 14 years, with a peak at 8–9 years [14]. Although possible, onset
under 5 years [13,14] or in young adulthood [15] (where relapses of pre-existing SC are
more common) are quite rare [15]. Females are more affected than males (3:1 ratio) [12].
Usually, choreic movements rapidly evolve into a generalized chorea, although 20% of
patients have unilateral or strongly asymmetrical involvement [16]. Other motor symptoms
include motor impersistence, dysarthria, impaired saccades, tics, oculogyric crisis and
hypotonia, that in rare cases may be so severe to cause a flaccid quadriplegia (chorea
paralytica) [15]. Non-motor symptoms may precede the onset of chorea and encompass
obsessive-compulsive disorders, attention deficit and hyperactivity, anxiety, emotional
lability, depression and dysexecutive functioning [17,18].

The diagnosis of SC relies on the demonstration of Jones’ criteria for RF [19], in the ab-
sence of an alternative cause for chorea. Carditis and arthritis are associated in 60–80% and
20% of the cases, respectively [15]. Diagnostic work-up includes the demonstration of pre-
vious GABHS infection (through throat swab culture and determination of anti-streptolysin
O and anti-DNAse B titers), cardiac evaluation for rheumatic carditis (including electro-
cardiogram and echocardiogram) and assessment of inflammatory markers (C-reactive
protein and erythrocyte sedimentation rate). However, due to the long latency, evidence
of the inciting GABHS infection may be difficult to obtain at SC onset. Cerebrospinal
fluid (CSF) analysis and neuroimaging do not usually provide diagnostic or prognostic
information, but they may help in rule out alternative causes [15].

Beside antibiotic prophylaxis to prevent further streptococcal infections, evidence
about the best treatment options for SC is lacking [20]. The most common options for symp-
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tomatic treatment include antiepileptics (valproic acid and carbamazepine), neuroleptics
(pimozide and haloperidol) and monoamine depletors (tetrabenazine). Immunomod-
ulatory treatments with steroids (oral prednisone or intravenous methylprednisolone),
intravenous immunoglobulins (IVIg) or plasmapheresis have been utilized, although their
role and indications remain controversial [20].

Usually, SC resolves in 1–6 months, although persistence of symptoms for 2 years
or more has been reported in up to 50% of patients [16,21]. Relapses affect 13–42% of
patients [22–25] and may occur because of pregnancy (chorea gravidarum) or oral contracep-
tive treatment [21]. Antibiotic prophylaxis is likely to reduce the risk of SC recurrences,
although it does not completely prevent them [20]. A higher recurrence rate has been
reported in patients with poor regimen adherence [22,23], despite many SC recurrences
lacking evidence of streptococcal exposure [26]. The resolution of SC within 6 months
could reduce the risk of later recurrences [23].

4.2. Systemic Lupus Erythematosus (SLE) and Antiphospholipid Antibody Syndrome (APS)

Chorea is a possible non-thrombotic neurological complication primary APS and SLE
(often associated with secondary APS) [27]. APS/SLE-related chorea is more common in
children than adults [28] and may be the presenting symptom of the condition [29]. Chorea
can be bilateral or unilateral, and it usually develops subacutely [27]. Onset is reported
from 5 years of age [30]. Rarely, APS in children and adolescents has been reported in
association with acute-onset tics, hemidystonia and parkinsonism [31–33]. Psychiatric
and behavioral disorders commonly coexist [15]. APS and SLE are the main differential
diagnosis of SC in the acute-onset chorea, and antiphospholipid antibodies (aPL) testing
is always recommended. Brain MRI can be normal or may show nonspecific findings or
basal ganglia and white-matter microvascular lesions [27,34]. CSF is usually normal, but
inflammatory changes (mild pleiocytosis, oligoclonal bands, elevated neopterin) can be
found [33]. However, no diagnostic criteria for APS/SLE-related chorea exist, and the
common occurrence of the MD before other symptoms may prevent the fulfillment of APS
or SLE diagnostic criteria, especially in children [27]. Diagnosis relies on aPL positivity and
the exclusion of other possible causes. Treatment requires primary or secondary thrombosis
prophylaxis and symptomatic therapy for motor symptoms (when needed). Immunosup-
pressive and immunomodulatory agents are commonly used [29,35–37], despite the lack
of evidence-based indications [28]. In APS and SLE, MDs may also occur as a consequence
of cerebral ischemic events (see below).

4.3. Anti-N-methyl-D-aspartate Receptor (NMDAR) and Other Autoimmune Encephalitis (AE)

MDs are a core feature of several AEs [38]. Anti-NMDAR encephalitis is the most
common AE, most commonly affecting children and young adults with a female predomi-
nance. An association with ovarian teratoma is frequent in young females, while it is rare
in children and in males [39]. Onset has been reported as early as in the first months of
life [40]. Anti-NMDAR AE may follow a previous herpes simplex virus (HSV) encephali-
tis [41,42]. Onset in young children usually encompasses speech and sleep disturbances,
followed by the appearance of seizures, abnormal movements and behavioral changes.
In adolescents, psychiatric symptoms usually predominate at onset [39]. In toddlers, the
occurrence of gait disturbances featuring ataxia or freezing of gait has been reported as an
early symptom [43,44]. Regardless of the symptoms at onset, the disease usually progresses
to include variable combinations of MDs, seizures, behavioral changes, sleep disturbances,
reduced consciousness and dysautonomia [39]. The phenomenology of the MD is pro-
tean, complex and hardly classifiable. Most patients develop a mixed, hyperkinetic MD
frequently featuring dystonia, chorea and stereotypies, and more rarely encompassing
tics, myoclonus, ballism, tremor or other stereotyped movements (sometimes described as
“tonic” or “clonic perseveration”). The occurrence of orofacial dyskinesia is common and
distinctive [45–47]. Hypokinetic, namely bradykinetic MDs are rarer and more commonly
reported in adolescents, as well as catatonic presentations [48]. Oculomotor disturbances,



J. Clin. Med. 2021, 10, 2671 6 of 22

such as oculogyric crisis and ocular bobbing, are possible [47,49]. MRI is usually normal,
but areas of increased fluid-attenuated inversion recovery (FLAIR) signal involving cortical,
subcortical or cerebellar regions can be found in about 30% of the cases [39].

Autoimmune Basal Ganglia Encephalitis is the diagnostic label for another clinical
syndrome characterized by acquired extrapyramidal movement disorders and neuropsy-
chiatric symptoms, following an infectious illness. Associated features include sleep
disturbance and dysautonomia [50]. Negative CSF testing for infectious agents, the pres-
ence of oligoclonal bands in CSF and frequent positivity for anti-dopamine D2 receptor
autoantibodies corroborate the putative autoimmune pathogenesis of this syndrome [50].
The MD presentation may be both hypokinetic or hyperkinetic. Parkinsonian features may
include the variable association of akinesia/bradykinesia, rest tremor and rigidity, while
hyperkinetic presentations may feature chorea, ballism, and dystonia [51]. Oculogyric crisis
and ocular flutter have been reported in several cases [51]. Brain MRI shows symmetric
basal ganglia hyperintensities on T2-weighted images in about half of the cases [51].

Although rarely reported in children [52,53], stiff person spectrum disorders (SPSD)
are a possible cause of acquired motor dysfunction whose core symptoms include fluc-
tuating muscle stiffness, superimposed spasms and acquired hyperekplexia [38]. Beside
the classic presentation, variant forms may be limited to one limb or associated with
other neurological symptoms (SPS-plus). The progressive encephalomyelitis with rigidity
and myoclonus (PERM) represents the most severe end of this spectrum [38]. It is a life-
threatening disease characterized by brainstem and spinal cord involvement that manifest
with hyperekplexia, myoclonic jerks, painful muscle spasms, abnormal eye movements
or hemifacial spasm [50]. Associated autoantibodies are directed against glutamic acid
decarboxylase (GAD), glycine receptor (GlyR), and less frequently, amphiphysin [38].

Several other, rarer AEs in children may cause MDs. Chorea, dyskinesias and dys-
tonia may be found in anti-LGI1, anti-GABAA and GABAB receptor AEs, usually in
the context diffuse or limbic encephalitis [38,54,55]. Myoclonus is a common feature of
opsoclonus–myoclonus syndrome (OMS, see below), and may part of the manifestations
of AE associated with anti-GABAB receptor or dipeptidyl-peptidase-like protein (DPPX)
antibodies [38,54]. Specifically, anti-DPPX-associated AE causes a multifocal disorder with
cortical, brainstem, cerebellar, spinal cord and autonomic nervous system involvement.
Frequent features include encephalopathy, abnormal eye movements, dysautonomia, gas-
trointestinal dismotility, cerebellar ataxia and myoclonus, with clinical overlap with PERM
and OMS [56]. MDs associated with anti-DPPX AE also include parkinsonism, chorea,
dystonia and tremor [56]. Diarrhea with profound weight loss and other gastrointestinal
symptoms are a characteristic symptom of the initial stages of this disease [38].

AEs are susceptible to immune-suppressive treatments, including steroids, IVIg,
rituximab, cyclophosphamide and plasmapheresis [57].

4.4. Acute Disseminated Encephalopathy (ADEM)

Although rarely, MDs may be the presenting or prominent symptom of pediatric
demyelinating diseases, especially ADEM [58]. Patients with ADEM may feature choreoa-
thetosis, hemidystonia, hemichorea, facial dyskinesias, segmental myoclonus and paroxys-
mal hemidystonia [59–61]. In addition, complex MD featuring dystonia and abnormal eye
movements has been reported in a toddler with anti-myelin oligodendrocyte glycoprotein
(MOG)-associated ADEM [62].

4.5. Opsoclonus–Myoclonus Syndrome (OMS) and Paraneoplastic MDs

OMS is a rare autoimmune MD that typically affects young children (mean age
18–24 months [63,64]), but that may occur throughout life from infancy to elderly [65]. The
disease usually begins with behavioral abnormalities (excessive irritability and sleep distur-
bances) and developmental stagnation [65]. Later, ataxia and/or trunk and limb myoclonus
appear acutely or subacutely (over hours to weeks). The association of opsoclonus—the
most distinctive manifestation—is not universal [65]. Pediatric OMS is a paraneoplastic
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phenomenon related to neuroblastoma in about 50% of the cases [66], and rarer asso-
ciations with ganglioneuroma, hepatoblastoma are possible [65]. In adolescents (espe-
cially females), the association of OMS, additional signs (ophthalmoparesis, dysarthria,
altered consciousness) and ovarian teratoma (without anti-NMDAr antibodies) has been
described as a distinctive brainstem–cerebellar syndrome [38,67]. Therefore, in-depth
work-up for occult tumor detection is mandatory, including the testing of homovanillic
acid and vanillylmandelic acid urine levels and chest, abdominal, and pelvic CT or MRI.
I123-metaiodobenzylguanidine scan or 18F- fluorodeoxyglucose PET are second-level inves-
tigations, useful if CT or MRI are unrevealing or to detect metastatic involvement [65]. If
negative, tumor screening must be repeated during follow-up, since OMS may precede the
diagnosis of neuroblastoma [68]. Brain MRI is typically normal. CSF testing may reveal
the presence of inflammatory markers (lymphocytic pleocytosis, elevated neopterins and
oligoclonal bands). Nonparaneoplastic OMS in children is usually considered to have a
para- or post-infectious origin, or it is labelled as idiopathic. Despite the plethora of trigger-
ing infectious agents reported [69–79], no consistent pathogen has emerged. In addition,
the triggering infection may be difficult to demonstrate, and clinical features and immuno-
logical markers are not helpful in differentiating paraneoplastic from non-paraneoplastic
cases [80]. Specific autoantibodies against intracellular (anti-Hu, anti-CV2/CRMP5, anti-
Ma2 [81–84]) or surface antigens (such as glutamate receptor δ2 [85–89]) have been detected,
but their diagnostic value in children is still uncertain [65,90]. The association of OMS
with established pathogenic autoantibodies (anti-NMDAR, GABAA and GABAB receptor,
DPPX, GAD, GlyR [54,81,91–93]) is anecdotal or limited to adult forms. Besides tumor
management, the treatment of OMS relies on immunomodulatory therapies, including
adrenocorticotropic hormone (ACTH), steroids, and IVIg [65].

Exceptionally, acute-onset chorea has been described in association with cardiac
fibroelastoma, in a putative paraneoplastic syndrome [94,95].

5. Infectious and Para-Infectious Disorders

Beside their trigger role in multiple immune-mediated disorders, infectious agents
may cause MDs by direct invasion of the central nervous system (CNS) [96]. Nevertheless, it
is sometimes difficult to discriminate the infectious from the immune-mediated mechanism,
and both processes may occur simultaneously or in succession. In this section, we discuss
MDs occurring in association with demonstrable CNS infections or in the context of
systemic infectious illnesses.

5.1. Viral Infections

In the context of viral encephalitis, some agents have been reported to frequently cause
MDs [96], because of a specific tropism for the basal ganglia, thalami and brainstem [97]. In
children, Epstein–Bar virus (EBV) encephalitis may cause parkinsonism [98,99], choreoa-
thetosis may be seen in the acute phase of influenza A, EBV and HHV-6 encephalitis [100–102],
and tics have been described in post-varicella encephalitis [103]. In endemic countries,
Japanese and Dengue encephalitis are typically associated with parkinsonism and/or
dystonia, with the characteristic occurrence of oromandibular dystonia [97,104–106]. By
converse, MDs are rarely associated with HSV encephalitis, and the numerous reports of
post-HSV encephalitis relapses associated with chorea and other MDs are actually due to
subsequent anti-NMDAr AE [41,42,107]. Although rare, HIV-encephalopathy is a possible
cause of acute-onset chorea, oro-facial dyskinesias, bradykinesia and dystonia (sometimes
mimicking anti-NMDAr AE [108–110]).

5.2. Bacterial Infections

Children with tuberculous meningitis frequently develop MDs as a consequence
of inflammation, essudate, hydrocephalus, and vascular lesions in the basal ganglia, di-
encephalon and brainstem [111]. Chorea is probably the most common MD in young
children [111], but tremor and dystonia may occur [111,112], sometimes progressing to
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status dystonicus [113]. Chorea, athetosis and ballismus may also occur in the acute stage of
bacterial meningitis due to H. influenza, S. pneumoniae or N. meningitidis [114]. In one case,
tourettism has been reported as a possible presentation of neuroborreliosis [115].

5.3. Protozoal, Fungal and Helmintic Infections

Cerebral toxoplasmosis abscesses, mostly affecting immunocompromised patients,
usually localize to the basal ganglia, thalami and midbrain [96] and may cause chorea
and dystonia [16,116], although it is extremely rare in children. Similarly, cryptococcal
abscess are a potential alternative cause [16]. In endemic areas, neurocysticercosis has been
reported to cause ballismus, chorea and dystonia [117–119].

5.4. Infectious and Post-Infectious Bilateral Striatal Necrosis (BSN)

BSN is a pathologically and radiologically defined condition characterized by the
subsequent appearance of neostriatal swelling (that appears on brain MRI as hyperinten-
sity of putamina and caudate nuclei on T2-weighted images) followed by progressive
degeneration with cellular necrosis and cavitation (corresponding to T1-hypointensity and
hypo-hyperintensity on fluid inversion recovery images) [120]. These findings may be
encountered in both acquired and genetic conditions, with many cases having been linked
to infectious disease [120,121]. Usually, the disease presents acutely with the signs of the
systemic illness, while manifestations of CNS involvement may develop along with the
intercurrent illness or shortly after its resolution [120,122–126]. Neurological symptoms
usually include dystonia and/or parkinsonism, variably associated with encephalopa-
thy, seizures, ataxia or pyramidal signs [120]. The most commonly associated infectious
agent is Mycoplasma pneumonia [122,123,126], but several other possible causes have been
reported—such as GABHS, HHV-6 or measles [124,125,127–129]. Laboratory investigations
do not always clarify if pathogenesis is supported by the infection or immune-mediated
mechanisms [120]. The disease is typically monophasic and non-progressive, followed by
gradual—although partial—recovery [120]. The occurrence of subsequent relapses, pro-
gressive deterioration, or pre-existing neurological symptoms should lead one to consider
a metabolic etiology (see below).

5.5. Acute Necrotizing Encephalopathy (ANEC)

ANEC is a rare para-infectious disease, triggered by different viral infections [130].
Initial reports from Japanese and Taiwanese children [131] suggested a geographical
predilection for eastern Asia, but recent reports have shown that ANEC has a global
distribution [130]. The disease develops in previously healthy children after common viral
illnesses, especially influenza virus and HHV-6 [130]. The signs of the viral illness dominate
the prodromal stage. Later, the disease progresses with the occurrence of encephalopathy,
hyperpyrexia, signs of liver dysfunction and uremia [131], that may progress into multi-
organ failure and disseminated intravascular coagulation (DIC) [130]. Neurological signs
include coma, seizures, and focal deficits. Children with ANEC may feature dystonia,
parkinsonism and chorea [2,3]. The disease course is fulminant, and the outcome may
vary from complete recovery after a recovery stage to severe forms with high mortality
or significant neurological disability [130]. The pathological and radiological hallmark of
the disease is the occurrence of multifocal, bilateral and symmetrical brain lesions that
invariably involve the thalami and usually extend to brainstem, cerebral white matter, and
cerebellum [130], with occasional involvement of the spinal cord [132]. ANEC pathogenesis
is unclear. Although viral agents may sometimes be detected on CSF, the currently pre-
dominant hypothesis is that ANEC results from an exaggerated proinflammatory response
leading to a cytokine storm. On this basis, immunomodulatory therapy with glucocorti-
coids, IVIg and plasmapheresis can be tried, but evidence of efficacy is lacking [130,133].
Although ANEC is usually an isolated and sporadic disease, recurrent and familiar cases
are possible and can be due to RANBP2 gene mutations [130].
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6. Vascular Diseases

Unlike in adults, cerebrovascular disease is a rare cause of acute MDs in children [3–5].
Nevertheless, basal ganglia strokes may cause unilateral chorea or ballismus [3,4,134].

Chorea, ballismus and dyskinesia can be seen in Moyamoya disease [135,136], a
chronic cerebral vasculopathy that provokes uni- or bilateral progressive stenosis of the
terminal portion of the internal carotid artery, associated with the development of a fine
collateral network at the base of the brain [137]. Abnormal movements may have paroxys-
mal or highly fluctuating course [135,136], precipitated by hyperventilation or emotional
stress, probably as a consequence of hypoperfusion of the basal ganglia [16].

“Post-pump chorea” is an infrequent complication of cardiopulmonary bypass that
occurs within 2 weeks from surgery [138]. Chorea mostly involves the limbs, mouth,
tongue and face and is usually associated with variable degrees of encephalopathy [16].
Its occurrence may be favorited by deep hypothermia, prolonged extracorporeal circula-
tion time, and variability in blood pH and PaCO2 during surgery [139]. Neuroimaging
studies are usually normal or show unspecific findings, and the pathophysiology remains
unclear [139]. Chorea can be transient or persistent, with an increased risk for severe and
persistent forms in older children compared to infants [139].

7. Drug-Induced and Toxic Movement Disorders

Acute MDs are a potential side effect of numerous drugs. Besides prescribed treatment,
children are exposed to the risk of inadvertent or unwise use of drugs and several toxic
agents [140].

7.1. Acute Dystonic Rreactions

Acute dystonic reactions (ADR) usually occur after exposure to dopamine receptor
blocking agents (DRBAs), such as neuroleptics and antiemetics (illustrative case 2, Sup-
plementary Material) [140]. Typically, ADRs involve the head, face and neck, causing
retrocollis, opistothonus, trismus, tongue protrusion or oculogyric crisis. Extremities
are less frequently involved [141]. Rarely, laryngeal spasm represents a life-threatening
form [141,142]. ADR usually develops within 5 days from assumption of the offending
drug, and children are at increased risk compared to adults [140]. The risk is higher with
typical, potent DRBA (such as haloperidol), but drugs inducing a less potent dopaminergic
blockade may also cause ADR, including atypical antipsychotics (such as aripiprazole),
antiemetics (such as metochlopramide) or selective serotonin reuptake inhibitors (SSRIs,
such as citalopram or escitalopram), especially in children [141,143–145]. In addition,
ADRs have been reported after exposure to methylphenidate or other psychostimulants
in children treated with (or shortly after the withdrawal of) DRBA [146–148], suggesting
that dopaminergic drugs may increase the risk of ADRs in patients exposed to DRBA.
Nevertheless, methylphenidate may cause several dyskinetic reactions, including focal
dystonia, also in DRBA-naïve patients [149–153]. Treatment with anticholinergic drugs
may be beneficial [141].

7.2. Neuroleptic Malignant Syndrome

Neuroleptic malignant syndrome (NMS) is a drug-induced condition that usually
develops within one month from the beginning or an increase in dosage of a DRBA,
or (exceptionally in children) after abrupt the discontinuation of dopaminergic treat-
ments [140]. The risk of NMS is greater for typical than for atypical neuroleptics. Rarely,
NMS may be induced by antiemetic DRBAs, SSRIs, lithium, tryclic antidepressants (TCAs)
or metylphenidate [140,154–159]. NMS manifests with the acute appearance of hypertermia,
altered consciousness, severe rigidity, autonomic instability and hyperCKemia [140,160].
Associated MDs may include dystonia, chorea, parkinsonism, oro-facial dyskinesia and
oculogyric crisis [140]. NMS is a life-threatening emergency, potentially evolving into
cardiac and renal failure, respiratory disturbances and DIC [140]. Treatment requires the
discontinuation of the offending drug, supportive measures, and specific therapies such as
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bromocriptine (a dopamine agonist), dantrolene and amantadine. Nevertheless, evidence
of efficacy for these latter treatments is lacking [140].

7.3. Serotonin Syndrome

Serotonin syndrome (SS) develops after exposure to one or (more commonly) multiple
serotonergic drugs [140]. SS may be induced by the overdose or interaction of a variety of
compounds with intrinsic serotonergic activity or inhibiting serotonergic drug metabolism,
including antidepressants (such as SSRIs, TCAs, monoaminoxidase inhibitors), psychostim-
ulants (amphetamines, methylphenidate), drugs of abuse (cocaine, MDMA), antibiotics or
antivirals (linezolid, erythromycin, ritonavir), antimigraine drugs (triptans, ergotamines),
and nutraceuticals [140]. SS usually occurs within 24 h from exposure to the offending
agents, presenting with agitation, mental status changes, myoclonus, hyperreflexia, clonus,
tremor, ocular flutter, dry mouth, fever and dysautonomia [161]. Treatment relies on the
discontinuation of serotonergic drugs and supportive measures. The serotonin antagonist
cyproheptadine is often used, but evidence of efficacy is poor [161,162].

7.4. Other Iatrogenic Movement Disorders

Beside the above-cited methylphenidate-induced dyskinesias, several other drugs
have the potential to cause acute-onset abnormal movements. Chorea and dyskinesia
may be acutely induced in children by other psychostimulants [163], ACTH, vigabatrin,
theophylline, aminophylline, midazolam, phenytoin and other anticonvulsants [164–172],
as well as by the rapid discontinuation of intravenous midazolam [173,174]. Although
better reported in adults, anticholinergics, L-DOPA, dopamine-agonists, opioids, TCAs,
baclofen and lithium may also cause chorea [16,175–182]. Oral contraceptives may cause
chorea in adolescent girls, especially in patients with previous SC [183,184]. Myoclonus
may be induced by opioids, SSRIs, etomidate, carbamazepine and its derivatives, ketamine
and analgesic withdrawal [3,178,185–188]. Carbamazepine may also cause tics [189]. Acute-
onset parkinsonism or chorea may be observed in patients exposed to amphotericin B and
cytosine arabinoside [3,190–193].

7.5. Systemic Intoxications

Although rarely reported in children, carbon monoxide poisoning may cause parkin-
sonism, and less frequently chorea, athetosis, dystonia and tremor, sometimes with delayed
onset from intoxication [194]. Mercury intoxication may cause tremor [4], lead poisoning
may induce myoclonus [195], and overdoses of decoctions containing different medicinal
herbs may cause encephalopathy with dystonia [196].

8. Inborn Errors of Metabolism and Genetic Disorders

Acute-onset MDs are a possible presentation of various genetic disorders in children,
mostly in the setting of the acute decompensation of IEM, often with accompanying
encephalopathy [197].

8.1. Organic Acidurias

Glutaric aciduria type I typically presents within 3 years of age with acute en-
cephalopathic crises associated with generalized dystonia and dyskinesia. Common trig-
gers include intercurrent illnesses or minor head trauma. MRI findings include BSN,
frontotemporal atrophy, white matter alterations, pseudocysts, and chronic subdural
hematomas [120,198]. Treatment relies on a low-lysine and carbohydrate-enriched diet
with carnitine supplementation [198]. Other organic acidurias that may present with acute
encephalopathy with dystonia, dyskinesias and choreoathetosis include maple syrup urine
disease, propionic, 3-methylglutaconic and methylmalonic acidemias, and cobalamin C de-
fects [197–199]. Early diagnosis and the initiation of appropriate dietary and pharmacologic
interventions prevents further neurological deterioration.
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8.2. Mitochondrial Disorders

Leigh syndrome (LS) is a subacute necrotizing encephalopathy typically manifest-
ing in infancy or early childhood, triggered by infections, starvation and other catabolic
states [120,200]. Clinical presentation usually includes developmental regression with
encephalopathy, dystonia, parkinsonism, ataxia and pyramidal signs, possibly associated
with signs of muscular, neuropathic, renal, or cardiac involvement [120]. More rarely,
LS may cause choreoathetosis. Radiologically, LS is characterized by symmetrical and
bilateral lesions variably involving the basal ganglia, thalami, cerebral cortex, white matter,
cerebellum, brainstem, and spinal cord [120,201], and isolated BSN is a possible presen-
tation [120]. LS is genetically heterogeneous, being caused by a wide range of mutations
in mitochondrial and nuclear genes impairing energy production [201,202]. Nevertheless,
the list of genes causing LS or LS-like presentations by different molecular mechanisms is
permanently expanding [202]. Among them, Biotin–thiamine-responsive basal ganglia dis-
ease (BTBGD) is a potentially treatable disease due to defects in the thiamine transporter 2,
encoded by the SLC19A3 gene. BTBGD usually presents recurrent episodes of acute or
subacute encephalopathy in infancy, often triggered by catabolic states, featuring seizures,
confusion, ophthalmoplegia and dystonia. Supplementation with biotin and thiamin may
considerably improve the outcome [198]. Other IEMs that may cause acute encephalopathy
with MDs present with combined features of organic acidurias and mitochondrial disor-
ders, including succinate-CoA ligase deficiency, ethylmalonic encephalopathy, and valine
metabolism defects [120,198].

8.3. Other Genetic Disorders

Rapid-onset dystonia-parkinsonism due to ATP1A3 gene mutations presents with
acute or subacute dystonia associated with minor parkinsonian features. Typically, anatom-
ical distribution is asymmetrical, with prominent bulbar signs and a rostro-caudal gradient
of involvement [203]. Symptoms usually progress over hours to weeks and remain stable
thereafter. Onset may range from infancy to adulthood, and provoking factors such as emo-
tions, infections, trauma, or pregnancy are usually recognizable. In addition, acute-onset
choreoathetosis, dystonia and dyskinesia may be encountered in other ATP1A3-related
phenotypes, such as recurrent encephalopathy with cerebellar ataxia and CAPOS syn-
drome (cerebellar ataxia, areflexia, pes cavus, optic atrophy, and sensorineural hearing
loss) [203,204].

Rarely—in its juvenile dystonic form—Wilson’s disease may have subacute onset with
rapid deterioration [205,206]. In addition, acute neurologic deterioration may occur after
initiation on penicillamine chelating therapy [198].

Besides infectious and metabolic causes, an important differential diagnosis of acute-
onset MDs with bilateral striatal lesions is ADAR1-related disease, a genetic interferonopa-
thy that may present with acute dystonia or choreoathetosis and developmental regression
following an infectious trigger (illustrative case 3, Supplementary Material) [207].

Although rarely, neurodegenerative disorders such as ceroido lipofuscinosis, may
present with acutely or subacutely evolving MDs, usually after an insidious onset of
neurological signs [4,5,208].

9. Metabolic and Endocrine Disorders

Although uncommon in children, acute MDs may result from metabolic and endocrine
imbalance induced by a variety of disorders. Acute hemichorea–hemiballismus induced
by non-ketotic hyperglycemia is a possible complication of type 1 diabetes—although
more common in type 2 [96,209,210]. Tremors, myoclonus and asterixis may be seen in
acute hepatic and uremic encephalopathy [211]. Electrolyte disturbances may cause a wide
range of MDs: hypernatriemia may cause tremor, chorea, or myoclonus, hypercalcemia
may cause myoclonus and hyperreflexia, and hypomagnesemia induces tremor, chorea,
myoclonus and exaggerated startles [212]. Thyrotoxicosis can cause tremor and has been
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rarely reported to induce chorea [213]. In addition, nutritional deficiencies such as vitamin
B12 may cause tremors [4].

10. Paroxysmal Sympathetic Hyperactivity

Paroxysmal sympathetic hyperactivity (PSH)—also known as paroxysmal autonomic
instability with dystonia—is usually a complication of severe acquired brain injury (ABI),
regardless of etiology [214,215]. It manifests with intermittent agitation, dysautonomia (di-
aphoresis, hyperthermia, hypertension, tachycardia, and tachypnea), rigidity and dystonic
posturing [2,214]. Dystonia usually features axial extensor postures with opistothonus or
decerebrate/decorticate posturing, but hemydystonia is possible [214,216]. It has been
originally described (under different terms) as occurring within one week from severe
traumatic or anoxic ABI, but it can be due to tumors, intracranial hemorrhage, infections
or hydrocephalus [214,215,217–219]. It is more likely to occur in the case of diffuse axonal
injury or brainstem–diencephalic lesions [214]. More rarely, presentations similar to PSH
have been reported in genetic syndromes, such as Rett’s or Down’s [2,220,221].

The clinical course may fluctuate, with persistence over weeks or months [214]. PSH
shows overlapping features with NMS and status dystonicus, but rhabdomyolysis is infre-
quent and dysautonomia is prominent [8,214]. In addition, PSH shares features and may
coexist with other complications of severely ill patients, including sepsis, drug withdrawal,
delirium, or pain [214]. Treatment is largely supportive. Since an excessive sympathetic
activity is implied, propranolol, clonidine and other adrenergic inhibitors may be help-
ful [8,214,222]. To ensure sedation and treat motor symptoms, opioids, benzodiazepines
and gabapentin may be used [8,214]. In analogy with NMS, bromocriptine may be benefi-
cial in some cases [214].

11. Tics Disorders and Tourette Syndrome

Acute vocal and motor tics have been reported as the most common acute MD in
children presenting to pediatric emergency departments [5]. Although tic disorders usu-
ally have an insidious onset between in school-aged children [223], acute appearance or
sudden exacerbations leading to medical attention are not uncommon [5]. The course of
tics is spontaneously fluctuating [224], but acute and sustained “bouts” of tics may be
provoked by stressful life events, fatigue, intercurrent medical issues, or drugs (especially
psychostimulants and serotonergic agents). [225–228]. In rare cases, uncontrolled and
violent movements (especially of the head and neck) may result in tic-related injuries [229],
or exacerbations may be so severe as to shape a non-suppressible, restless tic succession
lasting for hours, sometimes referred as “tics status” [226].

When tics acutely occur in children that are not known to suffer from tic disorders,
investigations are usually unnecessary [223]. Observation and careful history are sufficient
to identify tics: their stereotyped nature (configuring a “tic repertoire”), the occurrence of
premonitory sensory experiences (relieved by the tics) and the possibility to suppress tics
for brief time intervals are specific features of this MD [223]. Even in acute presentations, a
previous insidious history of mild tics often emerges.

In adolescents with an atypical onset of tics after puberty, the most difficult differ-
ential diagnoses are functional tics (see below). From the late 1990s, it has been strongly
debated whether a subset of children presenting with acute-onset tics and/or obsessive-
compulsive disorder after exposure to GABHS infections may have an underlying autoim-
mune disease (in analogy with SC) [230]. These children have been proposed to configure
a separate entity—referred as pediatric autoimmune neuropsychiatric disorders associated
with streptococcal infections (PANDAS), characterized by a relapsing–remitting course
attributed to re-infections and by a positive response to antibiotic or immunomodulatory
treatments [231]. Despite extensive research and controversy, biological studies failed
to convincingly demonstrate an immune basis, evidence of efficacy of antibiotics and
immunotherapy is poor and recent studies show that GABHS infections are not trigger
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factors for tic exacerbations [230,232]. As a result, the search for evidence of streptococcal
exposure in children with tics should be discouraged.

12. Functional Movement Disorders

Functional MDs have been reported to account for 4.3–23% of all acute MDs in
children and adolescents, representing one of the most common causes [233]. Tremor is
the most common functional MD (illustrative case 4, Supplementary Material), followed
by myoclonus, dystonia and tics, and the combination of multiple MDs is frequent [3].
Recently, the abrupt, explosive onset of tics and tic-like movements in adolescents (with a
female predominance) has been described as an unusual presentation of functional tics,
whose frequency could have been raised by the COVID-19 pandemic and related lockdown
measures [234].

Diagnosis relies on the demonstration of specific features on history and examination.
First, functional MDs often present with abrupt and dramatic onset [233]. Second, symp-
toms and their severity tend to vary, and disability is often selective or inconsistent [10,233].
Distractibility (namely, the disappearance or reduction in the severity of the symptoms
when the patient is unobserved or distracted by a cognitive task) is a strong argument
in favor of a functional etiology. Similarly, the entrainment phenomenon can be actively
searched in tremor and myoclonus: it consists in the synchronization of the involuntary
movement to an externally imposed rhythm, and strongly suggests a functional MD [10].
In addition, several features can make functional phenomenology incongruent with an
organic origin. For instance, dystonia lacks sensory tricks or overflow, dystonic postur-
ing is usually fixed instead of mobile, and pain can be a prominent feature. Tics lack a
premonitory urge and cannot be voluntarily suppressed, while tremor may emerge in a
distant, previously unaffected body segment after constraining the originally tremulous
body part (whack-a-mole sign, see [233] for a detailed list of incongruent features). Chronic
underlying medical, psychiatric or neurologic conditions may be present, and psychosocial
or physical stressors are frequent triggers [3].

Despite these positive features, sometimes, functional MDs can be difficult to diagnose
and both functional and organic MDs may coexist in the same patient [10].

13. Conclusions

In this review, we summarized common and rare causes of acute-onset MDs in
children and adolescents (see Supplementary Table S1 for a summary). In their acute
presentation, MDs may represent the prominent symptom or an important diagnostic clue
in a broader constellation of neurological and extraneurological signs. For this reason,
the diagnostic approach relies on the definition of the overall clinical syndrome (Figure 1)
and on the recognition of the prominent MD phenomenology (Figure 2). Appropriate
management relies on the identification of the underlying disorder. Acute MDs are mostly
due to autoimmune and inflammatory diseases, and their prompt recognition may have
a significant impact on outcome [3]. Similarly, the timeliness of treatment initiation in
treatable IEM is pivotal to avoid ongoing neurological deterioration [198]. Consequently,
MD emergencies emerge as a pivotal part of every child neurologist’s wealth of knowledge.
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